Tufts Friedman Symposium 2021

written by: M.A. Hartwick

Set up the environment

(check if tidyverse installed)
packages <- c("tidyverse", "skimr", "RColorBrewer")
install.packages(setdiff(packages, rownames(installed.packages())))
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.3     v purrr   0.3.4
## v tibble  3.0.6     v dplyr   1.0.4
## v tidyr   1.1.2     v stringr 1.4.0
## v readr   1.4.0     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(skimr)
library(RColorBrewer)
search()
##  [1] ".GlobalEnv"           "package:RColorBrewer" "package:skimr"       
##  [4] "package:forcats"      "package:stringr"      "package:dplyr"       
##  [7] "package:purrr"        "package:readr"        "package:tidyr"       
## [10] "package:tibble"       "package:ggplot2"      "package:tidyverse"   
## [13] "package:stats"        "package:graphics"     "package:grDevices"   
## [16] "package:utils"        "package:datasets"     "package:methods"     
## [19] "Autoloads"            "package:base"

1. Data

iris[1:20,]

Data Structure (tidyverse)

iris %>%
  skimr::skim()
Data summary
Name Piped data
Number of rows 150
Number of columns 5
_______________________
Column type frequency:
factor 1
numeric 4
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
Species 0 1 FALSE 3 set: 50, ver: 50, vir: 50

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
Sepal.Length 0 1 5.84 0.83 4.3 5.1 5.80 6.4 7.9 ▆▇▇▅▂
Sepal.Width 0 1 3.06 0.44 2.0 2.8 3.00 3.3 4.4 ▁▆▇▂▁
Petal.Length 0 1 3.76 1.77 1.0 1.6 4.35 5.1 6.9 ▇▁▆▇▂
Petal.Width 0 1 1.20 0.76 0.1 0.3 1.30 1.8 2.5 ▇▁▇▅▃

tidyverse

(data cleaning)

set.seed(100)
iris_clean <- iris %>% 
  mutate(Trial = sample(3, n(), replace = TRUE))
iris_clean %>% skim()
Data summary
Name Piped data
Number of rows 150
Number of columns 6
_______________________
Column type frequency:
factor 1
numeric 5
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
Species 0 1 FALSE 3 set: 50, ver: 50, vir: 50

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
Sepal.Length 0 1 5.84 0.83 4.3 5.10 5.80 6.4 7.9 ▆▇▇▅▂
Sepal.Width 0 1 3.06 0.44 2.0 2.80 3.00 3.3 4.4 ▁▆▇▂▁
Petal.Length 0 1 3.76 1.77 1.0 1.60 4.35 5.1 6.9 ▇▁▆▇▂
Petal.Width 0 1 1.20 0.76 0.1 0.30 1.30 1.8 2.5 ▇▁▇▅▃
Trial 0 1 2.13 0.79 1.0 1.25 2.00 3.0 3.0 ▅▁▇▁▇

2. Function

iris_clean %>%
  ggplot()

3. Coordinates

iris_clean %>%
  ggplot(.,aes(x = Trial, y = Sepal.Length ))

4. Mapping

iris_clean %>%
  ggplot(.,aes(x = Trial, y = Sepal.Width, color = Species))

5. Geometries

geom_histogram(…), geom_point(…), geom_bar(…), geom_col(…)

- geom_histogram(…) is a count geom, so only takes one coordinate
iris_clean %>% 
  ggplot(.,aes(x = Sepal.Length, color = Species)) +
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

- color sets the outline here, what happens if we try fill instead?
- what happens when we specify bin size?
- where should that argument go?
iris_clean %>% 
  ggplot(.,aes(x = Sepal.Length, fill = Species)) +
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

- The geom ‘fill’ is specified
- Add an outline and transparency outside the mapping.
- Could we specify the fill aesthetic inside the geom_histogram?, how?
iris_clean %>% 
  ggplot(.,aes(x = Sepal.Length, fill = Species)) +
  geom_histogram(aes(color = Species), alpha = 0.4)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

- Try out geom_point with an x and y coordinate.
- What happens if we remove the ‘as.character()’ wrapper from Trial?
iris_clean %>% 
  ggplot(.,aes(x = Sepal.Width, y = Sepal.Length, color = Species,
               shape = as.character(Trial))) +
  geom_point()

