Question 10

This question should be answered using the Weekly data set, which is part of the ISLR package. This data is similar in nature to the Smarket data from this chapter’s lab, except that it contains 1,089 weekly returns for 21 years, from the beginning of 1990 to the end of 2010.

(a) Produce some numerical and graphical summaries of the Weekly data. Do there appear to be any patterns?

attach(Weekly)
pairs(Weekly[,-9])

cor(Weekly[,-9])
##               Year         Lag1        Lag2        Lag3         Lag4
## Year    1.00000000 -0.032289274 -0.03339001 -0.03000649 -0.031127923
## Lag1   -0.03228927  1.000000000 -0.07485305  0.05863568 -0.071273876
## Lag2   -0.03339001 -0.074853051  1.00000000 -0.07572091  0.058381535
## Lag3   -0.03000649  0.058635682 -0.07572091  1.00000000 -0.075395865
## Lag4   -0.03112792 -0.071273876  0.05838153 -0.07539587  1.000000000
## Lag5   -0.03051910 -0.008183096 -0.07249948  0.06065717 -0.075675027
## Volume  0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
## Today  -0.03245989 -0.075031842  0.05916672 -0.07124364 -0.007825873
##                Lag5      Volume        Today
## Year   -0.030519101  0.84194162 -0.032459894
## Lag1   -0.008183096 -0.06495131 -0.075031842
## Lag2   -0.072499482 -0.08551314  0.059166717
## Lag3    0.060657175 -0.06928771 -0.071243639
## Lag4   -0.075675027 -0.06107462 -0.007825873
## Lag5    1.000000000 -0.05851741  0.011012698
## Volume -0.058517414  1.00000000 -0.033077783
## Today   0.011012698 -0.03307778  1.000000000

We can see from the scatterplot matrix and the correlation matrix that there are no significant relationships or correlation between the various lags. But there seems to be a trend between Year and Volume. The correlation matrix also shows that the correlation coefficient is 0.84 between Year and Volume which implies that there is a significant correlation between the two variables.

(b) Use the full data set to perform a logistic regression with Direction as the response and the five lag variables plus Volume as predictors. Use the summary function to print the results. Do any of the predictors appear to be statistically significant? If so, which ones?

glm.weekly = glm(Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + Volume, data = Weekly, family = "binomial")
summary(glm.weekly)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 + 
##     Volume, family = "binomial", data = Weekly)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.6949  -1.2565   0.9913   1.0849   1.4579  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.26686    0.08593   3.106   0.0019 **
## Lag1        -0.04127    0.02641  -1.563   0.1181   
## Lag2         0.05844    0.02686   2.175   0.0296 * 
## Lag3        -0.01606    0.02666  -0.602   0.5469   
## Lag4        -0.02779    0.02646  -1.050   0.2937   
## Lag5        -0.01447    0.02638  -0.549   0.5833   
## Volume      -0.02274    0.03690  -0.616   0.5377   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1496.2  on 1088  degrees of freedom
## Residual deviance: 1486.4  on 1082  degrees of freedom
## AIC: 1500.4
## 
## Number of Fisher Scoring iterations: 4

Lag2 is the only variable that is statistically significant, since it has a p-value of 0.0296 which is less than the significance value of 0.05.

(c) Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by logistic regression.

glm.probs=predict(glm.weekly,type="response")
glm.pred=rep("Down",1089)
glm.pred[glm.probs>.5]="Up"
table(glm.pred,Direction)
##         Direction
## glm.pred Down  Up
##     Down   54  48
##     Up    430 557

glm.probs will contain the predicted probabilities from the fitted logistic regression model. glm.pred will contain the classified probabilities as “Up” for those > 0.5 and “Down” for the rest. The confusion matrix is displayed above. The mistakes made by the logistic regression model are depicted here as follows - 430 observations have been classified as “Up” when they are actually “Down”, and 48 observations have been classified as “Down” when they are actually “Up”.

