Description

This report describe characteristics affect the quality of cars based on variables. We can create data visualizations based on existing variables using ggplot2.

The dataset can be downloaded -> https://www.kaggle.com/lavanya321/mtcars

Report Outline :
1. Data Extraction
2. Exploratory Data Analysis
3. Data Processing
4. Modelling
5. Summary

1. Data Extraction

The Dataset is downlaoded from kaggle and saved in the data folder or we can the dataframe in Rstudio and we put in mtcars_df.

mtcars
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
## Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
## Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
## Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
## AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
## Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
## Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
## Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
mtcars_df <- mtcars

To see the number of rows and column, we used dim fuction. The dataset has 32 rows and 33 columns

dim(mtcars_df)
## [1] 32 11

2. Exploratory Data Analysis

To find out the column names and types, we used **str() function

str(mtcars_df)
## 'data.frame':    32 obs. of  11 variables:
##  $ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##  $ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
##  $ disp: num  160 160 108 258 360 ...
##  $ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
##  $ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
##  $ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
##  $ qsec: num  16.5 17 18.6 19.4 17 ...
##  $ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
##  $ am  : num  1 1 1 0 0 0 0 0 0 0 ...
##  $ gear: num  4 4 4 3 3 3 3 4 4 4 ...
##  $ carb: num  4 4 1 1 2 1 4 2 2 4 ...

copy data type from numeric to factor

mtcars_df$am <- factor(mtcars_df$am, levels = c(0,1),
                       labels = c("Automatic", "Manual"))

mtcars_df$vs <- factor(mtcars_df$vs, levels = c(0,1),
                       labels = c("V-Engine", "Straight Engine"))

mtcars_df$cyl <- factor(mtcars_df$cyl)

2.1 Multivariate Data Analysis

There are three types of measurements: horse power (hp), miles per galoon (mpg), cylinder (cyl). Each measurement has 32 variables so the total is 96 variables. We want to compute and visualize correlation coefficient of each measurement.

Visualize cars Automobile data by Engine type.

library(ggplot2)
ggplot(data = mtcars_df, aes(x=hp, y=mpg, 
                              shape = cyl, color=cyl)) +
  geom_point(size = 3) +
  facet_grid(am~vs) +
  labs (title = "Automobile data by Engine type",
  x = "horsepower", y = "Miles Per Gallon")

3.1 Training and Test Division

Use set.seed() for reproducible result. Ratio train:test = 80:20.

m = nrow(mtcars_df)
set.seed(3101)
train_idx <- sample(m, 0.8 * m)

train_df <- mtcars_df[train_idx, ]
test_df <- mtcars_df[-train_idx, ]

sort(train_idx)
##  [1]  1  3  4  6  7  8  9 11 12 13 14 15 16 17 19 20 21 22 23 26 27 28 29 30 31

4. Modelling

We compute to model using simple linear, polynomial linear regression, multiple linear, and MLR with interaction.

4.1 Simple Linear

fit.linreg <- lm(formula = hp ~ mpg, data = train_df)
summary(fit.linreg)
## 
## Call:
## lm(formula = hp ~ mpg, data = train_df)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -58.63 -29.06 -16.25  25.52 143.95 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  323.737     32.755   9.884 9.53e-10 ***
## mpg           -8.846      1.574  -5.621 1.01e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 47.77 on 23 degrees of freedom
## Multiple R-squared:  0.5787, Adjusted R-squared:  0.5604 
## F-statistic: 31.59 on 1 and 23 DF,  p-value: 1.014e-05
fit.linreg <- lm(formula = mpg ~ hp, data = train_df)

4.2 Polynomial Linear Regression

fit.polyreg <- lm(formula = hp ~ mpg + I(mpg^1), data = train_df)
summary(fit.polyreg)
## 
## Call:
## lm(formula = hp ~ mpg + I(mpg^1), data = train_df)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -58.63 -29.06 -16.25  25.52 143.95 
## 
## Coefficients: (1 not defined because of singularities)
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  323.737     32.755   9.884 9.53e-10 ***
## mpg           -8.846      1.574  -5.621 1.01e-05 ***
## I(mpg^1)          NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 47.77 on 23 degrees of freedom
## Multiple R-squared:  0.5787, Adjusted R-squared:  0.5604 
## F-statistic: 31.59 on 1 and 23 DF,  p-value: 1.014e-05

4.3 Multiple Linear

fit.multireg <- lm(formula = hp ~ mpg + disp + hp +wt, 
                   data = train_df)
## Warning in model.matrix.default(mt, mf, contrasts): the response appeared on the
## right-hand side and was dropped
## Warning in model.matrix.default(mt, mf, contrasts): problem with term 3 in
## model.matrix: no columns are assigned
summary(fit.multireg)
## 
## Call:
## lm(formula = hp ~ mpg + disp + hp + wt, data = train_df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -57.807 -20.653  -9.296  23.892 135.026 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept) 296.2875   115.6947   2.561   0.0182 *
## mpg          -6.3025     3.3094  -1.904   0.0706 .
## disp          0.5166     0.1909   2.705   0.0133 *
## wt          -44.0510    21.4164  -2.057   0.0523 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 42.83 on 21 degrees of freedom
## Multiple R-squared:  0.6909, Adjusted R-squared:  0.6467 
## F-statistic: 15.64 on 3 and 21 DF,  p-value: 1.421e-05

4.4 MLR with Interaction

fit.inmultireg <- lm(formula = mpg ~ cyl + disp + hp + wt, data = train_df)
summary(fit.inmultireg)
## 
## Call:
## lm(formula = mpg ~ cyl + disp + hp + wt, data = train_df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.2619 -0.9078 -0.4087  1.2333  5.8860 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 34.099382   2.268082  15.034 5.29e-12 ***
## cyl6        -3.915288   1.606717  -2.437   0.0248 *  
## cyl8        -4.842958   2.790837  -1.735   0.0989 .  
## disp        -0.001558   0.014443  -0.108   0.9152    
## hp          -0.012854   0.012793  -1.005   0.3276    
## wt          -2.800616   1.188623  -2.356   0.0294 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 2.39 on 19 degrees of freedom
## Multiple R-squared:  0.8822, Adjusted R-squared:  0.8512 
## F-statistic: 28.46 on 5 and 19 DF,  p-value: 3.354e-08