knitr::opts_chunk$set( echo = TRUE, incude=TRUE )

R Markdown

This file documents the code used to generate two plots that do not show that gerrymandering occured when the statehouse districts were drawn in 2011 in Iowa.

The data is available at the office of the Secretary of State of Iowa, https://sos.iowa.gov/elections/results/index.html. The data is in pdf files. The program SmallPDF was used to convert the data to Microsoft Excel Files. Files for the general elections in the years 2012, 2014, 2016, 2018, and 2020 were downloaded and converted.

The data was checked for consistency. Each year was a little different. The code to read the Excel files was

print(excel.sheets.fun)
## function( fl=file.choose(), i1=36, i2=135, sk=0, ske=1, correct.H2016 ){
## 
##     res=vector( mode="list", length=0 ) 
##     
##      for ( i in i1:i2 ){
##          if ( i==i2 ) sk=sk+ske
##          re = read_xlsx( fl, sheet=i, skip=sk )[ , -1:-2 ]
##          print(re)
##          nre = colnames( re )
##          print(nre)
##          ln = nrow( re )
##          if ( correct.H2016==TRUE & ( i==58 || i==72) ) ln=ln-1
##          print( ln )
##         
##          re = unlist( re[ ln, ] )
##          cre = nchar( re )
##          ind = unlist( lapply( gregexpr( "\r\n", re ), max ) )
##          print(re)
##          
##          if ( ind[[1]] != -1 ) re = substr( re, ind + 2, cre ) 
##          re = as.numeric( unlist( sub( ",", "", re ) ) ) 
##          
##          names( re ) = nre
##          print( re )
##          res[[i-i1+1]] = re 
##      }
##     
##     res
## }
## <bytecode: 0x7f99431ed708>

The code takes six arguments: i1, for the table number of the first sheet to be read; i2, for the table number of the last sheet to be read; sk, for the number of lines to skip; ske, for the number of extra lines to skip in the last sheet for the chamber; and correctH2016, for whether to remove the last line for two of the data tables (tables 58 an 72) for the 2016 House data sheets. Both tables 58 and 72 have a comment line after the table. In tables 72, the column names for the first two columns only have the candidate name, not the party. I added the party information to the data I downloaded.

print( gerry.table )
##    Year Chamber i1  i2 sk ske correctH2016
## 1  2012  Senate  6  30  1   0        FALSE
## 2  2012   House 31 130  1   0        FALSE
## 3  2014  Senate 11  35  0   1        FALSE
## 4  2014   House 36 135  0   1        FALSE
## 5  2016  Senate  8  32  0   1        FALSE
## 6  2016   House 33 132  0   1         TRUE
## 7  2018  Senate 11  35  0   0        FALSE
## 8  1018   House 36 135  0   0        FALSE
## 9  2020  Senate 36  60  0   0        FALSE
## 10 2020   House 61 160  0   0        FALSE

For each year there is a list of 25 senate districts and a list of 100 house districts. The five senate lists were put in one list and the five house lists were put in a second list. The first and second elements of the first element of each list is printed.

print( ia.senate.2012.2020[[1]][ 1:2 ] )
## [[1]]
## RandyFeenstraRepublican                Write-In 
##                   26030                      97 
##              UnderVotes               OverVotes 
##                    5496                       1 
##                    ...7 
##                   31624 
## 
## [[2]]
##  DennisGuthRepublican BobJenningsDemocratic 
##                 16033                 14299 
##              Write-In            UnderVotes 
##                    28                  1542 
##             OverVotes                  ...8 
##                     6                 31908
print( ia.house.2012.2020[[1]][ 1:2 ] )
## [[1]]
## JeffSmithRepublican            Write-In          UnderVotes 
##               13604                 106                3944 
##           OverVotes                ...7 
##                   2               17656 
## 
## [[2]]
##     MeganHessRepublican SteveBomgaarsDemocratic 
##                    8652                    6652 
##                Write-In              UnderVotes 
##                      14                     516 
##               OverVotes                    ...8 
##                       6                   15840

A second set of functions was used to extract the total votes for each district for Democrats, Republicans, and others. For 2012, 2014, and 2016, the words Democratic and Republican were used in the column names. In 2018 and 2020, the letters DEM and REP were used. The four functions are.