(d) Now fit the logistic regression model using a training data period from 1990 to 2008, with Lag2 as the only predictor. Compute the confusion matrix and the overall fraction of correct predictions for the held out data (that is, the data from 2009 and 2010).

train=(Year>=1990 & Year<=2008) 
Weekly.train = Weekly[train,]
Weekly.test = Weekly[!train,]
glm.fits = glm(Direction ~ Lag2, data = Weekly.train, family = "binomial")
summary(glm.fits)
## 
## Call:
## glm(formula = Direction ~ Lag2, family = "binomial", data = Weekly.train)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.536  -1.264   1.021   1.091   1.368  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.20326    0.06428   3.162  0.00157 **
## Lag2         0.05810    0.02870   2.024  0.04298 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1354.7  on 984  degrees of freedom
## Residual deviance: 1350.5  on 983  degrees of freedom
## AIC: 1354.5
## 
## Number of Fisher Scoring iterations: 4

We split the data into training and testing splits. The training split contains 985 observations which have Year from 1990 to 2008. The testing split contains 104 observations which have Year 2009 and 2010. We fit the new model glm.fits using the training split.

Direction.test=Direction[!train]
glm.probs=predict(glm.fits,Weekly.test,type="response") #predict probabilities with the 2005 data (that is the test data)
glm.pred=rep("Down",104) #Replicate Down 252 times
glm.pred[glm.probs>.5]="Up" #If probs > 0.5, change it to Up
table(glm.pred,Direction.test)
##         Direction.test
## glm.pred Down Up
##     Down    9  5
##     Up     34 56
mean(glm.pred==Direction.test)
## [1] 0.625

We use the newly fitted model glm.fits on the testing split and compute the confusion matrix. The table depicts that there are 9 observations which are correctly classified as “Down” and 56 observations correctly classified as “Up”.

(e) Repeat (d) using LDA.

lda.fits = lda(Direction ~ Lag2, data = Weekly.train)
lda.fits
## Call:
## lda(Direction ~ Lag2, data = Weekly.train)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##             Lag2
## Down -0.03568254
## Up    0.26036581
## 
## Coefficients of linear discriminants:
##            LD1
## Lag2 0.4414162
lda.pred=predict(lda.fits, Weekly.test) 
lda.class=lda.pred$class 
table(lda.class,Direction.test)
##          Direction.test
## lda.class Down Up
##      Down    9  5
##      Up     34 56
mean(lda.class==Direction.test)
## [1] 0.625

The confusion matrix for the model fit using LDA is the same as that of logistic regression.

(f) Repeat (d) using QDA.

qda.fit=qda(Direction~Lag2,data=Weekly.train)
qda.fit 
## Call:
## qda(Direction ~ Lag2, data = Weekly.train)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##             Lag2
## Down -0.03568254
## Up    0.26036581
qda.class=predict(qda.fit,Weekly.test)$class 
table(qda.class,Direction.test)
##          Direction.test
## qda.class Down Up
##      Down    0  0
##      Up     43 61
mean(qda.class==Direction.test)
## [1] 0.5865385

The accuracy score is 58.65% which is lesser than LDA and logistic regression.

(g) Repeat (d) using KNN with K = 1.

train.X <- cbind(Weekly[train,3])
test.X <- cbind(Weekly[!train,3])

train.Direction <- Weekly[train,c(9)]
test.Direction <- Weekly[!train,c(9)]


knn.pred=knn(train.X,test.X,train.Direction,k=1)
table(knn.pred,test.Direction)
##         test.Direction
## knn.pred Down Up
##     Down   21 29
##     Up     22 32
mean(knn.pred==test.Direction)
## [1] 0.5096154

(h) Which of these methods appears to provide the best results on this data?

Considering the accuracy score as the metric, we have calculated the scores for each model above. Logistic regression and LDA models both have an accuracy score of 62.5%, QDA has a score of 58.65% and KNN has an accuracy score of 50.96%. We can say that logistic regression and LDA are both best suited for this data.

