matrix( c(4,3,6,3,6,5,9,7,9,2,2,0), nrow = 4, ncol = 3 )
## [,1] [,2] [,3]
## [1,] 4 6 9
## [2,] 3 5 2
## [3,] 6 9 2
## [4,] 3 7 0
data.frame(cbind( mm=c(10.3,15.8,14.6,18.5,12.4,13.6),trat=c(rep(c('a','b'),c(3,3))),grupo=c(rep(c('1','2','3'),c(2,2,2))))) -> A
A
## mm trat grupo
## 1 10.3 a 1
## 2 15.8 a 1
## 3 14.6 a 2
## 4 18.5 b 2
## 5 12.4 b 3
## 6 13.6 b 3
data.frame( cbind(trat =c(rep(c('a','b'),c(20,10))), grupo=c(rep(c('A','B','C','D','E','F'),rep(5,6)) ) ) ) -> B
B
## trat grupo
## 1 a A
## 2 a A
## 3 a A
## 4 a A
## 5 a A
## 6 a B
## 7 a B
## 8 a B
## 9 a B
## 10 a B
## 11 a C
## 12 a C
## 13 a C
## 14 a C
## 15 a C
## 16 a D
## 17 a D
## 18 a D
## 19 a D
## 20 a D
## 21 b E
## 22 b E
## 23 b E
## 24 b E
## 25 b E
## 26 b F
## 27 b F
## 28 b F
## 29 b F
## 30 b F
c("2", "3")
## [1] "2" "3"
c(2, 3)
## [1] 2 3
c("aa", "bb")
## [1] "aa" "bb"
rep(5,4)
## [1] 5 5 5 5
matrix( c(4,3,6,3,6,5,9,7,9,2,2,0), nrow = 4, ncol = 3 )
## [,1] [,2] [,3]
## [1,] 4 6 9
## [2,] 3 5 2
## [3,] 6 9 2
## [4,] 3 7 0
m1 <- matrix( c(4,3,6,3,6,5,9,7,9,2,2,0), nrow = 4, ncol = 3 )
m1
## [,1] [,2] [,3]
## [1,] 4 6 9
## [2,] 3 5 2
## [3,] 6 9 2
## [4,] 3 7 0
matrix( c(4,3,6,3,6,5,9,7,9,2,2,0), nrow = 4, ncol = 3)
## [,1] [,2] [,3]
## [1,] 4 6 9
## [2,] 3 5 2
## [3,] 6 9 2
## [4,] 3 7 0
mtcars
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
mtcars
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
tail(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.7 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.5 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.5 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.6 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.6 1 1 4 2
head(mtcars, 3)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
mtcars[3,]
## mpg cyl disp hp drat wt qsec vs am gear carb
## Datsun 710 22.8 4 108 93 3.85 2.32 18.61 1 1 4 1
head(mtcars, 5)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
tail(mtcars, 3)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Ferrari Dino 19.7 6 145 175 3.62 2.77 15.5 0 1 5 6
## Maserati Bora 15.0 8 301 335 3.54 3.57 14.6 0 1 5 8
## Volvo 142E 21.4 4 121 109 4.11 2.78 18.6 1 1 4 2
mtcars[ c("mpg","cyl" ) ]
## mpg cyl
## Mazda RX4 21.0 6
## Mazda RX4 Wag 21.0 6
## Datsun 710 22.8 4
## Hornet 4 Drive 21.4 6
## Hornet Sportabout 18.7 8
## Valiant 18.1 6
## Duster 360 14.3 8
## Merc 240D 24.4 4
## Merc 230 22.8 4
## Merc 280 19.2 6
## Merc 280C 17.8 6
## Merc 450SE 16.4 8
## Merc 450SL 17.3 8
## Merc 450SLC 15.2 8
## Cadillac Fleetwood 10.4 8
## Lincoln Continental 10.4 8
## Chrysler Imperial 14.7 8
## Fiat 128 32.4 4
## Honda Civic 30.4 4
## Toyota Corolla 33.9 4
## Toyota Corona 21.5 4
## Dodge Challenger 15.5 8
## AMC Javelin 15.2 8
## Camaro Z28 13.3 8
## Pontiac Firebird 19.2 8
## Fiat X1-9 27.3 4
## Porsche 914-2 26.0 4
## Lotus Europa 30.4 4
## Ford Pantera L 15.8 8
## Ferrari Dino 19.7 6
## Maserati Bora 15.0 8
## Volvo 142E 21.4 4
mtcars[ c(1:4) ]