- Let’s try a barchart with x and y coordinates, mapped to species.
- The default for geom_barchart(…) is count (similiar to geom_histogram(…)).
- What happens if we remove stat = ‘identity’?
iris_clean %>%
  ggplot(.,aes(x = Trial, y = Sepal.Length, fill = Species)) +
  geom_bar(stat = 'identity')

- geom_col(…) is the geometry for x and y barcharts.
- The default here is stat = ‘identity’, so no need to specify.
iris_clean %>%
  ggplot(.,aes(x = Trial, y = Sepal.Length, fill = Species)) +
  geom_col()

- By changing position from the default ‘stacked’ to dodge we can look at the
species as separate columns.
iris_clean %>%
  ggplot(.,aes(x = Trial, y = Sepal.Length, fill = Species)) +
  geom_col(position = 'dodge')

- Before we move on to the next layer, is there another geom_* you want to try?
- Add your own geom_* below from some that we’ve discussed (boxplot, violin?)
- What have we learned about default arguments that could help here
- Remember to run ’?geom_*()’ to find defaults.
iris_clean %>%
  ggplot(.,aes(x = Trial, y = Sepal.Length, fill = Species))

6. Scales

scale_y_continuous(…), scale_x_discrete(…), scale_color_manual(…), scale_color_brewer(…)

- Let’s adjust the breaks in the y axis for each major break.
- The data are continuous so we use scale_y_continouus(…).
iris_clean %>%
  ggplot(.,aes(x = Trial, y = Sepal.Length, fill = Species)) +
  geom_col(position = 'dodge') +
  scale_y_continuous(breaks = c(0,1,2,3,4,5,6,7,8))

- Let’s also expand the x-axis so the data fills the plotting area.
- Remember, at this point the Trial data is still datatype continuous,
- So we use: scale_x_continuous(…)
- What happens if we use scale_x_discrete(…)
iris_clean %>%
  ggplot(.,aes(x = Trial, y = Sepal.Length, fill = Species)) +
  geom_col(position = 'dodge') +
  scale_y_continuous(breaks = c(0,1,2,3,4,5,6,7,8)) +
  scale_x_continuous(expand = c(0.01,0.01))

- Want to apply scales to some other attributes?
- Lets add another layer of geom below and adjust that.
- what are some other things we could do to improve this? (keep in mind for later)
- What happens if we change the order of the geoms_*(…)?
iris_clean %>%
  ggplot(.,aes(x = Trial, y = Sepal.Length, fill = Species)) +
  geom_col(position = 'dodge') + 
  geom_point(aes(shape = Species, color = Trial), position = position_dodge(width = 1))+
  scale_y_continuous(breaks = c(0,1,2,3,4,5,6,7,8)) +
  scale_x_continuous(expand = c(0.01,0.01)) + 
  scale_shape_manual(values = c(21,22,23))