(i) Experiment with different combinations of predictors, including possible transformations and interactions, for each of the methods. Report the variables, method, and associated confusion matrix that appears to provide the best results on the held out data. Note that you should also experiment with values for K in the KNN classifier.

Logistic regression with square transformation of predictors

glm.sqfits = glm(Direction ~ Lag2+I(Lag2^2), data = Weekly.train, family = "binomial")
summary(glm.sqfits)
## 
## Call:
## glm(formula = Direction ~ Lag2 + I(Lag2^2), family = "binomial", 
##     data = Weekly.train)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.791  -1.253   1.005   1.100   1.196  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept) 0.179006   0.068357   2.619  0.00883 **
## Lag2        0.064920   0.029734   2.183  0.02901 * 
## I(Lag2^2)   0.004713   0.004569   1.031  0.30236   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1354.7  on 984  degrees of freedom
## Residual deviance: 1349.4  on 982  degrees of freedom
## AIC: 1355.4
## 
## Number of Fisher Scoring iterations: 4
glm.sqprobs = predict(glm.sqfits, Weekly.test, type = "response")
glm.pred = rep("Down", nrow(Weekly.test))
glm.pred[glm.sqprobs > 0.5] = "Up"

table(glm.pred, Direction.test)
##         Direction.test
## glm.pred Down Up
##     Down    8  4
##     Up     35 57
mean(glm.pred==Direction.test)
## [1] 0.625

Logistic regression with interaction between predictors

glm.intfits = glm(Direction ~ Lag1+Lag2+Lag1*Lag2, data = Weekly.train, family = "binomial")
summary(glm.intfits)
## 
## Call:
## glm(formula = Direction ~ Lag1 + Lag2 + Lag1 * Lag2, family = "binomial", 
##     data = Weekly.train)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.573  -1.259   1.003   1.086   1.596  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept)  0.211419   0.064589   3.273  0.00106 **
## Lag1        -0.051505   0.030727  -1.676  0.09370 . 
## Lag2         0.053471   0.029193   1.832  0.06700 . 
## Lag1:Lag2    0.001921   0.007460   0.257  0.79680   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1354.7  on 984  degrees of freedom
## Residual deviance: 1346.9  on 981  degrees of freedom
## AIC: 1354.9
## 
## Number of Fisher Scoring iterations: 4
glm.intprobs = predict(glm.intfits, Weekly.test, type = "response")
glm.pred = rep("Down", nrow(Weekly.test))
glm.pred[glm.intprobs > 0.5] = "Up"

table(glm.pred, Direction.test)
##         Direction.test
## glm.pred Down Up
##     Down    7  8
##     Up     36 53
mean(glm.pred==Direction.test)
## [1] 0.5769231

Logistic regression with log transformation of predictors

glm.logfits = glm(Direction ~ log10(abs(Lag2)), data = Weekly.train, family = "binomial")
summary(glm.logfits)
## 
## Call:
## glm(formula = Direction ~ log10(abs(Lag2)), family = "binomial", 
##     data = Weekly.train)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.305  -1.269   1.074   1.088   1.167  
## 
## Coefficients:
##                  Estimate Std. Error z value Pr(>|z|)   
## (Intercept)       0.20916    0.06410   3.263   0.0011 **
## log10(abs(Lag2))  0.06823    0.13149   0.519   0.6038   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1354.7  on 984  degrees of freedom
## Residual deviance: 1354.4  on 983  degrees of freedom
## AIC: 1358.4
## 
## Number of Fisher Scoring iterations: 3
glm.logprobs = predict(glm.logfits, Weekly.test, type = "response")
glm.pred = rep("Down", nrow(Weekly.test))
glm.pred[glm.logprobs > 0.5] = "Up"

table(glm.pred, Direction.test)
##         Direction.test
## glm.pred Down Up
##       Up   43 61
mean(glm.pred==Direction.test)
## [1] 0.5865385