print( ia.count.fun.sen.early )
## function( ds=ia.senate.2012.2020, ind=1:3,  n=25 ){
##     
##     dal=vector( "list", 0 )
##     squ = list( seq( 2, 50, 2 ), seq( 1, 49, 2 ), seq( 2, 50, 2 ) )
##     
##     for( j in ind ) {
##     
##  sm = c( 0, 0, 0 )
##  da = matrix( 0, n, 3 )
##  names( sm ) = c( "DEM", "REP", "OTHER" )
##  colnames( da ) = c( "DEM", "REP", "OTHER" )
##  for ( i in 1:n ){
##      print( c( j, i ) )
##      ei = which( grepl( "Write", names( ds[[j]][[i]] ) ) )
##      di = which( grepl( "Democratic",   names( ds[[j]][[i]] ) ) )
##      ri = which( grepl( "Republican",   names( ds[[j]][[i]] ) ) )
##      print( names( ds[[j]][[i]] )  )
##      sm1 = ifelse( length( di )>0, ds[[j]][[i]][di], 0 )
##      sm2 = ifelse( length( ri )>0, ds[[j]][[i]][ri], 0 )
##      sm3 = sum( ds[[j]][[i]][ ( max( di, ri )+1 ):ei ] )
##      da[ i, ] = c( sm1, sm2, sm3 )
##      sm = sm + c( sm1, sm2, sm3 )
##  }
##  
##  da = rbind( da, sm )
##  da = data.frame( c( paste( squ[[ j ]] ), "Total" ), da[,1], da[,2], da[,3] )
##  names( da ) = c( "TOTAL", "DEM", "REP", "OTHER" )
##  
##  dal[[j]] = da
##  
## }
## 
##     dal 
##  
## }
## <bytecode: 0x7f99431c4d08>
print( ia.count.fun.sen )
## function( ds=ia.senate.2012.2020, ind=4:5,  n=25, dal=iowa.senate.2012.2020 ){
## 
##     squ = list( seq( 1, 49, 2 ), seq( 2, 50, 2 ) )
##              
##     for( j in ind ) {
##          
##       sm = c( 0, 0, 0 )
##       da = matrix( 0, n, 3 )
##       names( sm ) = c( "DEM", "REP", "OTHER" )
##       colnames( da ) = c( "DEM", "REP", "OTHER" )
##       for ( i in 1:n ){
##           print( c( j, i ) )
##           ei = which( grepl( "Write", names( ds[[j]][[i]] ) ) )
##           di = which( grepl( "DEM",   names( ds[[j]][[i]] ) ) )
##           ri = which( grepl( "REP",   names( ds[[j]][[i]] ) ) )
##           print( names( ds[[j]][[i]] )  )
##           sm1 = ifelse( length( di )>0, ds[[j]][[i]][di], 0 )
##           sm2 = ifelse( length( ri )>0, ds[[j]][[i]][ri], 0 )
##           sm3 = sum( ds[[j]][[i]][ ( max( di, ri )+1 ):ei ] )
##           da[ i, ] = c( sm1, sm2, sm3 )
##           sm = sm + c( sm1, sm2, sm3 )
##       }
##       
##       da = rbind( da, sm )
##       da = data.frame( c( paste( squ[[ j-3 ]] ), "Total" ), da[,1], da[,2], da[,3] )
##       names( da ) = c( "TOTAL", "DEM", "REP", "OTHER" )
##       
##       dal[[j]] = da
##       
##     }
##      
##     dal 
##       
## }
## <bytecode: 0x7f99431699d0>
print( ia.count.fun.hou.early )
## function( ds=ia.house.2012.2020, ind=1:3,  n=100 ){
##     
##     dal=vector( "list", 0 )
##     
##     for( j in ind ) {
##     
##  sm = c( 0, 0, 0 )
##  da = matrix( 0, 100, 3 )
##  names( sm ) = c( "DEM", "REP", "OTHER" )
##  colnames( da ) = c( "DEM", "REP", "OTHER" )
##  for ( i in 1:n ){
##      print( c( j, i ) )
##      ei = which( grepl( "Write", names( ds[[j]][[i]] ) ) )
##      di = which( grepl( "Democratic",   names( ds[[j]][[i]] ) ) )
##      ri = which( grepl( "Republican",   names( ds[[j]][[i]] ) ) )
##      print( names( ds[[j]][[i]] )  )
##      sm1 = ifelse( length( di )>0, ds[[j]][[i]][di], 0 )
##      sm2 = ifelse( length( ri )>0, ds[[j]][[i]][ri], 0 )
##      sm3 = sum( ds[[j]][[i]][ ( max( di, ri )+1 ):ei ] )
##      da[ i, ] = c( sm1, sm2, sm3 )
##      sm = sm + c( sm1, sm2, sm3 )
##  }
##  
##  da = rbind( da, sm )
##  da = data.frame( c( paste( 1:100 ), "Total" ), da[,1], da[,2], da[,3] )
##  names( da ) = c( "TOTAL", "DEM", "REP", "OTHER" )
##  
##  dal[[j]] = da
##  
## }
## 
##     dal 
##  
## }
## <bytecode: 0x7f994315e708>
print( ia.count.fun.hou )
## function( ds=ia.house.2012.2020, dal=iowa.house.2012.2020, ind=4:5,  n=100 ){
##     
##     for( j in ind ) {
##     
##  sm = c( 0, 0, 0 )
##  da = matrix( 0, 100, 3 )
##  names( sm ) = c( "DEM", "REP", "OTHER" )
##  colnames( da ) = c( "DEM", "REP", "OTHER" )
##  for ( i in 1:n ){
##      print( c( j, i ) )
##      ei = which( grepl( "Write", names( ds[[j]][[i]] ) ) )
##      di = which( grepl( "DEM",   names( ds[[j]][[i]] ) ) )
##      ri = which( grepl( "REP",   names( ds[[j]][[i]] ) ) )
##      print( names( ds[[j]][[i]] )  )
##      sm1 = ifelse( length( di )>0, ds[[j]][[i]][di], 0 )
##      sm2 = ifelse( length( ri )>0, ds[[j]][[i]][ri], 0 )
##      sm3 = sum( ds[[j]][[i]][ ( max( di, ri )+1 ):ei ] )
##      da[ i, ] = c( sm1, sm2, sm3 )
##      sm = sm + c( sm1, sm2, sm3 )
##  }
##  
##  da = rbind( da, sm )
##  da = data.frame( c( paste( 1:100 ), "Total" ), da[,1], da[,2], da[,3] )
##  names( da ) = c( "TOTAL", "DEM", "REP", "OTHER" )
##  
##  dal[[j]] = da
##  
## }
## 
## dal 
##  
## }
## <bytecode: 0x7f9943180250>