- Time to adjust the default colors.
- First let’s take a look at the basic Rcolors
colors()
##   [1] "white"                "aliceblue"            "antiquewhite"        
##   [4] "antiquewhite1"        "antiquewhite2"        "antiquewhite3"       
##   [7] "antiquewhite4"        "aquamarine"           "aquamarine1"         
##  [10] "aquamarine2"          "aquamarine3"          "aquamarine4"         
##  [13] "azure"                "azure1"               "azure2"              
##  [16] "azure3"               "azure4"               "beige"               
##  [19] "bisque"               "bisque1"              "bisque2"             
##  [22] "bisque3"              "bisque4"              "black"               
##  [25] "blanchedalmond"       "blue"                 "blue1"               
##  [28] "blue2"                "blue3"                "blue4"               
##  [31] "blueviolet"           "brown"                "brown1"              
##  [34] "brown2"               "brown3"               "brown4"              
##  [37] "burlywood"            "burlywood1"           "burlywood2"          
##  [40] "burlywood3"           "burlywood4"           "cadetblue"           
##  [43] "cadetblue1"           "cadetblue2"           "cadetblue3"          
##  [46] "cadetblue4"           "chartreuse"           "chartreuse1"         
##  [49] "chartreuse2"          "chartreuse3"          "chartreuse4"         
##  [52] "chocolate"            "chocolate1"           "chocolate2"          
##  [55] "chocolate3"           "chocolate4"           "coral"               
##  [58] "coral1"               "coral2"               "coral3"              
##  [61] "coral4"               "cornflowerblue"       "cornsilk"            
##  [64] "cornsilk1"            "cornsilk2"            "cornsilk3"           
##  [67] "cornsilk4"            "cyan"                 "cyan1"               
##  [70] "cyan2"                "cyan3"                "cyan4"               
##  [73] "darkblue"             "darkcyan"             "darkgoldenrod"       
##  [76] "darkgoldenrod1"       "darkgoldenrod2"       "darkgoldenrod3"      
##  [79] "darkgoldenrod4"       "darkgray"             "darkgreen"           
##  [82] "darkgrey"             "darkkhaki"            "darkmagenta"         
##  [85] "darkolivegreen"       "darkolivegreen1"      "darkolivegreen2"     
##  [88] "darkolivegreen3"      "darkolivegreen4"      "darkorange"          
##  [91] "darkorange1"          "darkorange2"          "darkorange3"         
##  [94] "darkorange4"          "darkorchid"           "darkorchid1"         
##  [97] "darkorchid2"          "darkorchid3"          "darkorchid4"         
## [100] "darkred"              "darksalmon"           "darkseagreen"        
## [103] "darkseagreen1"        "darkseagreen2"        "darkseagreen3"       
## [106] "darkseagreen4"        "darkslateblue"        "darkslategray"       
## [109] "darkslategray1"       "darkslategray2"       "darkslategray3"      
## [112] "darkslategray4"       "darkslategrey"        "darkturquoise"       
## [115] "darkviolet"           "deeppink"             "deeppink1"           
## [118] "deeppink2"            "deeppink3"            "deeppink4"           
## [121] "deepskyblue"          "deepskyblue1"         "deepskyblue2"        
## [124] "deepskyblue3"         "deepskyblue4"         "dimgray"             
## [127] "dimgrey"              "dodgerblue"           "dodgerblue1"         
## [130] "dodgerblue2"          "dodgerblue3"          "dodgerblue4"         
## [133] "firebrick"            "firebrick1"           "firebrick2"          
## [136] "firebrick3"           "firebrick4"           "floralwhite"         
## [139] "forestgreen"          "gainsboro"            "ghostwhite"          
## [142] "gold"                 "gold1"                "gold2"               
## [145] "gold3"                "gold4"                "goldenrod"           
## [148] "goldenrod1"           "goldenrod2"           "goldenrod3"          
## [151] "goldenrod4"           "gray"                 "gray0"               
## [154] "gray1"                "gray2"                "gray3"               
## [157] "gray4"                "gray5"                "gray6"               
## [160] "gray7"                "gray8"                "gray9"               
## [163] "gray10"               "gray11"               "gray12"              
## [166] "gray13"               "gray14"               "gray15"              
## [169] "gray16"               "gray17"               "gray18"              
## [172] "gray19"               "gray20"               "gray21"              
## [175] "gray22"               "gray23"               "gray24"              
## [178] "gray25"               "gray26"               "gray27"              
## [181] "gray28"               "gray29"               "gray30"              
## [184] "gray31"               "gray32"               "gray33"              
## [187] "gray34"               "gray35"               "gray36"              
## [190] "gray37"               "gray38"               "gray39"              
## [193] "gray40"               "gray41"               "gray42"              
## [196] "gray43"               "gray44"               "gray45"              
## [199] "gray46"               "gray47"               "gray48"              
## [202] "gray49"               "gray50"               "gray51"              
## [205] "gray52"               "gray53"               "gray54"              
## [208] "gray55"               "gray56"               "gray57"              
## [211] "gray58"               "gray59"               "gray60"              
## [214] "gray61"               "gray62"               "gray63"              
## [217] "gray64"               "gray65"               "gray66"              
## [220] "gray67"               "gray68"               "gray69"              
## [223] "gray70"               "gray71"               "gray72"              