Logistic regression with sqrt transformation of predictors

glm.sqrtfits = glm(Direction ~ sqrt(abs(Lag2)), data = Weekly.train, family = "binomial")
summary(glm.sqrtfits)
## 
## Call:
## glm(formula = Direction ~ sqrt(abs(Lag2)), family = "binomial", 
##     data = Weekly.train)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.405  -1.263   1.058   1.093   1.136  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)      0.09488    0.15028   0.631    0.528
## sqrt(abs(Lag2))  0.09961    0.11788   0.845    0.398
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 1354.7  on 984  degrees of freedom
## Residual deviance: 1354.0  on 983  degrees of freedom
## AIC: 1358
## 
## Number of Fisher Scoring iterations: 3
glm.sqrtprobs = predict(glm.sqrtfits, Weekly.test, type = "response")
glm.pred = rep("Down", nrow(Weekly.test))
glm.pred[glm.sqrtprobs > 0.5] = "Up"

table(glm.pred, Direction.test)
##         Direction.test
## glm.pred Down Up
##       Up   43 61
mean(glm.pred==Direction.test)
## [1] 0.5865385

LDA with log transformation of predictors

lda.fits = lda(Direction ~ log10(abs(Lag2)), data = Weekly.train)
summary(lda.fits)
##         Length Class  Mode     
## prior   2      -none- numeric  
## counts  2      -none- numeric  
## means   2      -none- numeric  
## scaling 1      -none- numeric  
## lev     2      -none- character
## svd     1      -none- numeric  
## N       1      -none- numeric  
## call    3      -none- call     
## terms   3      terms  call     
## xlevels 0      -none- list
lda.pred=predict(lda.fits, Weekly.test) 
lda.class=lda.pred$class 
table(lda.class,Direction.test)
##          Direction.test
## lda.class Down Up
##      Down    0  0
##      Up     43 61
mean(lda.class==Direction.test)
## [1] 0.5865385

QDA with log transformation of predictors

qda.fit=qda(Direction~log10(abs(Lag2)),data=Weekly.train)
qda.fit 
## Call:
## qda(Direction ~ log10(abs(Lag2)), data = Weekly.train)
## 
## Prior probabilities of groups:
##      Down        Up 
## 0.4477157 0.5522843 
## 
## Group means:
##      log10(abs(Lag2))
## Down      0.002797989
## Up        0.018983896
qda.class=predict(qda.fit,Weekly.test)$class 
table(qda.class,Direction.test)
##          Direction.test
## qda.class Down Up
##      Down    0  0
##      Up     43 61
mean(qda.class==Direction.test)
## [1] 0.5865385

KNN with k=2

knn.pred=knn(train.X,test.X,train.Direction,k=2)
table(knn.pred,test.Direction)
##         test.Direction
## knn.pred Down Up
##     Down   17 24
##     Up     26 37
mean(knn.pred==test.Direction)
## [1] 0.5192308

KNN with k=3

knn.pred=knn(train.X,test.X,train.Direction,k=3)
table(knn.pred,test.Direction)
##         test.Direction
## knn.pred Down Up
##     Down   16 19
##     Up     27 42
mean(knn.pred==test.Direction)
## [1] 0.5576923

In all the above different transformations tried, the following are the results -

Overall, logistic regression with square transformation of predictors seem to be the best model. Out of the different KNN classification methods tried, k=2 is the best of all.

Question 11

In this problem, you will develop a model to predict whether a given car gets high or low gas mileage based on the Auto data set.

