rm(list=ls())
gc()
##          used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
## Ncells 411679   22     855480 45.7         NA   641491 34.3
## Vcells 785456    6    8388608 64.0      16384  1768739 13.5
setwd("/Users/Nazija/Desktop/DATA 710/Lec 3")
library(foreign) # this pack allows you to import Stata data
GSS <- read.dta("/Users/Nazija/Desktop/DATA 710/GSS1972_2014v12.dta")
library(descr)
library(tidyverse)
## ── Attaching packages ───────────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2     ✓ purrr   0.3.4
## ✓ tibble  3.0.3     ✓ dplyr   1.0.4
## ✓ tidyr   1.1.2     ✓ stringr 1.4.0
## ✓ readr   1.3.1     ✓ forcats 0.5.1
## ── Conflicts ──────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(sjmisc)
## 
## Attaching package: 'sjmisc'
## The following object is masked from 'package:purrr':
## 
##     is_empty
## The following object is masked from 'package:tidyr':
## 
##     replace_na
## The following object is masked from 'package:tibble':
## 
##     add_case
## The following object is masked from 'package:descr':
## 
##     descr
library(magrittr)
## 
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
## 
##     set_names
## The following object is masked from 'package:tidyr':
## 
##     extract
m3<-GSS%>%
  select(year, helppoor, helpblk, racmar, racdif1, racdif2)%>%
  mutate(racmar2 = ifelse(racmar == "yes", 1, 0), #0 means they support interracial marriage, 1 means support laws against it (1 is racist)
         racdif12 = ifelse(racdif1 == "yes", 1, 0),# 1 means that worse economic situation than whites mainly due to discrimination, 0 means doesn't believe it is mainly because of discrimination (0 is racist)
         racdif22 =(ifelse(racdif2 == "yes", 1, 0)), #1 means racist, believe blacks are less able to learn, 0 means don't think differences mainly due to inborn ability of blacks
         helppoor2 = 6-helppoor, #1 means individual responsibility, 5 means gov't responsibility
         helpblk2 = 6 - helpblk)#%>% 1 means indiividual responsibility and shouldn't give them special treatment, 5 means gov't responsibility 
  #select(racmar2, racdif12, racdif22, helppoor2, helpblk2)
glimpse(m3)
## Rows: 59,599
## Columns: 11
## $ year      <int> 1972, 1972, 1972, 1972, 1972, 1972, 1972, 1972, 1972, 1972,…
## $ helppoor  <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ helpblk   <int> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ racmar    <fct> no, yes, yes, yes, no, no, yes, no, NA, NA, NA, NA, NA, NA,…
## $ racdif1   <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ racdif2   <fct> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ racmar2   <dbl> 0, 1, 1, 1, 0, 0, 1, 0, NA, NA, NA, NA, NA, NA, NA, NA, 1, …
## $ racdif12  <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ racdif22  <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ helppoor2 <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
## $ helpblk2  <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,…
unique(m3$helppoor2)
## [1] NA  5  3  4  1  2
unique(m3$helpblk2)
## [1] NA  3  1  5  4  2
unique(m3$racmar2)
## [1]  0  1 NA
unique(m3$racdif12)
## [1] NA  0  1
unique(m3$racdif22)
## [1] NA  1  0
table(m3$helpblk, m3$helpblk2)
##    
##        1    2    3    4    5
##   1    0    0    0    0 2838
##   2    0    0    0 2751    0
##   3    0    0 9045    0    0
##   4    0 5687    0    0    0
##   5 9185    0    0    0    0
table(m3$helppoor, m3$helppoor2)
##    
##         1     2     3     4     5
##   1     0     0     0     0  5079
##   2     0     0     0  3701     0
##   3     0     0 12968     0     0
##   4     0  4154     0     0     0
##   5  3306     0     0     0     0
table(m3$racmar, m3$racmar2)
##      
##           0     1
##   iap     0     0
##   yes     0  6629
##   no  22155     0
##   dk      0     0
##   na      0     0
table(m3$racdif1, m3$racdif12)
##      
##           0     1
##   iap     0     0
##   yes     0 10197
##   no  15505     0
##   dk      0     0
##   na      0     0
table(m3$racdif2, m3$racdif22)
##      
##           0     1
##   iap     0     0
##   yes     0  3576
##   no  22483     0
##   dk      0     0
##   na      0     0
data<- m3%>%select(year, racmar2, racdif12, racdif22, helppoor2, helpblk2)

