Original Article

https://onlinelibrary.wiley.com/doi/epdf/10.1111/ajps.12084

Data

library(tidyverse)
library(magrittr)
tab4 <- read_csv("G:/My Drive/homework/Jenna S/oliverwoodtab4.csv")
tab4 %<>% select(!X1)

tab4 %>%
  pivot_longer(names_to = "Variable", values_to = "value", cols = everything()) %>%
  ggplot(aes(value)) +
  geom_boxplot() +
  facet_wrap(vars(Variable), scales = "free")

tab4 %>%
  select(!psc) %>%
  pivot_longer(names_to = "Variable", values_to = "value", cols = everything()) %>%
  ggplot(aes(value)) +
  geom_bar() +
  facet_wrap(vars(Variable), scales = "free")

tab4 %>%
  ggplot(aes(psc)) +
  geom_histogram()

tab4 %>%
  select(!c(paranormscale, psc, inteff, exteffic)) %>%
  mutate(across(.cols = everything(), as_factor)) %>%
  summary()
##  theolscale goodevil   endtimes2  cabal     ednumeric female  black   hispanic
##  1  :128    1   : 94   1  :281   1   : 43   1: 30     0:455   0:912   0:947   
##  1.5: 46    2   :233   1.5:192   2   :144   2:352     1:545   1: 88   1: 53   
##  2  :195    3   :311   2  :274   3   :248   3:216                             
##  2.5: 79    4   :250   2.5:136   4   :339   4: 89                             
##  3  :552    5   :110   3  :117   5   :224   5:217                             
##             NA's:  2             NA's:  2   6: 96                             
##  libdum  consdum demdum  gopdum  polintnum  trustind1  RWA      imprelnum
##  0:693   0:577   0:537   0:633   1   : 69   1:544     0  :219   1:143    
##  1:307   1:423   1:463   1:367   2   :105   2:456     0.5:376   2:166    
##                                  3   :248             1  :405   3:258    
##                                  4   :561                       4:433    
##                                  NA's: 17                                
## 
tab4 %>%
  pivot_longer(names_to = "Variable", values_to = "Value", cols = everything()) %>%
  group_by(Variable) %>%
  summarize(Mean = mean(Value, na.rm = TRUE),
            Std.Dev. = sd(Value, na.rm = TRUE),
            Minimum = min(Value, na.rm = TRUE),
            Maximum = max(Value, na.rm = TRUE),
            NAs = sum(is.na(Value)
                      )
            )
## # A tibble: 20 x 6
##    Variable          Mean Std.Dev. Minimum Maximum   NAs
##  * <chr>            <dbl>    <dbl>   <dbl>   <dbl> <int>
##  1 black         8.80e- 2    0.283    0       1        0
##  2 cabal         3.56e+ 0    1.12     1       5        2
##  3 consdum       4.23e- 1    0.494    0       1        0
##  4 demdum        4.63e- 1    0.499    0       1        0
##  5 ednumeric     3.40e+ 0    1.46     1       6        0
##  6 endtimes2     1.81e+ 0    0.666    1       3        0
##  7 exteffic      2.32e+ 0    0.978    1       5        0
##  8 female        5.45e- 1    0.498    0       1        0
##  9 goodevil      3.05e+ 0    1.14     1       5        2
## 10 gopdum        3.67e- 1    0.482    0       1        0
## 11 hispanic      5.30e- 2    0.224    0       1        0
## 12 imprelnum     2.98e+ 0    1.08     1       4        0
## 13 inteff        3.30e+ 0    1.02     1       5        0
## 14 libdum        3.07e- 1    0.461    0       1        0
## 15 paranormscale 2.91e+ 0    1.20     1       5        0
## 16 polintnum     3.32e+ 0    0.924    1       4       17
## 17 psc           2.00e-11    0.929   -1.86    1.09     0
## 18 RWA           5.93e- 1    0.384    0       1        0
## 19 theolscale    2.44e+ 0    0.720    1       3        0
## 20 trustind1     1.46e+ 0    0.498    1       2        0

