library(eurostat)
library(tidyverse)
library(tmap)
library(sf)
library(DT)
# Load GDP
gdp <- get_eurostat("nama_10r_2gdp")
emp <- get_eurostat("nama_10r_3empers")
NUTS2016 <- readxl::read_xlsx("NUTS2016.xlsx") %>%
filter(NUTS!="3") %>%
mutate_if(is.character,as.factor) %>%
mutate(NUTS=as.factor(NUTS)) %>%
filter(!Country %in% c("UK","IS","NO","CH","LI","ME","MK","RS","TR","AL"))
gdpw <- gdp %>%
filter(time=="2019-01-01" &
unit=="MIO_PPS_EU27_2020" ) %>%
rename (gdp= values) %>%
select(-time, -unit)
empw <- emp %>%
filter(time=="2019-01-01" &
nace_r2=="TOTAL"&
wstatus=="EMP") %>%
rename (emp= values) %>%
select(-time, -unit, -nace_r2, -wstatus)
df<- left_join(gdpw, empw)
df<- left_join(df, NUTS2016) %>%
mutate(gdp_emp=gdp*1000/emp,
gdp_emp_eu=gdp_emp*100/gdp_emp[geo=="EU27_2020"]) %>%
mutate(gdp_emp=round(gdp_emp, digits = -2),
gdp_emp_eu=round(gdp_emp_eu, digits= 0)) %>%
filter(label!="Extra-regio")
GDP per person employed in PPS in 2019, EU27=100
datatable(df, filter = "top", class = "stripe hover", extensions = "Buttons",
options = list( lengthMenu = list(c(20,50,200, -1), c("20","50","200", "All")),
pageLength = 50, autoWidth = TRUE, dom = "Blfrtip", buttons = c("excel")),
rownames= FALSE
)
load(file="nuts_map.Rdata")
sf<- left_join (nuts, df)
sf<- sf %>%
filter(!CNTR_CODE %in% c("UK","IS","NO","CH","LI"))
tmap_mode("view")
sf %>% filter(LEVL_CODE=="2" ) %>%
tm_shape() +
tm_fill("gdp_emp_eu", popup.vars = c("gdp_emp","gdp_emp_eu","NUTS_ID","NUTS_NAME"), palette="RdBu", style="fixed", breaks = c(36,65,80,100,120,256), title="GDP per person empployed in PPS as % EU average, 2019")+
tm_borders()