Have attitudes towards race, racial inequality, and state policies changed over time? Variables chosen: racdif1 vs racdif2, helppoor vs helpblk

difsdata<- data%>% select(year, racdif12, racdif22)
difsdata = na.omit(difsdata)
difs1prop_table<-sjmisc::flat_table(difsdata, year, racdif12, margin = "row")
difs1prop_table
##      racdif12     0     1
## year                     
## 1977          59.00 41.00
## 1985          54.53 45.47
## 1986          55.35 44.65
## 1988          55.47 44.53
## 1989          57.77 42.23
## 1990          58.83 41.17
## 1991          58.05 41.95
## 1993          56.53 43.47
## 1994          57.06 42.94
## 1996          60.20 39.80
## 1998          62.22 37.78
## 2000          60.79 39.21
## 2002          65.62 34.38
## 2004          64.91 35.09
## 2006          64.01 35.99
## 2008          63.72 36.28
## 2010          61.82 38.18
## 2012          64.50 35.50
## 2014          64.97 35.03
difs2prop_table<-sjmisc::flat_table(difsdata, year, racdif22, margin = "row")
difs2prop_table
##      racdif22     0     1
## year                     
## 1977          73.79 26.21
## 1985          78.39 21.61
## 1986          79.45 20.55
## 1988          80.55 19.45
## 1989          80.74 19.26
## 1990          81.47 18.53
## 1991          85.38 14.62
## 1993          86.75 13.25
## 1994          86.22 13.78
## 1996          89.66 10.34
## 1998          89.84 10.16
## 2000          87.40 12.60
## 2002          87.73 12.27
## 2004          91.11  8.89
## 2006          90.91  9.09
## 2008          89.02 10.98
## 2010          89.40 10.60
## 2012          90.01  9.99
## 2014          91.23  8.77
plotdifs1data <- data.frame(difs1prop_table)%>%
  filter(racdif12 == 1)
plotdifs1data
##    year racdif12  Freq
## 1  1977        1 41.00
## 2  1985        1 45.47
## 3  1986        1 44.65
## 4  1988        1 44.53
## 5  1989        1 42.23
## 6  1990        1 41.17
## 7  1991        1 41.95
## 8  1993        1 43.47
## 9  1994        1 42.94
## 10 1996        1 39.80
## 11 1998        1 37.78
## 12 2000        1 39.21
## 13 2002        1 34.38
## 14 2004        1 35.09
## 15 2006        1 35.99
## 16 2008        1 36.28
## 17 2010        1 38.18
## 18 2012        1 35.50
## 19 2014        1 35.03
plotdifs1data1 <- data.frame(year = plotdifs1data$year, prop = plotdifs1data$Freq)%>%
  #mutate_at(vars(year), funs(as.double))
  mutate_at(vars(year), funs(as.character.factor))%>%
  mutate_at(vars(year), funs(as.double))
## Warning: `funs()` is deprecated as of dplyr 0.8.0.
## Please use a list of either functions or lambdas: 
## 
##   # Simple named list: 
##   list(mean = mean, median = median)
## 
##   # Auto named with `tibble::lst()`: 
##   tibble::lst(mean, median)
## 
##   # Using lambdas
##   list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
#as.numeric(levels(f))[f]
plotdifs1data1
##    year  prop
## 1  1977 41.00
## 2  1985 45.47
## 3  1986 44.65
## 4  1988 44.53
## 5  1989 42.23
## 6  1990 41.17
## 7  1991 41.95
## 8  1993 43.47
## 9  1994 42.94
## 10 1996 39.80
## 11 1998 37.78
## 12 2000 39.21
## 13 2002 34.38
## 14 2004 35.09
## 15 2006 35.99
## 16 2008 36.28
## 17 2010 38.18
## 18 2012 35.50
## 19 2014 35.03
class(plotdifs1data1$year)
## [1] "numeric"
ggplot()+
  geom_line(data = plotdifs1data1, aes(x = year, y = prop/100), color = "green")+
  labs(title = "Belief that Discrimination Is Main Factor Behind Racial Inequality, 1977-2014", x = "Decades", y = "Proportion in Support")