Supernateral

# try scaling all data first?

model.fit <-
  tab4 %>% 
  select(theolscale, ednumeric:imprelnum) %>%
  lm(theolscale ~ ., data = .)

model.fit %>% summary()
## 
## Call:
## lm(formula = theolscale ~ ., data = .)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.81710 -0.32348  0.05551  0.31658  1.46319 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.732864   0.124228  13.949  < 2e-16 ***
## ednumeric   -0.041931   0.012732  -3.293 0.001026 ** 
## female       0.077338   0.036538   2.117 0.034546 *  
## black        0.167011   0.064870   2.575 0.010185 *  
## hispanic    -0.005636   0.076715  -0.073 0.941452    
## libdum      -0.095031   0.050550  -1.880 0.060416 .  
## consdum     -0.005215   0.048778  -0.107 0.914883    
## demdum      -0.075361   0.053312  -1.414 0.157804    
## gopdum       0.132670   0.056345   2.355 0.018742 *  
## polintnum   -0.051789   0.024760  -2.092 0.036729 *  
## psc          0.007387   0.025492   0.290 0.772042    
## trustind1   -0.075257   0.035870  -2.098 0.036160 *  
## inteff      -0.007986   0.021180  -0.377 0.706205    
## exteffic    -0.027544   0.017844  -1.544 0.123001    
## RWA          0.165535   0.048690   3.400 0.000702 ***
## imprelnum    0.363514   0.017418  20.870  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5264 on 967 degrees of freedom
##   (17 observations deleted due to missingness)
## Multiple R-squared:  0.4786, Adjusted R-squared:  0.4705 
## F-statistic: 59.17 on 15 and 967 DF,  p-value: < 2.2e-16
model.fit %>% coefficients() %>% scale
##                    [,1]
## (Intercept)  3.60717579
## ednumeric   -0.41524415
## female      -0.14493231
## black        0.05830388
## hispanic    -0.33298461
## libdum      -0.53559033
## consdum     -0.33203049
## demdum      -0.49101174
## gopdum      -0.01952613
## polintnum   -0.43758625
## psc         -0.30346915
## trustind1   -0.49077417
## inteff      -0.33831201
## exteffic    -0.38263845
## RWA          0.05495917
## imprelnum    0.50366097
## attr(,"scaled:center")
## [1] 0.1412855
## attr(,"scaled:scale")
## [1] 0.4412256

Manichean

model.fit <-
  tab4 %>% 
  select(goodevil, ednumeric:imprelnum) %>%
  lm(goodevil ~ ., data = .)

model.fit %>% summary()
## 
## Call:
## lm(formula = goodevil ~ ., data = .)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.9746 -0.7373 -0.0462  0.7729  2.6095 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.47672    0.24873  13.978  < 2e-16 ***
## ednumeric   -0.08741    0.02550  -3.428 0.000633 ***
## female       0.17857    0.07312   2.442 0.014784 *  
## black        0.27217    0.12977   2.097 0.036220 *  
## hispanic     0.17003    0.15500   1.097 0.272950    
## libdum      -0.03213    0.10138  -0.317 0.751388    
## consdum      0.20337    0.09787   2.078 0.037975 *  
## demdum      -0.06561    0.10672  -0.615 0.538846    
## gopdum      -0.10058    0.11286  -0.891 0.373030    
## polintnum    0.07404    0.04953   1.495 0.135308    
## psc         -0.09526    0.05105  -1.866 0.062327 .  
## trustind1   -0.25218    0.07188  -3.508 0.000472 ***
## inteff      -0.07262    0.04246  -1.710 0.087558 .  
## exteffic    -0.16659    0.03579  -4.655  3.7e-06 ***
## RWA          0.30714    0.09743   3.152 0.001669 ** 
## imprelnum    0.10059    0.03485   2.886 0.003986 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.053 on 965 degrees of freedom
##   (19 observations deleted due to missingness)
## Multiple R-squared:  0.1608, Adjusted R-squared:  0.1477 
## F-statistic: 12.33 on 15 and 965 DF,  p-value: < 2.2e-16
model.fit %>% coefficients() %>% scale
##                    [,1]
## (Intercept)  3.68407470
## ednumeric   -0.37816621
## female      -0.07502014
## black        0.03166000
## hispanic    -0.08475724
## libdum      -0.31516244
## consdum     -0.04675047
## demdum      -0.35332512
## gopdum      -0.39318224
## polintnum   -0.19416250
## psc         -0.38712202
## trustind1   -0.56597161
## inteff      -0.36131428
## exteffic    -0.46841616
## RWA          0.07151591
## imprelnum   -0.16390015
## attr(,"scaled:center")
## [1] 0.24439
## attr(,"scaled:scale")
## [1] 0.8773793