The functions create five element lists containing a data frame for each year with, for the senate districts, 25 rows for the districts and one row for the sums over the districts and, for the house districts, 100 rows for the districts and one row for the sums. The columns contain the district number - or Total in the last row; the number of votes for Democrats; the number of votes for Republicans; and the number of votes for other types of candidates.

The plots were generated with two functions, one for the senate and one for the house.

print( iowa.senate.plot.fun2 )
## function(lst = iowa.senate.2012.2020 ){
## 
##     par( oma=c( 0, 4, 5, 0 ), mfrow=c( 5, 2 ), cex=0.8, mar=c( 0.2, 0.2, 0.2, 0.2 ), col="darkblue" )
##     
##     for ( i in 5:1 ) {
##     
##         pie( unlist( lst[[i]][ 26, 2:4 ] ), col=c( "blue", "red", "white" ), labels=NA, 
##              cex=0.75, font=2 )
##         
##         if ( i==5 ) legend( 2, 1.9, c( "Democratic", "Republican", "Other" ), fill=c( "blue", "red", "white" ),
##                             xpd=NA, box.col="transparent"  )
##         
##         p2 = ifelse( ( lst[[i]]$DEM[1:25] - lst[[i]]$REP[1:25] ) > 0, "DEM", "REP" )
##         pie( table( p2 ), col=c( "blue", "red" ), labels=NA, cex=0.75, font=2 )
##         mtext( paste( seq( 2012, 2020, 2 ) )[i], side=2, outer=TRUE, las=1, adj=0, 
##                at=seq( 0.1, 0.9, 0.2 )[i], line=2 )
##         mtext( "Iowa Senate Statehouse Races", side=3, outer=TRUE, las=1, adj=0.5, 
##                at=0.5, line=3.5, cex=1.3 )
##         mtext( "Votes Recieved", side=3, outer=TRUE, las=1, adj=0.5, 
##                at=0.25, line=1.5 )
##         mtext( "Senate Seats", side=3, outer=TRUE, las=1, adj=0.5, 
##                at=0.75, line=1.5 )
##     
##     }
##     
##     par( mfrow=c( 1, 1 ), oma=rep( 0, 4 ), mar=c( 5, 4, 4, 2 ), cex=1 )
## }
## <bytecode: 0x7f994319dd58>
iowa.senate.plot.fun2()