plotdifs2data <- data.frame(difs2prop_table)%>%
  filter(racdif22 == 1)
plotdifs2data
##    year racdif22  Freq
## 1  1977        1 26.21
## 2  1985        1 21.61
## 3  1986        1 20.55
## 4  1988        1 19.45
## 5  1989        1 19.26
## 6  1990        1 18.53
## 7  1991        1 14.62
## 8  1993        1 13.25
## 9  1994        1 13.78
## 10 1996        1 10.34
## 11 1998        1 10.16
## 12 2000        1 12.60
## 13 2002        1 12.27
## 14 2004        1  8.89
## 15 2006        1  9.09
## 16 2008        1 10.98
## 17 2010        1 10.60
## 18 2012        1  9.99
## 19 2014        1  8.77
plotdifs2data1 <- data.frame(year = plotdifs2data$year, prop = plotdifs2data$Freq)%>%
  #mutate_at(vars(year), funs(as.double))
  mutate_at(vars(year), funs(as.character.factor))%>%
  mutate_at(vars(year), funs(as.double))
#as.numeric(levels(f))[f]
plotdifs2data1
##    year  prop
## 1  1977 26.21
## 2  1985 21.61
## 3  1986 20.55
## 4  1988 19.45
## 5  1989 19.26
## 6  1990 18.53
## 7  1991 14.62
## 8  1993 13.25
## 9  1994 13.78
## 10 1996 10.34
## 11 1998 10.16
## 12 2000 12.60
## 13 2002 12.27
## 14 2004  8.89
## 15 2006  9.09
## 16 2008 10.98
## 17 2010 10.60
## 18 2012  9.99
## 19 2014  8.77
class(plotdifs2data1$year)
## [1] "numeric"
ggplot()+
  geom_line(data = plotdifs2data1, aes(x = year, y = prop/100), color = "orange")+
  labs(title = "Belief that Inborn Disability is Main Factor Behind Racial Inequality, 1977-2014", x = "Decades", y = "Proportion in Support")

Belief that discrimination is the main factor behind racial inequality has overall lowered between 1977 to 2014, but not as steadily as the belief that inborn-ability to learn is the main factor behind racial inequality. Rather, the belief that discrimination is the main cause experienced a spike every decade. Still, this is surprising since I believed that the two graphs would look like reverses of each other as the belief that discrimination is the main factor overtook the belief that inborn-ability is the main factor.

However, taking Bonillo-Silva’s work into account, this can be an indicator of how while overt or explicit racism, such as the belief that Blacks have less inborn-ability to learn may have died down, there is now a deracializing of race-related issues. The fact that fewer Americans understand discrimination to be a factor behind racial inequality shows this, as they may believe that we are in a “post-racial America”

ggplot()+
  geom_line(data = plotdifs1data1, aes(x = year, y = prop/100), color = "darkred")+
  geom_line(data = plotdifs2data1, aes(x = year, y = prop/100), color = "steelblue")+
  labs(title = "Trends in What Main Factor Behind Racial Inequality Is Believed to Be", x = "Decades", y = "Proportion in Support")

combdifsplot <- data.frame(year = plotdifs1data1$year, Discrimination = plotdifs1data1$prop, Inborn_Ability = plotdifs2data1$prop)
ggplot(data = combdifsplot)+
  geom_line(aes(x = year, y = Discrimination))+
  geom_line(aes(x = year, y = Inborn_Ability))

Have thye become less racist in the last decades, and more or less supportive of policies that might address racial inequality?

Have Americans become more or less racist

Variables chosen: racmar, racdif2

More or less supportive of policies aimed at addressing racial inequality?