(a) Create a binary variable, mpg01, that contains a 1 if mpg contains a value above its median, and a 0 if mpg contains a value below its median. You can compute the median using the median() function. Note you may find it helpful to use the data.frame() function to create a single data set containing both mpg01 and the other Auto variables.

detach(Weekly)
Auto.data = Auto
attach(Auto.data)
Auto.data$mpg01 <- ifelse(mpg >= median(mpg), 1, 0)
attach(Auto.data)
## The following objects are masked from Auto.data (pos = 3):
## 
##     acceleration, cylinders, displacement, horsepower, mpg, name,
##     origin, weight, year

(b) Explore the data graphically in order to investigate the association between mpg01 and the other features. Which of the other features seem most likely to be useful in predicting mpg01? Scatterplots and boxplots may be useful tools to answer this question. Describe your findings.

par(mfrow=c(3,3))
boxplot(displacement~mpg01, main="Disp~mpg01")
boxplot(horsepower~mpg01, main="Horsepower~mpg01")
boxplot(weight~mpg01, main="Weight~mpg01")
boxplot(acceleration~mpg01, main="Accel~mpg01")
boxplot(cylinders~mpg01, main="Cylinders~mpg01")
boxplot(year~mpg01, main="Year~mpg01")
boxplot(origin~mpg01, main="Origin~mpg01")

From the boxplots above, we can say that the variables cylinders, weight, displacement and horsepower seem to be useful in predicting mpg01.

(c) Split the data into a training set and a test set.

set.seed(123)
index = sample(nrow(Auto.data), 0.8*nrow(Auto.data), replace = F)
train = Auto.data[index,]
test = Auto.data[-index,]

(d) Perform LDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

lda.fit=lda(mpg01~cylinders+weight+displacement+horsepower,data=train)
lda.fit
## Call:
## lda(mpg01 ~ cylinders + weight + displacement + horsepower, data = train)
## 
## Prior probabilities of groups:
##         0         1 
## 0.4920128 0.5079872 
## 
## Group means:
##   cylinders   weight displacement horsepower
## 0  6.798701 3634.422      274.987  131.45455
## 1  4.163522 2323.302      114.283   78.45912
## 
## Coefficients of linear discriminants:
##                       LD1
## cylinders    -0.501316051
## weight       -0.001000777
## displacement -0.001033481
## horsepower    0.003881148
lda.pred=predict(lda.fit, test)
lda.class=lda.pred$class
table(lda.class,test$mpg01) 
##          
## lda.class  0  1
##         0 35  4
##         1  7 33
mean(lda.class!=test$mpg01)
## [1] 0.1392405

The test error of the model or the misclassification rate is calculated to be 13.92%

(e) Perform QDA on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

qda.fit=qda(mpg01~cylinders+weight+displacement+horsepower,data=train)
qda.fit
## Call:
## qda(mpg01 ~ cylinders + weight + displacement + horsepower, data = train)
## 
## Prior probabilities of groups:
##         0         1 
## 0.4920128 0.5079872 
## 
## Group means:
##   cylinders   weight displacement horsepower
## 0  6.798701 3634.422      274.987  131.45455
## 1  4.163522 2323.302      114.283   78.45912
qda.pred=predict(qda.fit, test)
qda.class=qda.pred$class
table(qda.class,test$mpg01) 
##          
## qda.class  0  1
##         0 37  4
##         1  5 33
mean(qda.class!=test$mpg01)
## [1] 0.1139241

The test error or the misclassification rate obtained from the QDA model is 11.39%

(f) Perform logistic regression on the training data in order to predict mpg01 using the variables that seemed most associated with mpg01 in (b). What is the test error of the model obtained?

glm.fit=glm(mpg01~cylinders+weight+displacement+horsepower,data=train, family = "binomial")
summary(glm.fit)
## 
## Call:
## glm(formula = mpg01 ~ cylinders + weight + displacement + horsepower, 
##     family = "binomial", data = train)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -2.53768  -0.12766   0.07953   0.29411   3.14150  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)  13.2775482  2.1223034   6.256 3.94e-10 ***
## cylinders     0.0868500  0.3902663   0.223  0.82389    
## weight       -0.0021961  0.0008331  -2.636  0.00838 ** 
## displacement -0.0151889  0.0093531  -1.624  0.10439    
## horsepower   -0.0514584  0.0168285  -3.058  0.00223 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 433.83  on 312  degrees of freedom
## Residual deviance: 149.26  on 308  degrees of freedom
## AIC: 159.26
## 
## Number of Fisher Scoring iterations: 7
glm.prob=predict(glm.fit, test, type = "response")
glm.pred = rep(0, nrow(test))
glm.pred[glm.prob > 0.5] = 1
table(glm.pred,test$mpg01) 
##         
## glm.pred  0  1
##        0 35  5
##        1  7 32
mean(glm.pred!=test$mpg01)
## [1] 0.1518987

