Code:
plot(x, y = NULL, type = "p", xlim = NULL, ylim = NULL,
log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
ann = par("ann"), axes = TRUE, frame.plot = axes,
panel.first = NULL, panel.last = NULL, asp = NA,
xgap.axis = NA, ygap.axis = NA,
...)
curve(expr, from, to, n = 101, add = FALSE, type = “l”, ylab = NULL, log = NULL, …)
Example(plot): plot \(y=x^3-3x\) and \(y=x^2-2\) in the same graph for \(x \in [-2,2]\)
x=seq(-2,2,by=0.01)
f=function(x){x^(3)-3*x}
f_2=function(x){x^2-2}
plot(x,f(x),type="l")
lines(x,f_2(x),type="l",col="red")
#par(mfrow=c(2,2)) # combining plots create a 2*2
curve(x^3-3*x, -2, 2)
curve(x^2-2, add = TRUE, col = "red")
Standard Form in matrix form: \[\begin{equation} \begin{split} \max \ C^Tx\\ s.t.\ \ Ax\le b\\ \ \ \ \ 0 \le x \end{split} \end{equation}\] Standard Form in scalar form: \[\begin{equation} \begin{split} \max \ c_1x_1+c_2x_2+...+c_nx_n&\\ s.t.\ \ a_{11}x_1+a_{12}x_2+.&..+a_{1n}x_n\le b_1\\ \ \ \ \ a_{21}x_1+a_{22}x_2+.&..+a_{2n}x_n\le b_2\\ &\vdots \\ \ \ \ \ a_{m1}x_1+a_{m2}x_2+.&..+a_{mn}x_n\le b_m\\ \ \ \ \ x_1,x_2,.&..,x_n \ge 0 \end{split} \end{equation}\] DUAL Form of LP problem:
The shadow prices solve another linear program, called the dual. If we have a standard form: \[\begin{equation} \begin{split} \max \ C^Tx\\ s.t.\ \ Ax\le b\\ \ \ \ \ 0 \le x \end{split} \end{equation}\] The corresponding DUAL form can be found as: \[\begin{equation} \begin{split} \min \ B^Ty\\ s.t.\ \ A^Ty\ge c\\ \ \ \ \ 0 \le y \end{split} \end{equation}\] In which, the decision variable y called the dual variables. Each decision variable in the primal problem corresponds to a constraint in the dual problem, and each constraint in the primal problem corresponds to a variable in the dual problem.
Code:
lp (direction = "min", objective.in, const.mat, const.dir, const.rhs,
transpose.constraints = TRUE, int.vec, presolve=0, compute.sens=0,
binary.vec, all.int=FALSE, all.bin=FALSE, scale = 196, dense.const,
num.bin.solns=1, use.rw=FALSE)
Simple Example: \[\begin{equation} \max\ x_1 + 9x_2 + x_3\ subject\ to\\ x_1 + 2x_2 + 3x_3 \le 9\\ 3x_1 + 2x_2 + 2x_3 \le 15\\ \end{equation}\]
library("lpSolve")
f.obj <- c(1, 9, 1)
f.con <- matrix (c(1, 2, 3, 3, 2, 2), nrow=2, byrow=TRUE)
f.dir <- c("<=", "<=")
f.rhs <- c(9, 15)
op=lp ("max", f.obj, f.con, f.dir, f.rhs,compute.sen=TRUE)
op
## Success: the objective function is 40.5
op$solution
## [1] 0.0 4.5 0.0
op$duals
## [1] 4.5 0.0 -3.5 0.0 -12.5
Go back to the chicken farmer example:
A shadow price is an estimated price for something that is not normally priced in the market or sold in the market.
Assumptions? Why Assumptions are important in Economics?
Example 1:
There are coffee(x) and tea(y). The price of coffee is $1, and the price of tea is $2 dollar.You have 5 dollars in total, and you have to spend all the money. How much coffee and tea you will buy?
{5,0},{3,1},{1,2}
Is there any way to compared which consumption bundle is better?
Need Assumptions about preference, the utility level each of the product is given by the table:
| U | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| Coffee | 5 | 3 | 1 | 0 | -5 |
| Tea | 20 | 10 | \ | \ | \ |
Example 2:
Underlying Assumptions:
1.Rational Behavior
2.Assumption on Preferences
3.Utility Maximization Behavior \[ MRS_{xy}=\frac {\frac{\partial u}{\partial y}}{\frac{\partial u}{\partial x}}=\frac{p_y}{p_x} \]