helpdata<- data%>% select(year, helpblk2, helppoor2)
helpblkdata<-helpdata%>%select(year, helpblk2)
helpblkdata = na.omit(helpblkdata)
helpblkprop_table<-(sjmisc::flat_table(helpblkdata, year, helpblk2, margin = "row"))
#helpblkprop_table%>%
 # filter(helpblk2 > 3)
#difs2prop_table<-sjmisc::flat_table(difsdata, year, racdif22, margin = "row")
#difs2prop_table
helpblkprop_table
##      helpblk2     1     2     3     4     5
## year                                       
## 1975          40.88 12.36 21.48  8.70 16.57
## 1983          34.53 21.10 26.61  9.90  7.86
## 1984          31.38 17.73 31.38  9.79  9.72
## 1986          34.13 18.22 29.43  9.81  8.41
## 1987          27.48 15.81 29.41 11.56 15.75
## 1988          34.58 17.86 29.60 10.28  7.68
## 1989          34.30 19.06 27.88  9.73  9.03
## 1990          28.27 16.63 34.16 10.43 10.51
## 1991          26.91 19.27 31.70 11.52 10.60
## 1993          28.43 21.27 32.65 10.29  7.35
## 1994          29.95 23.97 30.10  7.53  8.45
## 1996          29.10 23.92 29.81  8.80  8.37
## 1998          28.68 21.76 32.22 10.58  6.76
## 2000          27.33 20.06 33.22  9.61  9.78
## 2002          31.80 19.89 31.69  8.09  8.54
## 2004          34.34 18.39 32.36  7.22  7.68
## 2006          29.00 18.74 33.98  7.55 10.73
## 2008          29.28 19.34 33.64  8.18  9.56
## 2010          31.16 20.12 30.64  8.70  9.38
## 2012          34.87 18.02 30.73  9.13  7.25
## 2014          32.61 18.06 31.13  8.94  9.25
(plothelpblkdata<-data.frame(helpblkprop_table))
##     year helpblk2  Freq
## 1   1975        1 40.88
## 2   1983        1 34.53
## 3   1984        1 31.38
## 4   1986        1 34.13
## 5   1987        1 27.48
## 6   1988        1 34.58
## 7   1989        1 34.30
## 8   1990        1 28.27
## 9   1991        1 26.91
## 10  1993        1 28.43
## 11  1994        1 29.95
## 12  1996        1 29.10
## 13  1998        1 28.68
## 14  2000        1 27.33
## 15  2002        1 31.80
## 16  2004        1 34.34
## 17  2006        1 29.00
## 18  2008        1 29.28
## 19  2010        1 31.16
## 20  2012        1 34.87
## 21  2014        1 32.61
## 22  1975        2 12.36
## 23  1983        2 21.10
## 24  1984        2 17.73
## 25  1986        2 18.22
## 26  1987        2 15.81
## 27  1988        2 17.86
## 28  1989        2 19.06
## 29  1990        2 16.63
## 30  1991        2 19.27
## 31  1993        2 21.27
## 32  1994        2 23.97
## 33  1996        2 23.92
## 34  1998        2 21.76
## 35  2000        2 20.06
## 36  2002        2 19.89
## 37  2004        2 18.39
## 38  2006        2 18.74
## 39  2008        2 19.34
## 40  2010        2 20.12
## 41  2012        2 18.02
## 42  2014        2 18.06
## 43  1975        3 21.48
## 44  1983        3 26.61
## 45  1984        3 31.38
## 46  1986        3 29.43
## 47  1987        3 29.41
## 48  1988        3 29.60
## 49  1989        3 27.88
## 50  1990        3 34.16
## 51  1991        3 31.70
## 52  1993        3 32.65
## 53  1994        3 30.10
## 54  1996        3 29.81
## 55  1998        3 32.22
## 56  2000        3 33.22
## 57  2002        3 31.69
## 58  2004        3 32.36
## 59  2006        3 33.98
## 60  2008        3 33.64
## 61  2010        3 30.64
## 62  2012        3 30.73
## 63  2014        3 31.13
## 64  1975        4  8.70
## 65  1983        4  9.90
## 66  1984        4  9.79
## 67  1986        4  9.81
## 68  1987        4 11.56
## 69  1988        4 10.28
## 70  1989        4  9.73
## 71  1990        4 10.43
## 72  1991        4 11.52
## 73  1993        4 10.29
## 74  1994        4  7.53
## 75  1996        4  8.80
## 76  1998        4 10.58
## 77  2000        4  9.61
## 78  2002        4  8.09
## 79  2004        4  7.22
## 80  2006        4  7.55
## 81  2008        4  8.18
## 82  2010        4  8.70
## 83  2012        4  9.13
## 84  2014        4  8.94
## 85  1975        5 16.57
## 86  1983        5  7.86
## 87  1984        5  9.72
## 88  1986        5  8.41
## 89  1987        5 15.75
## 90  1988        5  7.68
## 91  1989        5  9.03
## 92  1990        5 10.51
## 93  1991        5 10.60
## 94  1993        5  7.35
## 95  1994        5  8.45
## 96  1996        5  8.37
## 97  1998        5  6.76
## 98  2000        5  9.78
## 99  2002        5  8.54
## 100 2004        5  7.68
## 101 2006        5 10.73
## 102 2008        5  9.56
## 103 2010        5  9.38
## 104 2012        5  7.25
## 105 2014        5  9.25
plothelpblk <- plothelpblkdata%>%
  mutate(helpblk2 = as.integer(helpblk2))%>%
  mutate_at(vars(year), funs(as.character.factor))%>%
  filter(helpblk2 > 3)%>%
  #mutate(support = (helpblk2 > 3))%>%
  group_by(year)%>%
  summarize(proportion = sum(Freq))
plothelpblk
## # A tibble: 21 x 2
##    year  proportion
##  * <chr>      <dbl>
##  1 1975        25.3
##  2 1983        17.8
##  3 1984        19.5
##  4 1986        18.2
##  5 1987        27.3
##  6 1988        18.0
##  7 1989        18.8
##  8 1990        20.9
##  9 1991        22.1
## 10 1993        17.6
## # … with 11 more rows
plothelpblk %>% 
  ggplot(aes(x = as.integer(year), y= proportion))+
  geom_line(color= "red")+ 
  labs(title = "Trend in Supporting Policies to Help Blacks", x = "Year", y = "Proportion")