The test error or misclassification rate obtained from the logistic regression model is 15.18%

(g) Perform KNN on the training data, with several values of K, in order to predict mpg01. Use only the variables that seemed most associated with mpg01 in (b). What test errors do you obtain? Which value of K seems to perform the best on this data set?

train.X = cbind(cylinders,weight,displacement,horsepower)[index,]
test.X <- cbind(cylinders,weight,displacement,horsepower)[-index,]

train.mpg01 <- Auto.data[index,c(10)]
test.mpg01 <- Auto.data[-index,c(10)]

knn.pred=knn(train.X,test.X,train.mpg01,k=1)
table(knn.pred,test.mpg01)
##         test.mpg01
## knn.pred  0  1
##        0 35  9
##        1  7 28
mean(knn.pred!=test.mpg01)
## [1] 0.2025316

With k=2

knn.pred=knn(train.X,test.X,train.mpg01,k=2)
table(knn.pred,test.mpg01)
##         test.mpg01
## knn.pred  0  1
##        0 34  7
##        1  8 30
mean(knn.pred!=test.mpg01)
## [1] 0.1898734

With k=10

knn.pred=knn(train.X,test.X,train.mpg01,k=10)
table(knn.pred,test.mpg01)
##         test.mpg01
## knn.pred  0  1
##        0 35  5
##        1  7 32
mean(knn.pred!=test.mpg01)
## [1] 0.1518987

With k=20

knn.pred=knn(train.X,test.X,train.mpg01,k=20)
table(knn.pred,test.mpg01)
##         test.mpg01
## knn.pred  0  1
##        0 35  3
##        1  7 34
mean(knn.pred!=test.mpg01)
## [1] 0.1265823

When k=1, the test error is 20.25%. When k=2, the test error is 18.98%. When k=10, the test error is 12.65%. When k=20, the test error is 13.92%. Out of these, k=10 gives us the best model with least error rate.

Question 13

Using the Boston data set, fit classification models in order to predict whether a given suburb has a crime rate above or below the median. Explore logistic regression, LDA, and KNN models using various subsets of the predictors. Describe your findings.

detach(Auto.data)
Boston.data = Boston
attach(Boston.data)
Boston.data$crim01 = ifelse(crim >= median(crim), 1, 0)

set.seed(123)
index = sample(nrow(Boston.data), 0.8*nrow(Boston.data), replace = F)
train = Boston.data[index,]
test = Boston.data[-index,]

Logistic regression model

glm.fit = glm(crim01 ~ . -crim, data = train, family = "binomial")
summary(glm.fit)
## 
## Call:
## glm(formula = crim01 ~ . - crim, family = "binomial", data = train)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7883  -0.1619  -0.0004   0.0034   3.5146  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -40.969510   7.953476  -5.151 2.59e-07 ***
## zn           -0.104428   0.043515  -2.400 0.016404 *  
## indus        -0.016195   0.055057  -0.294 0.768642    
## chas          0.293398   0.780450   0.376 0.706965    
## nox          46.349769   8.784897   5.276 1.32e-07 ***
## rm            0.345454   0.815004   0.424 0.671662    
## age           0.021583   0.013700   1.575 0.115165    
## dis           0.637379   0.241450   2.640 0.008296 ** 
## rad           0.619212   0.182004   3.402 0.000668 ***
## tax          -0.008471   0.003154  -2.686 0.007228 ** 
## ptratio       0.417660   0.142776   2.925 0.003441 ** 
## black        -0.008409   0.005533  -1.520 0.128555    
## lstat         0.110754   0.056591   1.957 0.050337 .  
## medv          0.181387   0.079564   2.280 0.022622 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 560.02  on 403  degrees of freedom
## Residual deviance: 166.41  on 390  degrees of freedom
## AIC: 194.41
## 
## Number of Fisher Scoring iterations: 9
glm.prob=predict(glm.fit, test, type = "response")
glm.pred = rep(0, nrow(test))
glm.pred[glm.prob > 0.5] = 1
table(glm.pred,test$crim01) 
##         
## glm.pred  0  1
##        0 40  5
##        1  9 48
mean(glm.pred==test$crim01)
## [1] 0.8627451

