Data Visualization

MGinorio

3/3/2021

Data Visualization in Data Science

Data Visualization in Data Science

Exploratory vs. Explanatory

there is 2 types of Data Visualization

Exploratory vs. Explanatory

Exploratory Visualizations

Purpose

Exploratory vs. Explanatory

Explanatory Visualizations

They are Part of the Communication Process

Best way to create a great Explanatory Vis is to always think about the Audience First

Exploratory vs. Explanatory

Shorcuts & Pretty Doc Engine

Basic Options

Text Formatting

R Markdown allows to easily format your text. You can add links, write in bold or italic check the R studio cheatsheet.

# R Markdown allows to easily format your text. You can add [links](https://sps.cuny.edu/), write in **bold** or *italic*.

Equations

\(A = (\pi * \lambda \times r^{4}) / \alpha\)

# $A = (\pi * \lambda \times r^{4}) / \alpha$ 

Figures in 2 columns

you can Display 2 plots one beside each other.

r out.width=c(‘50%’, ‘50%’), fig.show=‘hold’

boxplot(1:10)
plot(rnorm(10))

Tabs for Sub-chapters

# use buttons or Tabs for Sub-chapters

# {.tabset .tabset-fade .tabset-pills}

## First
# First section

## Second
# Second Section

## Third 
# Third Section

Pretty Doc Package

Basic to advanced Options

The prettydoc package provides an alternative engine, html_pretty, to knit your R Markdown document into pretty HTML pages. Its usage is extremely easy: simply replace the ‘rmarkdown::html_document’ or ‘rmarkdown::html_vignette’ output engine by ‘prettydoc::html_pretty’ in your R Markdown header, and use one of the built-in themes and syntax highlighters. For example

title: Nineteen Years Later
author: Harry Potter
date: July 31, 2016
output:
  prettydoc::html_pretty:
    theme: cayman
    highlight: github

Pretty Doc Package

Themes

Cayman

Thank you

MariAlejandra