## mpg cyl disp hp
## Mazda RX4 21.0 6 160.0 110
## Mazda RX4 Wag 21.0 6 160.0 110
## Datsun 710 22.8 4 108.0 93
## Hornet 4 Drive 21.4 6 258.0 110
## Hornet Sportabout 18.7 8 360.0 175
## Valiant 18.1 6 225.0 105
## Duster 360 14.3 8 360.0 245
## Merc 240D 24.4 4 146.7 62
## Merc 230 22.8 4 140.8 95
## Merc 280 19.2 6 167.6 123
## Merc 280C 17.8 6 167.6 123
## Merc 450SE 16.4 8 275.8 180
## Merc 450SL 17.3 8 275.8 180
## Merc 450SLC 15.2 8 275.8 180
## Cadillac Fleetwood 10.4 8 472.0 205
## Lincoln Continental 10.4 8 460.0 215
## Chrysler Imperial 14.7 8 440.0 230
## Fiat 128 32.4 4 78.7 66
## Honda Civic 30.4 4 75.7 52
## Toyota Corolla 33.9 4 71.1 65
## Toyota Corona 21.5 4 120.1 97
## Dodge Challenger 15.5 8 318.0 150
## AMC Javelin 15.2 8 304.0 150
## Camaro Z28 13.3 8 350.0 245
## Pontiac Firebird 19.2 8 400.0 175
## Fiat X1-9 27.3 4 79.0 66
## Porsche 914-2 26.0 4 120.3 91
## Lotus Europa 30.4 4 95.1 113
## Ford Pantera L 15.8 8 351.0 264
## Ferrari Dino 19.7 6 145.0 175
## Maserati Bora 15.0 8 301.0 335
## Volvo 142E 21.4 4 121.0 109
mtcars["Valiant", ]
## mpg cyl disp hp drat wt qsec vs am gear carb
## Valiant 18.1 6 225 105 2.76 3.46 20.22 1 0 3 1
mtcars[5, ]
## mpg cyl disp hp drat wt qsec vs am gear carb
## Hornet Sportabout 18.7 8 360 175 3.15 3.44 17.02 0 0 3 2
head(mtcars,5)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
mtcars$am == 0
## [1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [13] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
## [25] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
L <- mtcars$am == 0
mtcars[L,]
## mpg cyl disp hp drat wt qsec vs am gear carb
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
mtcars[L,]$mpg
## [1] 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.4 10.4 14.7 21.5
## [16] 15.5 15.2 13.3 19.2
read.table("db1.txt")
## V1 V2 V3
## 1 Col1 Col2 Col3
## 2 100 a1 b1
## 3 200 a2 b2
## 4 300 a3 b3
getwd()
## [1] "C:/Users/fvill/Dropbox/1. MCA_USAC/cursosLibres/2020/Clases_C.Act_FMVZ"
read.table("db1.txt", sep = ",")
## V1
## 1 Col1 Col2 Col3
## 2 100 a1 b1
## 3 200 a2 b2
## 4 300 a3 b3
read.table("db1.txt", sep = ",", header = TRUE)
## Col1.Col2.Col3
## 1 100 a1 b1
## 2 200 a2 b2
## 3 300 a3 b3
install.packages("readxl")
install.packages("googlesheets4")
Este comando es cuando no se conoce el nombre exacto del archivo
library(readxl)
read_excel( file.choose(), sheet = 1 )
library(readxl)
read_excel("RPrin_Ejercicio.xlsx", sheet = 1 )
## # A tibble: 19 x 2
## estat SEXO
## <dbl> <chr>
## 1 1.6 f
## 2 1.72 f
## 3 1.62 f
## 4 1.58 f
## 5 1.63 f
## 6 1.63 f
## 7 1.56 f
## 8 1.7 m
## 9 1.75 m
## 10 1.65 m
## 11 1.8 m
## 12 1.76 m
## 13 1.67 m
## 14 1.68 m
## 15 1.76 m
## 16 1.66 m
## 17 1.77 m
## 18 1.69 m
## 19 1.75 m
estatura <- read_excel("RPrin_Ejercicio.xlsx", sheet = 1 )
estatura
## # A tibble: 19 x 2
## estat SEXO
## <dbl> <chr>
## 1 1.6 f
## 2 1.72 f
## 3 1.62 f
## 4 1.58 f
## 5 1.63 f
## 6 1.63 f
## 7 1.56 f
## 8 1.7 m
## 9 1.75 m
## 10 1.65 m
## 11 1.8 m
## 12 1.76 m
## 13 1.67 m
## 14 1.68 m
## 15 1.76 m
## 16 1.66 m
## 17 1.77 m
## 18 1.69 m
## 19 1.75 m
read_excel("RPrin_Ejercicio.xlsx", sheet = 2 )
## # A tibble: 12 x 2
## growth coat
## <dbl> <chr>
## 1 6.6 light
## 2 7.2 light
## 3 6.9 light
## 4 8.3 light
## 5 7.9 light
## 6 9.2 light
## 7 8.3 dark
## 8 8.7 dark
## 9 8.1 dark
## 10 8.5 dark
## 11 9.1 dark
## 12 9 dark
growth <- read_excel("RPrin_Ejercicio.xlsx", sheet = 2 )