The logistic regression model gives a pretty good accuracy score of 86.27%. The statistically significant predictors are zn, nox, dis, rad, tax, ptratio and medv.

LDA model

lda.fit = lda(crim01 ~ . -crim, data = train)
lda.fit
## Call:
## lda(crim01 ~ . - crim, data = train)
## 
## Prior probabilities of groups:
##         0         1 
## 0.5049505 0.4950495 
## 
## Group means:
##         zn     indus       chas       nox       rm      age      dis      rad
## 0 22.53431  6.831618 0.06372549 0.4699054 6.387426 50.94363 5.147072  4.22549
## 1  1.01000 15.332850 0.09000000 0.6361000 6.162905 86.59250 2.502883 14.79000
##        tax  ptratio    black     lstat     medv
## 0 309.6765 17.87696 387.8906  9.304951 24.78627
## 1 508.6700 19.02200 332.6636 15.870800 20.19000
## 
## Coefficients of linear discriminants:
##                  LD1
## zn      -0.004875011
## indus    0.043980187
## chas    -0.288736019
## nox      7.826186868
## rm       0.214578770
## age      0.013026384
## dis      0.074899641
## rad      0.085189428
## tax     -0.002392775
## ptratio  0.078848030
## black   -0.001093777
## lstat    0.026660233
## medv     0.044058366
lda.pred=predict(lda.fit, test)
lda.class=lda.pred$class
table(lda.class,test$crim01) 
##          
## lda.class  0  1
##         0 41 12
##         1  8 41
mean(lda.class==test$crim01)
## [1] 0.8039216

The LDA model has an accuracy rate of 80.39% which does not match up to the logistic regression model. The latter is still the better one.

KNN classification

train.X = cbind(zn, indus, chas, nox, rm, age, dis, rad, tax, ptratio, black, lstat, medv)[index,]
test.X <- cbind(zn, indus, chas, nox, rm, age, dis, rad, tax, ptratio, black, lstat, medv)[-index,]

train.crim01 <- Boston.data[index,c(15)]
test.crim01 <- Boston.data[-index,c(15)]

knn.pred=knn(train.X,test.X,train.crim01,k=1)
table(knn.pred,test.crim01)
##         test.crim01
## knn.pred  0  1
##        0 45  3
##        1  4 50
mean(knn.pred==test.crim01)
## [1] 0.9313725
knn.pred=knn(train.X,test.X,train.crim01,k=2)
table(knn.pred,test.crim01)
##         test.crim01
## knn.pred  0  1
##        0 45  5
##        1  4 48
mean(knn.pred==test.crim01)
## [1] 0.9117647
knn.pred=knn(train.X,test.X,train.crim01,k=20)
table(knn.pred,test.crim01)
##         test.crim01
## knn.pred  0  1
##        0 45  8
##        1  4 45
mean(knn.pred==test.crim01)
## [1] 0.8823529

The KNN classification has an accuracy rate of 93.13% when k=1, 90.19% when k=2 and 87.25% when k=20. Out of all the models tried so far, the KNN classification model with k=1 is the best model with the highest accuracy rate of 93.13%