print( iowa.house.plot.fun )
## function(lst = iowa.house.2012.2020 ){
## 
##     par( oma=c( 0, 4, 5, 0 ), mfrow=c( 5, 2 ), cex=0.8, mar=c( 0.2, 0.2, 0.2, 0.2 ), col="darkblue" )
##     
##     for ( i in 5:1 ) {
##     
##         pie( unlist( lst[[i]][ 101, 2:4 ] ), col=c( "blue", "red", "white" ), labels=NA, 
##              cex=0.75, font=2 )
##         
##         if ( i==5 ) legend( 2, 1.9, c( "Democratic", "Republican", "Other" ), fill=c( "blue", "red", "white" ),
##                             xpd=NA, box.col="transparent"  )
##         
##         p2 = ifelse( ( lst[[i]]$DEM[1:100] - lst[[i]]$REP[1:100] ) > 0, "DEM", "REP" )
##         pie( table( p2 ), col=c( "blue", "red" ), labels=NA, cex=0.75, font=2 )
##         mtext( paste( seq( 2012, 2020, 2 ) )[i], side=2, outer=TRUE, las=1, adj=0, 
##                at=seq( 0.1, 0.9, 0.2 )[i], line=2 )
##         mtext( "Iowa House Statehouse Races", side=3, outer=TRUE, las=1, adj=0.5, 
##                at=0.5, line=3.5, cex=1.3 )
##         mtext( "Votes Recieved", side=3, outer=TRUE, las=1, adj=0.5, 
##                at=0.25, line=1.5 )
##         mtext( "House Seats", side=3, outer=TRUE, las=1, adj=0.5, 
##                at=0.75, line=1.5 )
##     
##     }
##     
##     par( mfrow=c( 1, 1 ), oma=rep( 0, 4 ), mar=c( 5, 4, 4, 2 )+0.1, cex=1 )
## }
## <bytecode: 0x7f9943d69be8>
iowa.house.plot.fun()

The data are below.