helppoordata<-helpdata%>%select(year, helppoor2)
helppoordata = na.omit(helppoordata)
helppoorprop_table<-(sjmisc::flat_table(helppoordata, year, helppoor2, margin = "row"))
helppoorprop_table
##      helppoor2     1     2     3     4     5
## year                                        
## 1975           13.40 10.70 35.77 10.15 29.97
## 1983           11.76 14.05 41.24 15.42 17.52
## 1984            8.73 14.69 47.27 11.36 17.96
## 1986           10.98 11.75 45.94 12.66 18.67
## 1987            9.93 12.20 42.96 12.49 22.42
## 1988           11.74 12.15 45.42 13.08 17.61
## 1989            8.91 14.11 44.54 15.42 17.02
## 1990            8.57 12.69 44.23 15.31 19.20
## 1991            8.33 13.41 44.21 16.67 17.38
## 1993           10.60 14.11 48.74 13.81 12.74
## 1994           11.96 16.39 44.85 13.81 12.99
## 1996           11.02 16.05 47.06 12.48 13.40
## 1998           12.48 17.15 44.38 13.02 12.97
## 2000           12.46 16.96 43.14 13.01 14.43
## 2002           11.71 12.95 47.30 10.70 17.34
## 2004           11.10 14.34 47.40 10.06 17.11
## 2006           10.67 13.33 46.73 10.42 18.85
## 2008           10.73 14.03 42.61 12.60 20.03
## 2010           12.54 14.78 44.55 11.27 16.87
## 2012           13.60 13.99 44.82 11.21 16.38
## 2014           13.37 14.71 42.43 12.82 16.67
plothelppoordata<-data.frame(helppoorprop_table)
plothelppoor <- plothelppoordata%>%
  mutate(helppoor2 = as.integer(helppoor2))%>%
  mutate_at(vars(year), funs(as.character.factor))%>%
  mutate(decade = ifelse(year >= 1970 & year < 1980, 1970,
         ifelse(year >= 1980 & year < 1990, 1980,
         ifelse(year >= 1990 & year < 2000, 1990,
         ifelse(year >= 2000 & year < 2010, 2000, year)))))%>%
  filter(helppoor2 != 3)%>%
  mutate(support = (helppoor2 > 3))%>%
  group_by(decade,support)%>%
  summarize(proportion = sum(Freq))
## `summarise()` has grouped output by 'decade'. You can override using the `.groups` argument.
plothelppoor
## # A tibble: 14 x 3
## # Groups:   decade [7]
##    decade support proportion
##    <chr>  <lgl>        <dbl>
##  1 1970   FALSE         24.1
##  2 1970   TRUE          40.1
##  3 1980   FALSE        141  
##  4 1980   TRUE         192. 
##  5 1990   FALSE        153. 
##  6 1990   TRUE         174. 
##  7 2000   FALSE        128. 
##  8 2000   TRUE         145. 
##  9 2010   FALSE         27.3
## 10 2010   TRUE          28.1
## 11 2012   FALSE         27.6
## 12 2012   TRUE          27.6
## 13 2014   FALSE         28.1
## 14 2014   TRUE          29.5
plothelppoor %>% 
  ggplot(aes(x = as.integer(decade), y= proportion/100, group = support, color = support))+
  geom_line()+ 
  labs(title = "Trend in Supporting Policies to Help Poor", x = "Year", y = "Proportion of Population")