## [226] "gray73"               "gray74"               "gray75"              
## [229] "gray76"               "gray77"               "gray78"              
## [232] "gray79"               "gray80"               "gray81"              
## [235] "gray82"               "gray83"               "gray84"              
## [238] "gray85"               "gray86"               "gray87"              
## [241] "gray88"               "gray89"               "gray90"              
## [244] "gray91"               "gray92"               "gray93"              
## [247] "gray94"               "gray95"               "gray96"              
## [250] "gray97"               "gray98"               "gray99"              
## [253] "gray100"              "green"                "green1"              
## [256] "green2"               "green3"               "green4"              
## [259] "greenyellow"          "grey"                 "grey0"               
## [262] "grey1"                "grey2"                "grey3"               
## [265] "grey4"                "grey5"                "grey6"               
## [268] "grey7"                "grey8"                "grey9"               
## [271] "grey10"               "grey11"               "grey12"              
## [274] "grey13"               "grey14"               "grey15"              
## [277] "grey16"               "grey17"               "grey18"              
## [280] "grey19"               "grey20"               "grey21"              
## [283] "grey22"               "grey23"               "grey24"              
## [286] "grey25"               "grey26"               "grey27"              
## [289] "grey28"               "grey29"               "grey30"              
## [292] "grey31"               "grey32"               "grey33"              
## [295] "grey34"               "grey35"               "grey36"              
## [298] "grey37"               "grey38"               "grey39"              
## [301] "grey40"               "grey41"               "grey42"              
## [304] "grey43"               "grey44"               "grey45"              
## [307] "grey46"               "grey47"               "grey48"              
## [310] "grey49"               "grey50"               "grey51"              
## [313] "grey52"               "grey53"               "grey54"              
## [316] "grey55"               "grey56"               "grey57"              
## [319] "grey58"               "grey59"               "grey60"              
## [322] "grey61"               "grey62"               "grey63"              
## [325] "grey64"               "grey65"               "grey66"              
## [328] "grey67"               "grey68"               "grey69"              
## [331] "grey70"               "grey71"               "grey72"              
## [334] "grey73"               "grey74"               "grey75"              
## [337] "grey76"               "grey77"               "grey78"              
## [340] "grey79"               "grey80"               "grey81"              
## [343] "grey82"               "grey83"               "grey84"              
## [346] "grey85"               "grey86"               "grey87"              
## [349] "grey88"               "grey89"               "grey90"              
## [352] "grey91"               "grey92"               "grey93"              
## [355] "grey94"               "grey95"               "grey96"              
## [358] "grey97"               "grey98"               "grey99"              
## [361] "grey100"              "honeydew"             "honeydew1"           
## [364] "honeydew2"            "honeydew3"            "honeydew4"           
## [367] "hotpink"              "hotpink1"             "hotpink2"            
## [370] "hotpink3"             "hotpink4"             "indianred"           
## [373] "indianred1"           "indianred2"           "indianred3"          
## [376] "indianred4"           "ivory"                "ivory1"              
## [379] "ivory2"               "ivory3"               "ivory4"              
## [382] "khaki"                "khaki1"               "khaki2"              
## [385] "khaki3"               "khaki4"               "lavender"            
## [388] "lavenderblush"        "lavenderblush1"       "lavenderblush2"      
## [391] "lavenderblush3"       "lavenderblush4"       "lawngreen"           
## [394] "lemonchiffon"         "lemonchiffon1"        "lemonchiffon2"       
## [397] "lemonchiffon3"        "lemonchiffon4"        "lightblue"           
## [400] "lightblue1"           "lightblue2"           "lightblue3"          
## [403] "lightblue4"           "lightcoral"           "lightcyan"           
## [406] "lightcyan1"           "lightcyan2"           "lightcyan3"          
## [409] "lightcyan4"           "lightgoldenrod"       "lightgoldenrod1"     
## [412] "lightgoldenrod2"      "lightgoldenrod3"      "lightgoldenrod4"     
## [415] "lightgoldenrodyellow" "lightgray"            "lightgreen"          
## [418] "lightgrey"            "lightpink"            "lightpink1"          
## [421] "lightpink2"           "lightpink3"           "lightpink4"          
## [424] "lightsalmon"          "lightsalmon1"         "lightsalmon2"        
## [427] "lightsalmon3"         "lightsalmon4"         "lightseagreen"       
## [430] "lightskyblue"         "lightskyblue1"        "lightskyblue2"       
## [433] "lightskyblue3"        "lightskyblue4"        "lightslateblue"      
## [436] "lightslategray"       "lightslategrey"       "lightsteelblue"      
## [439] "lightsteelblue1"      "lightsteelblue2"      "lightsteelblue3"     
## [442] "lightsteelblue4"      "lightyellow"          "lightyellow1"        
## [445] "lightyellow2"         "lightyellow3"         "lightyellow4"        
## [448] "limegreen"            "linen"                "magenta"             
## [451] "magenta1"             "magenta2"             "magenta3"            
