Sebelum kita mencari data penerbangan di bawah ini. Mari Kita Install dulu Libary nya

library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.3     v purrr   0.3.4
## v tibble  3.0.6     v dplyr   1.0.4
## v tidyr   1.1.2     v stringr 1.4.0
## v readr   1.4.0     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(nycflights13)
library(tidyverse)

Kita Cari data penerbangannya

flights
## # A tibble: 336,776 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1      517            515         2      830            819
##  2  2013     1     1      533            529         4      850            830
##  3  2013     1     1      542            540         2      923            850
##  4  2013     1     1      544            545        -1     1004           1022
##  5  2013     1     1      554            600        -6      812            837
##  6  2013     1     1      554            558        -4      740            728
##  7  2013     1     1      555            600        -5      913            854
##  8  2013     1     1      557            600        -3      709            723
##  9  2013     1     1      557            600        -3      838            846
## 10  2013     1     1      558            600        -2      753            745
## # ... with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
#> # A tibble: 336,776 x 19
#>    year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
#>   <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
#> 1  2013     1     1      517            515         2      830            819
#> 2  2013     1     1      533            529         4      850            830
#> 3  2013     1     1      542            540         2      923            850
#> 4  2013     1     1      544            545        -1     1004           1022
#> 5  2013     1     1      554            600        -6      812            837
#> 6  2013     1     1      554            558        -4      740            728
#> # . with 336,770 more rows, and 11 more variables: arr_delay <dbl>,
#> #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
#> #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

Jika sudah muncul data penerbangan di atas.

sekarang mengurutkan penerbangan untuk menemukan penerbangan yang paling terlambat. Temukan penerbangan yang berangkat paling awal.

arrange(flights, desc(dep_time))
## # A tibble: 336,776 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013    10    30     2400           2359         1      327            337
##  2  2013    11    27     2400           2359         1      515            445
##  3  2013    12     5     2400           2359         1      427            440
##  4  2013    12     9     2400           2359         1      432            440
##  5  2013    12     9     2400           2250        70       59           2356
##  6  2013    12    13     2400           2359         1      432            440
##  7  2013    12    19     2400           2359         1      434            440
##  8  2013    12    29     2400           1700       420      302           2025
##  9  2013     2     7     2400           2359         1      432            436
## 10  2013     2     7     2400           2359         1      443            444
## # ... with 336,766 more rows, and 11 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

Penerbangan mana yang bepergian paling jauh?

select(flights, dep_time, dep_delay, arr_time, arr_delay, origin, dest, hour, minute, time_hour, air_time)
## # A tibble: 336,776 x 10
##    dep_time dep_delay arr_time arr_delay origin dest   hour minute
##       <int>     <dbl>    <int>     <dbl> <chr>  <chr> <dbl>  <dbl>
##  1      517         2      830        11 EWR    IAH       5     15
##  2      533         4      850        20 LGA    IAH       5     29
##  3      542         2      923        33 JFK    MIA       5     40
##  4      544        -1     1004       -18 JFK    BQN       5     45
##  5      554        -6      812       -25 LGA    ATL       6      0
##  6      554        -4      740        12 EWR    ORD       5     58
##  7      555        -5      913        19 EWR    FLL       6      0
##  8      557        -3      709       -14 LGA    IAD       6      0
##  9      557        -3      838        -8 JFK    MCO       6      0
## 10      558        -2      753         8 LGA    ORD       6      0
## # ... with 336,766 more rows, and 2 more variables: time_hour <dttm>,
## #   air_time <dbl>
filter(flights, hour >=23)
## # A tibble: 1,061 x 19
##     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
##    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
##  1  2013     1     1     2353           2359        -6      425            445
##  2  2013     1     1     2353           2359        -6      418            442
##  3  2013     1     1     2356           2359        -3      425            437
##  4  2013     1     2       42           2359        43      518            442
##  5  2013     1     2     2351           2359        -8      427            445
##  6  2013     1     2     2354           2359        -5      413            437
##  7  2013     1     3       32           2359        33      504            442
##  8  2013     1     3      235           2359       156      700            437
##  9  2013     1     3     2349           2359       -10      434            445
## 10  2013     1     4       25           2359        26      505            442
## # ... with 1,051 more rows, and 11 more variables: arr_delay <dbl>,
## #   carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,
## #   air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>