#下載資料:https://www.kaggle.com/hb20007/gender-classification?select=Transformed+Data+Set+-+Sheet1.csv
#檔名為"Transformed Data Set - Sheet1.csv"
#從電腦端上傳(upload)到rstudio cloud
#install.packages("readr")
library(readr)
#讀取資料,命名為"x"
x<-read.csv("Transformed Data Set - Sheet1.csv", stringsAsFactors = TRUE)
#查看資料結構
summary(x)
## Favorite.Color Favorite.Music.Genre Favorite.Beverage
## Cool :37 Electronic : 8 Beer :13
## Neutral: 7 Folk/Traditional: 4 Doesn't drink:14
## Warm :22 Hip hop : 8 Other :11
## Jazz/Blues : 4 Vodka : 9
## Pop :17 Whiskey : 9
## R&B and soul : 6 Wine :10
## Rock :19
## Favorite.Soft.Drink Gender
## 7UP/Sprite :13 F:33
## Coca Cola/Pepsi:32 M:33
## Fanta :14
## Other : 7
##
##
##
#重新命名欄位名稱
colnames(x) <- c("color", "music", "beverage", "drink", "gender")
#問題:男女對顏色的喜好的差異?
#次數分配表
t <- table(x$gender,x$music)
t
##
## Electronic Folk/Traditional Hip hop Jazz/Blues Pop R&B and soul Rock
## F 2 2 1 3 13 2 10
## M 6 2 7 1 4 4 9
#百分比次數分配表
p.t <-prop.table(t)
p.t
##
## Electronic Folk/Traditional Hip hop Jazz/Blues Pop R&B and soul
## F 0.03030303 0.03030303 0.01515152 0.04545455 0.19696970 0.03030303
## M 0.09090909 0.03030303 0.10606061 0.01515152 0.06060606 0.06060606
##
## Rock
## F 0.15151515
## M 0.13636364
p.t <- p.t*100
p.t <- round(p.t,2)
p.t#畫分組長條圖
##
## Electronic Folk/Traditional Hip hop Jazz/Blues Pop R&B and soul Rock
## F 3.03 3.03 1.52 4.55 19.70 3.03 15.15
## M 9.09 3.03 10.61 1.52 6.06 6.06 13.64
barplot(p.t)

barplot(p.t, beside=TRUE)

#加上圖例與上色
label <- rownames(p.t)
barplot(p.t,
beside = TRUE,
legend.text = label,
col = c(6:9))