## [454] "magenta4"             "maroon"               "maroon1"             
## [457] "maroon2"              "maroon3"              "maroon4"             
## [460] "mediumaquamarine"     "mediumblue"           "mediumorchid"        
## [463] "mediumorchid1"        "mediumorchid2"        "mediumorchid3"       
## [466] "mediumorchid4"        "mediumpurple"         "mediumpurple1"       
## [469] "mediumpurple2"        "mediumpurple3"        "mediumpurple4"       
## [472] "mediumseagreen"       "mediumslateblue"      "mediumspringgreen"   
## [475] "mediumturquoise"      "mediumvioletred"      "midnightblue"        
## [478] "mintcream"            "mistyrose"            "mistyrose1"          
## [481] "mistyrose2"           "mistyrose3"           "mistyrose4"          
## [484] "moccasin"             "navajowhite"          "navajowhite1"        
## [487] "navajowhite2"         "navajowhite3"         "navajowhite4"        
## [490] "navy"                 "navyblue"             "oldlace"             
## [493] "olivedrab"            "olivedrab1"           "olivedrab2"          
## [496] "olivedrab3"           "olivedrab4"           "orange"              
## [499] "orange1"              "orange2"              "orange3"             
## [502] "orange4"              "orangered"            "orangered1"          
## [505] "orangered2"           "orangered3"           "orangered4"          
## [508] "orchid"               "orchid1"              "orchid2"             
## [511] "orchid3"              "orchid4"              "palegoldenrod"       
## [514] "palegreen"            "palegreen1"           "palegreen2"          
## [517] "palegreen3"           "palegreen4"           "paleturquoise"       
## [520] "paleturquoise1"       "paleturquoise2"       "paleturquoise3"      
## [523] "paleturquoise4"       "palevioletred"        "palevioletred1"      
## [526] "palevioletred2"       "palevioletred3"       "palevioletred4"      
## [529] "papayawhip"           "peachpuff"            "peachpuff1"          
## [532] "peachpuff2"           "peachpuff3"           "peachpuff4"          
## [535] "peru"                 "pink"                 "pink1"               
## [538] "pink2"                "pink3"                "pink4"               
## [541] "plum"                 "plum1"                "plum2"               
## [544] "plum3"                "plum4"                "powderblue"          
## [547] "purple"               "purple1"              "purple2"             
## [550] "purple3"              "purple4"              "red"                 
## [553] "red1"                 "red2"                 "red3"                
## [556] "red4"                 "rosybrown"            "rosybrown1"          
## [559] "rosybrown2"           "rosybrown3"           "rosybrown4"          
## [562] "royalblue"            "royalblue1"           "royalblue2"          
## [565] "royalblue3"           "royalblue4"           "saddlebrown"         
## [568] "salmon"               "salmon1"              "salmon2"             
## [571] "salmon3"              "salmon4"              "sandybrown"          
## [574] "seagreen"             "seagreen1"            "seagreen2"           
## [577] "seagreen3"            "seagreen4"            "seashell"            
## [580] "seashell1"            "seashell2"            "seashell3"           
## [583] "seashell4"            "sienna"               "sienna1"             
## [586] "sienna2"              "sienna3"              "sienna4"             
## [589] "skyblue"              "skyblue1"             "skyblue2"            
## [592] "skyblue3"             "skyblue4"             "slateblue"           
## [595] "slateblue1"           "slateblue2"           "slateblue3"          
## [598] "slateblue4"           "slategray"            "slategray1"          
## [601] "slategray2"           "slategray3"           "slategray4"          
## [604] "slategrey"            "snow"                 "snow1"               
## [607] "snow2"                "snow3"                "snow4"               
## [610] "springgreen"          "springgreen1"         "springgreen2"        
## [613] "springgreen3"         "springgreen4"         "steelblue"           
## [616] "steelblue1"           "steelblue2"           "steelblue3"          
## [619] "steelblue4"           "tan"                  "tan1"                
## [622] "tan2"                 "tan3"                 "tan4"                
## [625] "thistle"              "thistle1"             "thistle2"            
## [628] "thistle3"             "thistle4"             "tomato"              
## [631] "tomato1"              "tomato2"              "tomato3"             
## [634] "tomato4"              "turquoise"            "turquoise1"          
## [637] "turquoise2"           "turquoise3"           "turquoise4"          
## [640] "violet"               "violetred"            "violetred1"          
## [643] "violetred2"           "violetred3"           "violetred4"          
## [646] "wheat"                "wheat1"               "wheat2"              
## [649] "wheat3"               "wheat4"               "whitesmoke"          
## [652] "yellow"               "yellow1"              "yellow2"             
## [655] "yellow3"              "yellow4"              "yellowgreen"
- First we’ll try to manually set our selected colors with scale_color_manual(…)
- That changed something, but what?
- What’s going on with our data that Trial is continuous
- and it didn’t use the colors argument?
iris_clean %>%
  ggplot(.,aes(x = Trial, y = Sepal.Length, fill = Species)) +
  geom_col(position = 'dodge') + 
  geom_point(aes(shape = Species, color = as.character(Trial)), position = position_dodge(width = 1))+
  scale_y_continuous(breaks = c(0,1,2,3,4,5,6,7,8)) +
  scale_x_continuous(expand = c(0.01,0.01)) + 
  scale_shape_manual(values = c(21,22,23)) +
  scale_color_manual(values = c('plum2', 'lemonchiffon', 'skyblue3'))