print( iowa.senate.2012.2020 ) 
## [[1]]
##    TOTAL    DEM    REP OTHER
## 1      2      0  26030    97
## 2      4  14299  16033    28
## 3      6  12058  16023    19
## 4      8  12632  10198    33
## 5     10      0  22594   480
## 6     12      0  22205   210
## 7     14  11011  17141    26
## 8     16  16065   8469    40
## 9     18  18954   8455    58
## 10    20      0  24236   994
## 11    22  14626  19067   143
## 12    24  14049  17035    32
## 13    26  14851  14868    21
## 14    28  16946  16265    24
## 15    30  16338  14346    27
## 16    32  21178  13401    24
## 17    34  15733  13360    30
## 18    36  14137  17124    22
## 19    38  11670  17628    24
## 20    40  15058  13281  1423
## 21    42  16125  12168    47
## 22    44  15960  13950    36
## 23    46  15858  16415    17
## 24    48  17305  14398    17
## 25    50  20808   9790    28
## 26 Total 325661 394480  3900
## 
## [[2]]
##    TOTAL    DEM    REP OTHER
## 1      1      0  18774   189
## 2      3      0  17176   195
## 3      5   9801  12383    14
## 4      7   5738   8766   848
## 5      9      0  16293   148
## 6     11      0  17681   206
## 7     13   8900  15326   907
## 8     15  13307  12008    39
## 9     17  10548   5374  1026
## 10    19      0  16742  3915
## 11    21  17851      0   512
## 12    23  11713   8094    38
## 13    25      0  18267   238
## 14    27  12898  10012    17
## 15    29  13245  11002    22
## 16    31  13387      0   186
## 17    33  14430   8932    38
## 18    35  15671      0   342
## 19    37  16613      0   364
## 20    39  12371  11306    29
## 21    41   9982  10356    53
## 22    43  18000      0   294
## 23    45  13013      0   246
## 24    47  11580  14988    19
## 25    49  11690  10808    23
## 26 Total 240738 244288  9908
## 
## [[3]]
##    TOTAL    DEM    REP OTHER
## 1      2      0  27522   103
## 2      4  11889  18359    22
## 3      6      0  20223  4105
## 4      8  10510  12379    44
## 5     10  10006  20053    53
## 6     12      0  20012  5570
## 7     14      0  19482  6780
## 8     16  14046   8114  1325
## 9     18  20388      0   469
## 10    20  15238  22431    69
## 11    22  15343  19413    53
## 12    24  11006  19435    41
## 13    26  11557  19165    28
## 14    28  10823  17501  1664
## 15    30  19568  13754    33
## 16    32  12441  18641    29
## 17    34  20008  15673    30
## 18    36  13111  14731    33
## 19    38  10524  18567  1837
## 20    40      0  23768   200
## 21    42  13434  13266    35
## 22    44  13000  14410    37
## 23    46  12615  16576    39
## 24    48  10596  20065  1244
## 25    50  18345  10635    42
## 26 Total 274448 424175 23885
## 
## [[4]]
##    TOTAL    DEM    REP OTHER
## 1      1      0  21245   384
## 2      3   8884  16366    34
## 3      5   8935  14571    19
## 4      7   9125   8676    26
## 5      9      0  18533   417
## 6     11   8770  18007    16
## 7     13  13558  17199    30
## 8     15  12830  16988    38
## 9     17  17808      0   633
## 10    19  17608  18598    37
## 11    21  20499  10511    46
## 12    23  19020      0  6414
## 13    25  10345  16621    23
## 14    27  12823  12322    15
## 15    29  13437  15493    10
## 16    31  14573      0   356
## 17    33  17912   9407    35
## 18    35  19875      0   784
## 19    37  20321      0  5724
## 20    39  15758  13130    21
## 21    41  10652  11460    36
## 22    43  23790   6107    29
## 23    45  14629      0   599
## 24    47  14418  16125    17
## 25    49  10916  13305    12
## 26 Total 336486 274664 15755
## 
## [[5]]
##    TOTAL    DEM    REP OTHER
## 1      2      0  26395   178
## 2      4      0  25450   584
## 3      6   8418  18919    34
## 4      8  11344  12391    31
## 5     10  14704  24538    49
## 6     12   8999  20165    51
## 7     14      0  24623   452
## 8     16  16868      0  5417
## 9     18  20696      0   565
## 10    20  20968  21943    51
## 11    22  23110  22946    61
## 12    24  11327  21732    30
## 13    26  10858  20655    23
## 14    28  11785  19630    28
## 15    30  17543  16516    41
## 16    32  12700  19990    15
## 17    34  29342      0  1066
## 18    36  10957  16841    39
## 19    38  11948  21238    45
## 20    40   8760  22022    36
## 21    42  11228  16766    31
## 22    44  12493  16447    50
## 23    46  12653  18479    25
## 24    48  12050  22544    34
## 25    50  18044  12677    41
## 26 Total 316795 442907  8977
print( iowa.house.2012.2020 )
## [[1]]
##     TOTAL    DEM    REP OTHER
## 1       1      0  13604   106
## 2       2   6652   8652    14
## 3       3      0  12461    48
## 4       4      0  13846    55
## 5       5      0  12011    79
## 6       6      0  10793   242
## 7       7   7625   7669    18
## 8       8      0  11585   134
## 9       9   8399   5450    15
## 10     10      0  12339   177
## 11     11      0   9980   126
## 12     12   9189   5861     9
## 13     13   6410   5615    15
## 14     14   6617   4494    23
## 15     15   5013   5452    18
## 16     16   5117   6847    26
## 17     17      0  11153   143
## 18     18   4406   8351    53
## 19     19   7009   9908    23
## 20     20   5883   8109    27
## 21     21   6297   8322    19
## 22     22      0  13180   223
## 23     23      0  10743   112
## 24     24      0  11036    86
## 25     25   7487   9082    15
## 26     26   8452   