End Times

model.fit <-
  tab4 %>% 
  select(endtimes2, ednumeric:imprelnum) %>%
  lm(endtimes2 ~ ., data = .)

model.fit %>% summary()
## 
## Call:
## lm(formula = endtimes2 ~ ., data = .)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.31342 -0.33750 -0.02618  0.39038  1.44529 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.38426    0.12572  11.010  < 2e-16 ***
## ednumeric   -0.05166    0.01289  -4.009 6.56e-05 ***
## female       0.05289    0.03698   1.430 0.152930    
## black        0.42225    0.06565   6.432 1.98e-10 ***
## hispanic    -0.01123    0.07764  -0.145 0.885074    
## libdum      -0.03555    0.05116  -0.695 0.487301    
## consdum      0.21247    0.04937   4.304 1.85e-05 ***
## demdum      -0.17088    0.05395  -3.167 0.001588 ** 
## gopdum      -0.02053    0.05702  -0.360 0.718865    
## polintnum    0.03004    0.02506   1.199 0.230963    
## psc         -0.10711    0.02580  -4.152 3.59e-05 ***
## trustind1   -0.12008    0.03630  -3.308 0.000975 ***
## inteff      -0.02018    0.02144  -0.941 0.346777    
## exteffic     0.01361    0.01806   0.753 0.451345    
## RWA          0.13587    0.04928   2.757 0.005937 ** 
## imprelnum    0.19061    0.01763  10.813  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5327 on 967 degrees of freedom
##   (17 observations deleted due to missingness)
## Multiple R-squared:  0.371,  Adjusted R-squared:  0.3613 
## F-statistic: 38.03 on 15 and 967 DF,  p-value: < 2.2e-16
model.fit %>% coefficients() %>% scale
##                    [,1]
## (Intercept)  3.43795011
## ednumeric   -0.46386980
## female      -0.17976384
## black        0.82388785
## hispanic    -0.35399249
## libdum      -0.42008784
## consdum      0.25384753
## demdum      -0.78781973
## gopdum      -0.37928564
## polintnum   -0.24187554
## psc         -0.61453579
## trustind1   -0.64977244
## inteff      -0.37831950
## exteffic    -0.28651668
## RWA          0.04571161
## imprelnum    0.19444219
## attr(,"scaled:center")
## [1] 0.1190487
## attr(,"scaled:scale")
## [1] 0.3680127

Secret Cabal

model.fit <-
  tab4 %>% 
  select(cabal, ednumeric:imprelnum) %>%
  lm(cabal ~ ., data = .)