plothelppoordata<-data.frame(helppoorprop_table)
plothelppoor <- plothelppoordata%>%
  mutate(helppoor2 = as.integer(helppoor2))%>%
  mutate_at(vars(year), funs(as.character.factor))%>%
  filter(helppoor2 != 3)%>%
  mutate(support = (helppoor2 > 3))%>%
  group_by(year,support)%>%
  summarize(proportion = sum(Freq))
## `summarise()` has grouped output by 'year'. You can override using the `.groups` argument.
plothelppoor
## # A tibble: 42 x 3
## # Groups:   year [21]
##    year  support proportion
##    <chr> <lgl>        <dbl>
##  1 1975  FALSE         24.1
##  2 1975  TRUE          40.1
##  3 1983  FALSE         25.8
##  4 1983  TRUE          32.9
##  5 1984  FALSE         23.4
##  6 1984  TRUE          29.3
##  7 1986  FALSE         22.7
##  8 1986  TRUE          31.3
##  9 1987  FALSE         22.1
## 10 1987  TRUE          34.9
## # … with 32 more rows
plothelppoor %>% 
  ggplot(aes(x = as.integer(year), y= proportion/100, group = support, color = support))+
  geom_line()+ 
  labs(title = "Trend in Supporting Policies to Help Poor", x = "Year", y = "Proportion of Population")

plothelppoordata<-data.frame(helppoorprop_table)
plothelppoor <- plothelppoordata%>%
  mutate(helppoor2 = as.integer(helppoor2))%>%
  mutate_at(vars(year), funs(as.character.factor))%>%
  filter(helppoor2 > 3)%>%
  group_by(year)%>%
  summarize(proportion = sum(Freq))
plothelppoor
## # A tibble: 21 x 2
##    year  proportion
##  * <chr>      <dbl>
##  1 1975        40.1
##  2 1983        32.9
##  3 1984        29.3
##  4 1986        31.3
##  5 1987        34.9
##  6 1988        30.7
##  7 1989        32.4
##  8 1990        34.5
##  9 1991        34.0
## 10 1993        26.6
## # … with 11 more rows
plothelppoor %>% 
  ggplot(aes(x = as.integer(year), y= proportion/100))+
  geom_line(color = "steelblue")+ 
  labs(title = "Trends in Supporting Policies to Help Poor", x = "Year", y = "Proportion of Population")

ggplot(color = data)+
  geom_line(data = plothelppoor, aes(x = as.integer(year), y = proportion/100), color = "steelblue")+
  geom_line(data = plothelpblk, aes(x = as.integer(year), y = proportion/100), color = "darkred")+
  labs(title = "Trends in Supporting Policies to Help Poor vs. Blacks, 1975 - 2014", x = "Decades", y = "Proportion in Support")

The divide has remained the same.

ggplot(color = data)+
  geom_line(data = plotdifs1data1, aes(x = year, y = prop/100), color = "green")+
  geom_line(data = plothelpblk, aes(x = as.integer(year), y = proportion/100), color = "darkred")+
  labs(title = "Belief in Discrimination vs Support for Policies to Help Blacks", x = "Decades", y = "Proportion in Support")

%>% mutate(decade = ifelse(year >= 1970 & year < 1980, 1970, ifelse(year >= 1980 & year < 1990, 1980, ifelse(year >= 1990 & year < 2000, 1990, ifelse(year >= 2000 & year < 2010, 2000, year)))))

variables: helppoor, helpblk, Traditional anti-black sentiment changed over time?

Attitudes towards structural barriers as the root bases of racial inequality changed over time?

racdif1 vs racdif2, helpblks

helppoor vs helpblk over time