Step 1
library(ggplot2)
library(gapminder)
library(readr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
Step 2
drug_data<-read.csv("/Volumes/NO NAME/Data 333/SkillsDrill1Data.csv")
Step 3
head(drug_data)
## marij_ever marij_month marij_year cocaine_ever
## 1 1 Used Marijuana Past 30 days 1 1
## 2 0 Did not use Marijuana Past 30 days 0 0
## 3 1 Did not use Marijuana Past 30 days 0 0
## 4 0 Did not use Marijuana Past 30 days 0 0
## 5 0 Did not use Marijuana Past 30 days 0 0
## 6 0 Did not use Marijuana Past 30 days 0 0
## cocaine_month cocaine_year crack_ever crack_month
## 1 Did not use Cocaine Past 30 days 0 1 0
## 2 Did not use Cocaine Past 30 days 0 0 0
## 3 Did not use Cocaine Past 30 days 0 0 0
## 4 Did not use Cocaine Past 30 days 0 0 0
## 5 Did not use Cocaine Past 30 days 0 0 0
## 6 Did not use Cocaine Past 30 days 0 0 0
## crack_year heroin_ever heroin_month heroin_year hallucinogen_ever
## 1 0 0 0 0 1
## 2 0 0 0 0 0
## 3 0 0 0 0 0
## 4 0 0 0 0 0
## 5 0 0 0 0 0
## 6 0 0 0 0 0
## hallucinogen_month hallucinogen_year inhalant_ever inhalant_month
## 1 0 1 0 0
## 2 0 0 0 0
## 3 0 0 0 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## inhalant_year meth_ever meth_month meth_year painrelieve_ever
## 1 0 0 0 0 0
## 2 0 0 0 0 0
## 3 0 0 0 0 0
## 4 0 0 0 0 0
## 5 0 0 0 0 0
## 6 0 0 0 0 0
## painrelieve_month painrelieve_year tranq_ever tranq_month tranq_year
## 1 0 0 0 0 0
## 2 0 0 0 0 0
## 3 0 0 0 0 0
## 4 0 0 0 0 0
## 5 0 0 0 0 0
## 6 0 0 0 0 0
## stimulant_ever stimulant_month stimulant_year sedative_ever sedative_month
## 1 0 0 0 0 0
## 2 0 0 0 0 0
## 3 0 0 0 0 0
## 4 0 0 0 0 0
## 5 0 0 0 0 0
## 6 0 0 0 0 0
## sedative_year anydrugever pharmamonth
## 1 0 1 Did not use Pharmaceutical Narcotics Past 30 days
## 2 0 0 Did not use Pharmaceutical Narcotics Past 30 days
## 3 0 1 Did not use Pharmaceutical Narcotics Past 30 days
## 4 0 0 Did not use Pharmaceutical Narcotics Past 30 days
## 5 0 0 Did not use Pharmaceutical Narcotics Past 30 days
## 6 0 0 Did not use Pharmaceutical Narcotics Past 30 days
## nonpharmamonth nonpharmamonth_nomj anydrugmonth anydrugyear anydrugever_nomj
## 1 1 0 1 1 1
## 2 0 0 0 0 0
## 3 0 0 0 0 0
## 4 0 0 0 0 0
## 5 0 0 0 0 0
## 6 0 0 0 0 0
## anydrugmonth_nomj anydrugyear_nomj countofdrugs_ever countofdrugs_month
## 1 0 1 4 1
## 2 0 0 0 0
## 3 0 0 1 0
## 4 0 0 0 0
## 5 0 0 0 0
## 6 0 0 0 0
## countofdrugs_year SelectiveLeave SkipSick
## 1 2 0 0
## 2 0 0 0
## 3 0 0 0
## 4 0 0 0
## 5 0 2 2
## 6 0 0 0
Step 4
drug_data %>%
select(cocaine_month,SelectiveLeave) %>%
rename(DaysSkippedWork = SelectiveLeave) %>%
filter(DaysSkippedWork<31) %>%
summarize(meanDaysSkippedWork=mean(DaysSkippedWork))
## meanDaysSkippedWork
## 1 0.3272463
Step 5
drug_data %>%
select(cocaine_month,SelectiveLeave) %>%
rename(DaysSkippedWork = SelectiveLeave) %>%
filter(DaysSkippedWork<31) %>%
group_by((cocaine_month)) %>%
summarize(meanDaysSkippedWork=mean(DaysSkippedWork))
## # A tibble: 2 x 2
## `(cocaine_month)` meanDaysSkippedWork
## * <chr> <dbl>
## 1 Did not use Cocaine Past 30 days 0.322
## 2 Used Cocaine Past 30 days 0.85
Step 6
Step 7
drug_data %>%
select(cocaine_month,SelectiveLeave) %>%
rename(DaysSkippedWork = SelectiveLeave) %>%
filter(DaysSkippedWork<31) %>%
group_by(cocaine_month) %>%
summarize(meanDaysSkippedWork=mean(DaysSkippedWork)) %>%
ggplot() +
geom_col(aes(x=cocaine_month, y=meanDaysSkippedWork, fill=(meanDaysSkippedWork)))
Extra credit
drug_data %>%
select(marij_month,SelectiveLeave) %>%
rename(DaysSkippedWork = SelectiveLeave) %>%
filter(DaysSkippedWork<31) %>%
group_by(marij_month) %>%
summarize(meanDaysSkippedWork=mean(DaysSkippedWork)) %>%
ggplot() +
geom_col(aes(x=marij_month, y=meanDaysSkippedWork, fill=(meanDaysSkippedWork)))
Interpretation