7758    53
## 27     27      0   8230  3992
## 28     28   6569   8197    10
## 29     29   9831   5927    25
## 30     30   8764   8044    36
## 31     31   9803      0   250
## 32     32   8073   3109    13
## 33     33   8772   3303    34
## 34     34   8813   4608    38
## 35     35   7508   2727    26
## 36     36  11360   5368    43
## 37     37      0  11042  3712
## 38     38   6865   8334   704
## 39     39   8466   9218    26
## 40     40   9113   8044    16
## 41     41  12055   5054    49
## 42     42   7341   9581    17
## 43     43   8719   8742    17
## 44     44   7242  10101    17
## 45     45   8699   5081   914
## 46     46   8830   5209    28
## 47     47   7377   8133    15
## 48     48   6889   8485    15
## 49     49   6171   9192    16
## 50     50      0  12187   290
## 51     51   5324   9714    11
## 52     52   9777      0  3930
## 53     53  12269      0   262
## 54     54      0  12349   153
## 55     55   7781   7585    10
## 56     56   7361   7054    16
## 57     57  11779      0   225
## 58     58   7549   7964    16
## 59     59   8762   6621    17
## 60     60   8298   8966    12
## 61     61   9602   4063    15
## 62     62  10488      0  1562
## 63     63   8183   8298    11
## 64     64   9493   5007    17
## 65     65  12269      0   184
## 66     66   9286   7575    26
## 67     67   7947   8898    14
## 68     68   8480   8363    20
## 69     69  11316      0   164
## 70     70  10487   5929    23
## 71     71   7911   5431    10
## 72     72   7562   7778    17
## 73     73   7016   9068    31
## 74     74  12246      0   226
## 75     75   6479   9166    12
## 76     76   7561   8401    13
## 77     77   9907   6641    11
## 78     78      0  10715   188
## 79     79   4177  10804    29
## 80     80   7161   7271    18
## 81     81   7706   5158    22
## 82     82   8613   5984    16
## 83     83   9447   5373    29
## 84     84      0  11674   177
## 85     85  14241      0   234
## 86     86  12834      0   223
## 87     87   6898   2489  5240
## 88     88   6550   7548    25
## 89     89  10357   4992    21
## 90     90   8988   2692   601
## 91     91   6511   7426    21
## 92     92   8392   7626    15
## 93     93   9679   7429    16
## 94     94   8314  10330    14
## 95     95   8294   8494    10
## 96     96      0  10276   181
## 97     97   6572  10088    10
## 98     98  10052      0  3146
## 99     99  10098   6822    13
## 100   100  10557      0   210
## 101 Total 682390 710279 29629
## 
## [[2]]
##     TOTAL    DEM    REP OTHER
## 1       1      0   9997   109
## 2       2      0   8770  1327
## 3       3   2305   9225     8
## 4       4      0  11125    53
## 5       5      0   9164    46
## 6       6      0   8292   143
## 7       7   4894   6628     9
## 8       8   4021   7288    17
## 9       9   7279      0   193
## 10     10      0   8437  2327
## 11     11      0   7715    86
## 12     12   5349   6445    10
## 13     13   4766   3027    14
## 14     14   4812      0   128
## 15     15   3069   2994    14
## 16     16   2795   4477    10
## 17     17   3174   7641    13
## 18     18   2867   6405     9
## 19     19      0  10340   216
## 20     20   4266   6358    19
## 21     21   3842   6909     8
## 22     22      0   9217   148
## 23     23      0   7834   106
## 24     24      0   8442    58
## 25     25      0   9603   146
## 26     26   6725   5726    21
## 27     27   3278   6609    17
## 28     28   4360   7079     5
## 29     29   6557   5628    25
## 30     30   5733   7323    16
## 31     31   5950      0  1593
## 32     32   5449      0   119
## 33     33   5852      0   163
## 34     34   5765   3065    41
## 35     35   4876      0   182
## 36     36   9307      0   252
## 37     37      0  10134   231
## 38     38   4695   6909    16
## 39     39   6529   7965    20
## 40     40   7219   5782    20
## 41     41   8902      0  1982
## 42     42   4911   7419    24
## 43     43   5916   7598    12
## 44     44      0   9967   155
## 45     45   6445      0  2111
## 46     46   6722      0   167
## 47     47   4386   7173    15
## 48     48      0   8613   126
## 49     49   4085   7727    13
## 50     50   3164   8931    24
## 51     51   4272   7268     8
## 52     52   8509      0   128
## 53     53   8558      0   161
## 54     54      0   9569   122
## 55     55   5935   5962    14
## 56     56   6189   4895    11
## 57     57   7020   5380   376
## 58     58   4591   7123    11
## 59     59   6036   4867    12
## 60     60   5456   7841     9
## 61     61   5503   3782    10
## 62     62   6733      0    84
## 63     63   5299   7347    10
## 64     64   5737   5497    15
## 65     65   7993      0   181
## 66     66   8420      0   252
## 67     67      0   9405   211
## 68     68   6171   6989    23
## 69     69   6974      0   129
## 70     70   8576      0   185
## 71     71   5300   4334    10
## 72     72   4242   7362    16
## 73     73   4035   8448     8
## 74     74   8916      0   141
## 75     75   3854   7865    13
## 76     76   5052   7133    14
## 77     77   8910      0   209
## 78     78   3494   7356     4
## 79     79      0   9507    99
## 80     80   3232   6241  1021
## 81     81   6484      0   194
## 82     82   5885   5487    20
## 83     83   6033      0   234
## 84     84      0   7457  1623
## 85     85   9780      0   