- Let’s try using scale_fill_manual(…) to map to Species, which is character class
- Then, we’ll wrap Trial in as.character, add a scale_color_manual(…)
- Why are we using both fill and color scales here? (hint: think back to
- geom_histogram(…))
iris_clean %>%
  ggplot(.,aes(x = Trial, y = Sepal.Length, fill = Species)) +
  geom_col(position = 'dodge') + 
  geom_point(aes(shape = Species, color = as.character(Trial)),
             position =position_dodge(width = 1))+
  scale_y_continuous(breaks = c(0,1,2,3,4,5,6,7,8)) +
  scale_x_continuous(expand = c(0.01,0.01)) + 
  scale_shape_manual(values = c(21,22,23)) +
  scale_fill_manual(values = c('plum2', 'lemonchiffon', 'skyblue3'))+
  scale_color_manual(values = c('forestgreen', 'grey80', 'aquamarine2'))

What do some of the Pre-Built color scales look like?

display.brewer.all()

- Let’s take RcolorBrewer for a spin
iris_clean %>%
  ggplot(.,aes(x = Trial, y = Sepal.Length, fill = Species)) +
  geom_col(position = 'dodge') + 
  geom_point(aes(shape = Species, color = as.character(Trial)), position = position_dodge(width = 1))+
  scale_y_continuous(breaks = c(0,1,2,3,4,5,6,7,8)) +
  scale_x_continuous(expand = c(0.01,0.01)) + 
  scale_shape_manual(values = c(21,22,23)) + 
  scale_fill_brewer(palette = 'Set2') +
  scale_color_brewer(palette = 'Set3')

7. Facets

facet_wrap(…), facet_grid(…)

- Start off with facet_wrap(…) by Trial.
- What happens with the x-axis?
iris_clean %>%
  ggplot(.,aes(x = Trial, y = Sepal.Length, fill = Species)) +
  geom_col(position = 'dodge') + 
  geom_point(aes(shape = Species, color = as.character(Trial)), position = position_dodge(width = 1))+
  scale_y_continuous(breaks = c(0,1,2,3,4,5,6,7,8)) +
  scale_x_continuous(expand = c(0.01,0.01)) + 
  scale_shape_manual(values = c(21,22,23)) + 
  scale_fill_brewer(palette = 'Set2') +
  scale_color_brewer(palette = 'Set3') +
  facet_wrap(~Trial)

- Adjust the x-axis scale
- Lets view by rows instead of columns and move the facet labels
iris_clean %>%
  ggplot(.,aes(x = Trial, y = Sepal.Length, fill = Species)) +
  geom_col(position = 'dodge') + 
  geom_point(aes(shape = Species, color = as.character(Trial)), position = position_dodge(width = 1))+
  scale_y_continuous(breaks = c(0,1,2,3,4,5,6,7,8)) +
  scale_x_continuous(expand = c(0.01,0.01)) + 
  scale_shape_manual(values = c(21,22,23)) + 
  scale_fill_brewer(palette = 'Set2') +
  scale_color_brewer(palette = 'Set3') +
  facet_wrap(~Trial, scales = "free_x", nrow = 3, strip.position = 'right')