growth
## # A tibble: 12 x 2
## growth coat
## <dbl> <chr>
## 1 6.6 light
## 2 7.2 light
## 3 6.9 light
## 4 8.3 light
## 5 7.9 light
## 6 9.2 light
## 7 8.3 dark
## 8 8.7 dark
## 9 8.1 dark
## 10 8.5 dark
## 11 9.1 dark
## 12 9 dark
library(googlesheets4); gs4_deauth()
ss= "https://docs.google.com/spreadsheets/d/1wUXi0p-RYqpfqxSK_EM_9OPwq0UGlAa8QUJUYxYmkh0/edit?usp=sharing"
hoja="Hoja1"
rango="A3:J471"
dog <- read_sheet(ss,
sheet=hoja,
range=rango,
col_names = TRUE,
col_types = NULL,
na= "NA")
## Reading from "Perros_Bdatos"
## Range "'Hoja1'!A3:J471"
head(dog)
## # A tibble: 6 x 10
## code comm region sex age.m age_cat orig Rab_Vac time.having func
## <dbl> <chr> <chr> <chr> <dbl> <chr> <chr> <dbl> <dbl> <chr>
## 1 5946 D A m 4 1.pup 1.Local 1 0.5 G
## 2 221 D A m 6 juv Immig 0 6 GT
## 3 221 D A m 12 adult 1.Local 1 12 G
## 4 221 D A h 12 adult 1.Local 1 12 G
## 5 221 D A h 24 adult Immig 1 24 G
## 6 5158 D A m 8 juv 1.Local 0 8 GT
tail(dog)
## # A tibble: 6 x 10
## code comm region sex age.m age_cat orig Rab_Vac time.having func
## <dbl> <chr> <chr> <chr> <dbl> <chr> <chr> <dbl> <dbl> <chr>
## 1 7793 B B h 36 adult Immig 1 36 G
## 2 8399 F B m 24 adult 1.Local 1 24 G
## 3 8399 F B h 36 adult 1.Local NA 6 G
## 4 539 F B h 1 1.pup 1.Local 0 1 <NA>
## 5 539 F B m 1 1.pup 1.Local 0 1 <NA>
## 6 4497 B B h 6 juv Immig NA 0.25 G
dim(dog)
## [1] 468 10
str(dog)
## tibble [468 x 10] (S3: tbl_df/tbl/data.frame)
## $ code : num [1:468] 5946 221 221 221 221 ...
## $ comm : chr [1:468] "D" "D" "D" "D" ...
## $ region : chr [1:468] "A" "A" "A" "A" ...
## $ sex : chr [1:468] "m" "m" "m" "h" ...
## $ age.m : num [1:468] 4 6 12 12 24 8 48 12 12 12 ...
## $ age_cat : chr [1:468] "1.pup" "juv" "adult" "adult" ...
## $ orig : chr [1:468] "1.Local" "Immig" "1.Local" "1.Local" ...
## $ Rab_Vac : num [1:468] 1 0 1 1 1 0 1 1 1 1 ...
## $ time.having: num [1:468] 0.5 6 12 12 24 8 48 12 12 12 ...
## $ func : chr [1:468] "G" "GT" "G" "G" ...
getwd()
## [1] "C:/Users/fvill/Dropbox/1. MCA_USAC/cursosLibres/2020/Clases_C.Act_FMVZ"
read.table("db1.txt")
## V1 V2 V3
## 1 Col1 Col2 Col3
## 2 100 a1 b1
## 3 200 a2 b2
## 4 300 a3 b3
read.table("db1.txt", header=TRUE)
## Col1 Col2 Col3
## 1 100 a1 b1
## 2 200 a2 b2
## 3 300 a3 b3
read.table("db1.txt", header=TRUE, sep=",")
## Col1.Col2.Col3
## 1 100 a1 b1
## 2 200 a2 b2
## 3 300 a3 b3
read.table("clipboard", header = TRUE)
## Warning in read.table("clipboard", header = TRUE): incomplete final line found
## by readTableHeader on 'clipboard'
## [1] install.packages..googlesheets4..
## <0 rows> (or 0-length row.names)
read.table("clipboard", header = TRUE)
## Warning in read.table("clipboard", header = TRUE): incomplete final line found
## by readTableHeader on 'clipboard'
## [1] install.packages..googlesheets4..
## <0 rows> (or 0-length row.names)
read.table("db1.txt", header=TRUE, sep="")
## Col1 Col2 Col3
## 1 100 a1 b1
## 2 200 a2 b2
## 3 300 a3 b3
getwd()
## [1] "C:/Users/fvill/Dropbox/1. MCA_USAC/cursosLibres/2020/Clases_C.Act_FMVZ"