model.fit %>% summary()
## 
## Call:
## lm(formula = cabal ~ ., data = .)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4256 -0.6499  0.1530  0.7080  2.6415 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  4.247871   0.239261  17.754  < 2e-16 ***
## ednumeric   -0.063421   0.024523  -2.586  0.00985 ** 
## female       0.220297   0.070380   3.130  0.00180 ** 
## black        0.086569   0.125406   0.690  0.49017    
## hispanic    -0.042081   0.147566  -0.285  0.77558    
## libdum       0.139917   0.097406   1.436  0.15120    
## consdum      0.168977   0.093847   1.801  0.07208 .  
## demdum       0.110832   0.102553   1.081  0.28009    
## gopdum      -0.142007   0.108423  -1.310  0.19059    
## polintnum    0.102593   0.047669   2.152  0.03163 *  
## psc         -0.035657   0.049077  -0.727  0.46768    
## trustind1   -0.070242   0.069039  -1.017  0.30920    
## inteff      -0.008075   0.040941  -0.197  0.84369    
## exteffic    -0.425772   0.034343 -12.398  < 2e-16 ***
## RWA          0.133549   0.093690   1.425  0.15435    
## imprelnum   -0.001612   0.033518  -0.048  0.96165    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.012 on 965 degrees of freedom
##   (19 observations deleted due to missingness)
## Multiple R-squared:  0.1843, Adjusted R-squared:  0.1716 
## F-statistic: 14.53 on 15 and 965 DF,  p-value: < 2.2e-16
model.fit %>% coefficients() %>% scale
##                    [,1]
## (Intercept)  3.71091208
## ednumeric   -0.31748414
## female      -0.05238262
## black       -0.17733641
## hispanic    -0.29754433
## libdum      -0.12748836
## consdum     -0.10033557
## demdum      -0.15466558
## gopdum      -0.39091364
## polintnum   -0.16236348
## psc         -0.29154195
## trustind1   -0.32385790
## inteff      -0.26576941
## exteffic    -0.65605877
## RWA         -0.13343880
## imprelnum   -0.25973112
## attr(,"scaled:center")
## [1] 0.2763586
## attr(,"scaled:scale")
## [1] 1.070225

Paranormal

model.fit <-
  tab4 %>% 
  select(paranormscale, ednumeric:imprelnum) %>%
  lm(paranormscale ~ ., data = .)

model.fit %>% summary()
## 
## Call:
## lm(formula = paranormscale ~ ., data = .)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.68608 -0.89758 -0.02112  0.87631  2.97541 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.099337   0.266750  11.619  < 2e-16 ***
## ednumeric   -0.111225   0.027339  -4.068 5.12e-05 ***
## female       0.399989   0.078457   5.098 4.12e-07 ***
## black       -0.193257   0.139292  -1.387  0.16563    
## hispanic    -0.114785   0.164728  -0.697  0.48609    
## libdum      -0.003602   0.108544  -0.033  0.97353    
## consdum     -0.087073   0.104740  -0.831  0.40600    
## demdum      -0.126752   0.114475  -1.107  0.26847    
## gopdum      -0.054936   0.120988  -0.454  0.64989    
## polintnum    0.045437   0.053165   0.855  0.39297    
## psc         -0.241022   0.054737  -4.403 1.19e-05 ***
## trustind1   -0.040492   0.077022  -0.526  0.59921    
## inteff       0.022143   0.045480   0.487  0.62645    
## exteffic    -0.092054   0.038315  -2.403  0.01647 *  
## RWA         -0.269906   0.104550  -2.582  0.00998 ** 
## imprelnum    0.109222   0.037400   2.920  0.00358 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.13 on 967 degrees of freedom
##   (17 observations deleted due to missingness)
## Multiple R-squared:  0.1228, Adjusted R-squared:  0.1092 
## F-statistic: 9.022 on 15 and 967 DF,  p-value: < 2.2e-16
model.fit %>% coefficients() %>% scale
##                   [,1]
## (Intercept)  3.6781854
## ednumeric   -0.3207819
## female       0.3159689
## black       -0.4229580
## hispanic    -0.3252159
## libdum      -0.1867308
## consdum     -0.2906987
## demdum      -0.3401214
## gopdum      -0.2506698
## polintnum   -0.1256497
## psc         -0.4824527
## trustind1   -0.2326790
## inteff      -0.1546630
## exteffic    -0.2969026
## RWA         -0.5184301
## imprelnum   -0.0462008
## attr(,"scaled:center")
## [1] 0.1463141
## attr(,"scaled:scale")
## [1] 0.8028477