135
## 86     86   8191      0   134
## 87     87   6786      0   157
## 88     88      0   7574   138
## 89     89   6961      0   163
## 90     90   5374      0   111
## 91     91   4042   5286    22
## 92     92   5175   6117    17
## 93     93   6381   5699     5
## 94     94      0  10414   155
## 95     95   5737   7624    15
## 96     96      0   7226  2194
## 97     97   4990   7595    14
## 98     98   6892      0   173
## 99     99   7072   4567    23
## 100   100   6657      0   157
## 101 Total 447712 519198 21738
## 
## [[3]]
##     TOTAL    DEM    REP OTHER
## 1       1      0  14627   122
## 2       2      0  12756   186
## 3       3   2848  12096    17
## 4       4      0   9815  5848
## 5       5   3445  11774     9
## 6       6   5086   9655    38
## 7       7   5608   9665    11
## 8       8   4701  10078     8
## 9       9   7461   5562    14
## 10     10      0  13063   151
## 11     11   4475   8279    15
## 12     12   4369  10349     8
## 13     13   7027   4365    16
## 14     14   5365   5126    22
## 15     15   5424   5056    17
## 16     16   5120   6847    16
## 17     17   3866  10712    16
## 18     18      0  10603   139
## 19     19   6597  10393    20
## 20     20   4006   7204  2492
## 21     21      0  11716   127
## 22     22      0  14015   258
## 23     23   4061  10068    17
## 24     24      0  11702    97
## 25     25   5850  11280    32
## 26     26   9122   7769    24
## 27     27   3885   9478    15
## 28     28   5230   9593    14
## 29     29   7903   5831  1767
## 30     30   6999  11442    31
## 31     31   7160   5027   824
## 32     32   7142   2920   492
## 33     33   7785      0  2452
## 34     34   9677      0   268
## 35     35   6458      0  2120
## 36     36  10348   5853    43
## 37     37   8954  12059    35
## 38     38   7264   8793   821
## 39     39   8549  11492    44
## 40     40   9660   7332    45
## 41     41  13363      0   287
## 42     42   7948   9065    26
## 43     43   8273   8809    33
## 44     44      0  13818   258
## 45     45   9036   5730  1305
## 46     46  11927      0   247
## 47     47   5983   9165    18
## 48     48   5397   9829    16
## 49     49   4382   9315  1884
## 50     50   3901  11493    18
## 51     51   5647   9408    13
## 52     52   8160   6847    10
## 53     53   8977   5869    20
## 54     54      0  12675   151
## 55     55   6697   8943    18
## 56     56   6605   7910    10
## 57     57   8249   9023    15
## 58     58   6296   9048    16
## 59     59   8567   4891  2329
## 60     60   7267  10115    17
## 61     61   9206      0   152
## 62     62   7113   3354   816
## 63     63   6644   9927    29
## 64     64   8288   5912    20
## 65     65   9724   4881    43
## 66     66  11669      0   287
## 67     67   6749  11248    15
## 68     68   7921   9317    20
## 69     69  10730      0   236
## 70     70   8877   5698  1074
## 71     71   8668      0   205
## 72     72   5841   9397    20
## 73     73      0  12388   247
## 74     74  12839      0   201
## 75     75   4924  10448    21
## 76     76   5907   9754    27
## 77     77  10217   7461    26
## 78     78      0  10138  2834
## 79     79      0  12615   114
## 80     80   5009   8557   512
## 81     81   8356      0   302
## 82     82  10488      0   302
## 83     83   9617      0   236
## 84     84   4225   9636     9
## 85     85  15213      0   209
## 86     86  12689      0   194
## 87     87   9333      0   196
## 88     88   5469   8619    18
## 89     89  10549      0   302
## 90     90   8442      0   219
## 91     91   6229   7293    20
## 92     92   6782   8676    21
## 93     93   8470   7865    22
## 94     94      0  14696   285
## 95     95   7085   9868    18
## 96     96   4950   9276    14
## 97     97   6202   9345  1255
## 98     98   8547   4306    19
## 99     99  10780      0   234
## 100   100   9213      0   192
## 101 Total 641085 727023 36348
## 
## [[4]]
##     TOTAL    DEM    REP OTHER
## 1       1   3617  10501     8
## 2       2   4231   8241    14
## 3       3      0  10694   102
## 4       4      0  11037   565
## 5       5   2949   9774     8
## 6       6   5469   7092    14
## 7       7   5404   7153     8
## 8       8   4125   8413     4
## 9       9   5221   5604     8
## 10     10   4211   8595    15
## 11     11      0   8376   186
## 12     12   4402   8458     5
## 13     13   6685      0   312
## 14     14   4606   3936     9
## 15     15   4635   3590    10
## 16     16   4835   4949   212
## 17     17   3468   8584    18
## 18     18      0   8316   242
## 19     19   7689  10539   513
## 20     20   4625   7659    15
## 21     21   4139   7932     6
## 22     22   5003   9707    21
## 23     23   4060   7931     7
## 24     24   3666   7709     5
## 25     25   6470   9420    10
## 26     26   8195   6572    24
## 27     27   3441   7691    11
## 28     28   4538   8132     7
## 29     29   7620   5354    16
## 30     30   7378   9463    14
## 31     31   8576      0   360
## 32     32   6250   2388   263
## 33     33   6886   3283    22
## 34     34   7930   3229   601
## 35     35   5682      0  1617
## 36     36  11246      0  2754
## 37     37   9618  10428    25
## 38     38   8216   7710    15
## 39     39   9658   9353   371
## 40     40  11565      0   382
## 41     41  12279      0  2196
## 42     42   8346   