- Facet_grid(…) is similiar, is there any varaible that we should look at
- Adjust the code below and add another varaible to the before the ‘~’, what happens?
iris_clean %>%
  ggplot(.,aes(x = Trial, y = Sepal.Length, fill = Species)) +
  geom_col(position = 'dodge') + 
  geom_point(aes(shape = Species, color = as.character(Trial)), position = position_dodge(width = 1))+
  scale_y_continuous(breaks = c(0,1,2,3,4,5,6,7,8)) +
  scale_x_continuous(expand = c(0.01,0.01)) + 
  scale_shape_manual(values = c(21,22,23)) + 
  scale_fill_brewer(palette = 'Set2') +
  scale_color_brewer(palette = 'Set3') +
  facet_wrap(~Trial, scales = "free_x", nrow = 3, strip.position = 'right')

8. Themes

- Start by adding some Pre-Built themes.
- What other Pre-Built themes are availble, start typing ‘theme’ in the console below.
- What pops up? What are their defaults?
iris_clean %>%
  ggplot(.,aes(x = Trial, y = Sepal.Length, fill = Species)) +
  geom_col(position = 'dodge') + 
  geom_point(aes(shape = Species, color = as.character(Trial)), position = position_dodge(width = 1))+
  scale_y_continuous(breaks = c(0,1,2,3,4,5,6,7,8)) +
  scale_x_continuous(expand = c(0.01,0.01)) + 
  scale_shape_manual(values = c(21,22,23)) + 
  scale_fill_brewer(palette = 'Set2') +
  scale_color_brewer(palette = 'Set3') +
  facet_wrap(~Trial, scales = "free_x", nrow = 3, strip.position = 'right') +
  theme_minimal()

- Let’s try out setting some of the elements ourselves.
- What else would you adjust?
iris_clean %>%
  ggplot(.,aes(x = Trial, y = Sepal.Length, fill = Species)) +
  geom_col(position = 'dodge') + 
  geom_point(aes(shape = Species, color = as.character(Trial)), position = position_dodge(width = 1))+
  scale_y_continuous(breaks = c(0,1,2,3,4,5,6,7,8)) +
  scale_x_continuous(expand = c(0.01,0.01)) + 
  scale_shape_manual(values = c(21,22,23)) + 
  scale_fill_brewer(palette = 'Set2') +
  scale_color_brewer(palette = 'Set3') +
  facet_wrap(~Trial, scales = "free_x", nrow = 3, strip.position = 'right')+
  theme(legend.text = element_text(face = 'bold'),
        text = element_text(family = 'mono', color = 'grey7', size = 10),
        panel.grid.major = element_blank(),
                panel.grid.minor = element_blank(),
                panel.background = element_blank(),
                axis.line = element_line(colour = 'grey10'))

From Sketch to Story, your turn:

Challenge(No Hints)

-Facetted Width and Length

-Bargraph

-Trial axis breaks as ‘2010’, 2015’, ‘2020’

-Y axis at 2, 4, 6, 8

-Ditch the points, and accompanying scale

-Choose a different palette for species

-Dodge position

-Species in italics

-No grey in facet

-Use a more elegant font

iris_clean %>%
  ggplot(.,aes(x = Trial, y = Sepal.Length, fill = Species)) +
  geom_col(position = 'dodge') + 
  geom_point(aes(shape = Species, color = as.character(Trial)), position = position_dodge(width = 1))+
  scale_y_continuous(breaks = c(0,1,2,3,4,5,6,7,8)) +
  scale_x_continuous(expand = c(0.01,0.01)) + 
  scale_shape_manual(values = c(21,22,23)) + 
  scale_fill_brewer(palette = 'Set2') +
  scale_color_brewer(palette = 'Set3') +
  facet_wrap(~Trial, scales = "free_x", nrow = 3, strip.position = 'right')+
  theme(legend.text = element_text(face = 'bold'),
        text = element_text(family = 'mono', color = 'grey7', size = 10),
        panel.grid.major = element_blank(),
                panel.grid.minor = element_blank(),
                panel.background = element_blank(),
                axis.line = element_line(colour = 'grey10'))