7155    10
## 43     43   8852   6431   329
## 44     44  11169   9959   479
## 45     45   9607   4342    16
## 46     46  10725      0   258
## 47     47   5974   6856   429
## 48     48   5643   8052    12
## 49     49   5524   7950   536
## 50     50   4346   8763     5
## 51     51   5254   7379     4
## 52     52   9465      0   267
## 53     53   9787      0   351
## 54     54      0  10370   284
## 55     55   6915   6924     7
## 56     56   5136   7090    15
## 57     57   6627   8655   475
## 58     58   4004   9004    10
## 59     59  10431      0   388
## 60     60   7945   7711    13
## 61     61   7596      0   197
## 62     62   7005      0   189
## 63     63   6168   8059     7
## 64     64   9008      0   272
## 65     65   9002   3956    20
## 66     66   8725   5571    17
## 67     67   7932   8593    12
## 68     68   8608   6979    15
## 69     69   8276      0  2738
## 70     70   9364      0   113
## 71     71   5868   4172     8
## 72     72   5243   7708    13
## 73     73   6349   8004    13
## 74     74  12514      0   244
## 75     75   4918   7904   348
## 76     76   5731   8068    13
## 77     77  12330      0   448
## 78     78   4369   7766    16
## 79     79   2978   9186   432
## 80     80   4391   7630    13
## 81     81   5372   4501     9
## 82     82   6083   6120    17
## 83     83   5552   4705    17
## 84     84   4289   6982     7
## 85     85  14183      0   214
## 86     86  11900      0   207
## 87     87   6010   4596     7
## 88     88   4965   6279   217
## 89     89   8261      0   342
## 90     90   6135      0   249
## 91     91   4880   5669    17
## 92     92   5911   6552    10
## 93     93   9660      0   484
## 94     94   7572   9226     7
## 95     95   7029   8227    11
## 96     96   4629   7721    19
## 97     97   6322   7580   364
## 98     98   7614      0   305
## 99     99   8476   5564    14
## 100   100   6799   4015    19
## 101 Total 652355 565787 22547
## 
## [[5]]
##     TOTAL    DEM    REP OTHER
## 1       1      0  15367   212
## 2       2      0  13597   216
## 3       3      0  12445   109
## 4       4   2870  13149    43
## 5       5      0  13942   150
## 6       6      0  12097   303
## 7       7   5847   9464    13
## 8       8   3838  11250    23
## 9       9   5720   7717    20
## 10     10   3823  11871    29
## 11     11   4411   8474    11
## 12     12   3280  11702   457
## 13     13   6625   4719    25
## 14     14   5980   4711    13
## 15     15   5718   4990    13
## 16     16   5889   6615   547
## 17     17   3682  11397    25
## 18     18   3762  10321    15
## 19     19   9469  14765    33
## 20     20   4157  10822    29
## 21     21   4348  10194    30
## 22     22   5840  13308    12
## 23     23      0  12917   219
## 24     24   3694  10574    14
## 25     25   7416  12944    22
## 26     26   8431   9784    26
## 27     27   3565  10109    33
## 28     28      0  12707   185
## 29     29   8471   7954    12
## 30     30   8384  12924    26
## 31     31  10070      0   435
## 32     32   9000      0   287
## 33     33   8248   4666    38
## 34     34   9470   4787    48
## 35     35   7542      0   235
## 36     36  13198      0   374
## 37     37  12578  14309    37
## 38     38   9927  10084    22
## 39     39  12040  12455    24
## 40     40  10589   7108    28
## 41     41  13914      0   329
## 42     42  10102   7896    30
## 43     43   9948   7375    14
## 44     44  15244  13138   367
## 45     45  11399      0  4226
## 46     46  10689      0   251
## 47     47   6512   9503    20
## 48     48   6280  10381    17
## 49     49   6820  10464    26
## 50     50   4733  11683    20
## 51     51   4772  11388    11
## 52     52   8210   7072    11
## 53     53   9772   5081    20
## 54     54   3602  10217  1919
## 55     55   7463   8886    14
## 56     56   4617  10369    22
## 57     57   6330  12878    13
## 58     58   7884   9123    12
## 59     59  11606      0   341
## 60     60   9558   9082    26
## 61     61   9589      0   248
## 62     62   8801      0   192
## 63     63   6489  11209     6
## 64     64   6435   8284     4
## 65     65  11841      0   393
## 66     66  10271   6766    27
## 67     67  10541   9274    20
## 68     68  10201   8484    20
## 69     69  11932      0   411
## 70     70  10916      0  3819
## 71     71   6800   5315    15
## 72     72   6119   9739    23
## 73     73   7307  11067    18
## 74     74  15407      0   245
## 75     75   5907  10377    21
## 76     76   6491   9760   551
## 77     77  15416      0   506
## 78     78   4842  10284    27
## 79     79      0  13434   187
## 80     80      0  12113   157
## 81     81   5894   6684    22
## 82     82   7604   7770    26
## 83     83   6197   6967    11
## 84     84   4146  10282    23
## 85     85  15107      0   195
## 86     86  13758      0   202
## 87     87   9992      0   331
## 88     88   5141   9880    22
## 89     89   7967   6159   421
## 90     90   8363      0   310
## 91     91   6130   8093    19
## 92     92   7304   9302    13
## 93     93   9530   7549    20
## 94     94   9727  12042    16
## 95     95   8619  10071    13
## 96     96   4693  10765    26
## 97     97   6630  11403    19
## 98     98   7872   5329    16
## 99     99   9449   7232    30
## 100   100   9953      0   367
## 101 Total 726718 786409 21074