Challenge(Hints)

-Faceted Width and Length - add a tidyr::pivot_longer(…) pipe before ggplot2::

-Bargraph - choose the best option from the geoms we covered

-Trial axis breaks as 2010, 2015, 2020 - transform Trial column to character,use scale*

-Y axis at 2, 4, 6, 8 - Modify existing scale*

-Ditch the points, and accompanying scale - delete the correct geom_*()

-Choose the correct scale and change color palette - Modify Existing Scale*

-Dodge position - set from in geom*

-Species in italics - modify the theme

-No grey in facet - modify the theme

-Use a more elegant font - modify the theme, solution uses a different package

iris_clean %>% # Faceted Width and Length - add a tidyr::pivot_longer(...) %>%
  #Trial axis breaks as 2010, 2015, 2020 - transform Trial column to character
  # mutate(Trial = as.character(Trial))
  ggplot(.,aes(x = Trial, y = Sepal.Length, fill = Species)) +
  geom_col(position = 'dodge') + # Bargraph and Dodge - choose the best option from the geoms we covered
  geom_point(aes(shape = Species, color = as.character(Trial)), position = position_dodge(width = 1))+ # delete the points geom
  scale_y_continuous(breaks = c(0,1,2,3,4,5,6,7,8)) +
  scale_x_continuous(expand = c(0.01,0.01)) + #Trial axis breaks as 2010, 2015, 2020, change scale*
  scale_shape_manual(values = c(21,22,23)) + # geom_point() scale, delete
  scale_fill_brewer(palette = 'Set2') + #change this palette
  scale_color_brewer(palette = 'Set3') + #delete this scale, was for points
  facet_wrap(~Trial, scales = "free_x", nrow = 3, strip.position = 'right')+
  theme(legend.text = element_text(face = 'bold'), #Species in italics - modify the theme
        text = element_text(family = 'mono', color = 'grey7', size = 10),# Use a more elegant         font - modify the theme,
        #No grey in facet - modify the theme
        panel.grid.major = element_blank(),
                panel.grid.minor = element_blank(),
                panel.background = element_blank(),
                axis.line = element_line(colour = 'grey10'))

Solution

-Facetted Width and Length - add a tidyr::pivot_longer(…) pipe before ggplot2::

-Bargraph - choose the best option from the geoms we covered

-Trial axis breaks as 2010, 2015, 2020 - transform Trial column to character,use scale*

-Y axis at 2, 4, 6, 8 - Modify existing scale*

-Ditch the points, and accompanying scale - delete the correct geom_*()

-Choose the correct scale and change color palette - Modify Existing Scale*

-Dodge position - set from in geom*

-Species in italics - modify the theme

-No grey in facet - modify the theme

-Use a more elegant font - modify the theme, solution uses a different package

#library(extrafont)
iris_clean %>% tidyr::pivot_longer(cols = c('Petal.Length', 'Petal.Width'),
                                   names_to = 'Petal_Attribute',
                                   values_to = 'Petal_Measurement') %>%
  dplyr::mutate(Trial = as.character(Trial)) %>% 
  ggplot(.,aes(x = Trial, y = Petal_Measurement, fill = Species)) +
  geom_col(position = 'dodge') +
  scale_y_continuous(breaks = c(2,4,6,8,10,12,14), expand = c(0,0), limits = c(0, 15)) +
  scale_x_discrete(breaks = c(1,2,3),
                   labels = c('2010', '2015', '2020')) +
  scale_fill_manual(values = c("skyblue3", "peachpuff", 'mediumaquamarine')) +
  scale_color_manual(values = c("skyblue3", "peachpuff", 'mediumaquamarine')) +
  facet_wrap(~Petal_Attribute,
             scales = 'free',
             ncol = 2, strip.position = 'top')+
  theme(legend.text = element_text(face = 'italic'),
        text = element_text(color = 'grey7',
                            size = 10),
                            #family = 'Palatino Linotype'
        strip.background = element_blank(),
        panel.grid.major = element_blank(),
                panel.grid.minor = element_blank(),
                panel.background = element_blank(),
                axis.line = element_line(colour = 'grey10')) +
  ylab('Petal Measurement')

end(…)