knitr::opts_chunk$set( echo = TRUE, incude=TRUE )
This file documents the code used to generate two plots that do not show that gerrymandering occured when the statehouse districts were drawn in 2011 in Iowa.
The data is available at the office of the Secretary of State of Iowa, https://sos.iowa.gov/elections/results/index.html. The data is in pdf files. The program SmallPDF was used to convert the data to Microsoft Excel Files. Files for the general elections in the years 2012, 2014, 2016, 2018, and 2020 were downloaded and converted.
The data was checked for consistency. Each year was a little different. The code to read the Excel files was
print(excel.sheets.fun)
## function( fl=file.choose(), i1=36, i2=135, sk=0, ske=1, correct.H2016 ){
##
## res=vector( mode="list", length=0 )
##
## for ( i in i1:i2 ){
## if ( i==i2 ) sk=sk+ske
## re = read_xlsx( fl, sheet=i, skip=sk )[ , -1:-2 ]
## print(re)
## nre = colnames( re )
## print(nre)
## ln = nrow( re )
## if ( correct.H2016==TRUE & ( i==58 || i==72) ) ln=ln-1
## print( ln )
##
## re = unlist( re[ ln, ] )
## cre = nchar( re )
## ind = unlist( lapply( gregexpr( "\r\n", re ), max ) )
## print(re)
##
## if ( ind[[1]] != -1 ) re = substr( re, ind + 2, cre )
## re = as.numeric( unlist( sub( ",", "", re ) ) )
##
## names( re ) = nre
## print( re )
## res[[i-i1+1]] = re
## }
##
## res
## }
## <bytecode: 0x7f99431ed708>
The code takes six arguments: i1, for the table number of the first sheet to be read; i2, for the table number of the last sheet to be read; sk, for the number of lines to skip; ske, for the number of extra lines to skip in the last sheet for the chamber; and correctH2016, for whether to remove the last line for two of the data tables (tables 58 an 72) for the 2016 House data sheets. Both tables 58 and 72 have a comment line after the table. In tables 72, the column names for the first two columns only have the candidate name, not the party. I added the party information to the data I downloaded.
print( gerry.table )
## Year Chamber i1 i2 sk ske correctH2016
## 1 2012 Senate 6 30 1 0 FALSE
## 2 2012 House 31 130 1 0 FALSE
## 3 2014 Senate 11 35 0 1 FALSE
## 4 2014 House 36 135 0 1 FALSE
## 5 2016 Senate 8 32 0 1 FALSE
## 6 2016 House 33 132 0 1 TRUE
## 7 2018 Senate 11 35 0 0 FALSE
## 8 1018 House 36 135 0 0 FALSE
## 9 2020 Senate 36 60 0 0 FALSE
## 10 2020 House 61 160 0 0 FALSE
For each year there is a list of 25 senate districts and a list of 100 house districts. The five senate lists were put in one list and the five house lists were put in a second list. The first and second elements of the first element of each list is printed.
print( ia.senate.2012.2020[[1]][ 1:2 ] )
## [[1]]
## RandyFeenstraRepublican Write-In
## 26030 97
## UnderVotes OverVotes
## 5496 1
## ...7
## 31624
##
## [[2]]
## DennisGuthRepublican BobJenningsDemocratic
## 16033 14299
## Write-In UnderVotes
## 28 1542
## OverVotes ...8
## 6 31908
print( ia.house.2012.2020[[1]][ 1:2 ] )
## [[1]]
## JeffSmithRepublican Write-In UnderVotes
## 13604 106 3944
## OverVotes ...7
## 2 17656
##
## [[2]]
## MeganHessRepublican SteveBomgaarsDemocratic
## 8652 6652
## Write-In UnderVotes
## 14 516
## OverVotes ...8
## 6 15840
A second set of functions was used to extract the total votes for each district for Democrats, Republicans, and others. For 2012, 2014, and 2016, the words Democratic and Republican were used in the column names. In 2018 and 2020, the letters DEM and REP were used. The four functions are.
print( ia.count.fun.sen.early )
## function( ds=ia.senate.2012.2020, ind=1:3, n=25 ){
##
## dal=vector( "list", 0 )
## squ = list( seq( 2, 50, 2 ), seq( 1, 49, 2 ), seq( 2, 50, 2 ) )
##
## for( j in ind ) {
##
## sm = c( 0, 0, 0 )
## da = matrix( 0, n, 3 )
## names( sm ) = c( "DEM", "REP", "OTHER" )
## colnames( da ) = c( "DEM", "REP", "OTHER" )
## for ( i in 1:n ){
## print( c( j, i ) )
## ei = which( grepl( "Write", names( ds[[j]][[i]] ) ) )
## di = which( grepl( "Democratic", names( ds[[j]][[i]] ) ) )
## ri = which( grepl( "Republican", names( ds[[j]][[i]] ) ) )
## print( names( ds[[j]][[i]] ) )
## sm1 = ifelse( length( di )>0, ds[[j]][[i]][di], 0 )
## sm2 = ifelse( length( ri )>0, ds[[j]][[i]][ri], 0 )
## sm3 = sum( ds[[j]][[i]][ ( max( di, ri )+1 ):ei ] )
## da[ i, ] = c( sm1, sm2, sm3 )
## sm = sm + c( sm1, sm2, sm3 )
## }
##
## da = rbind( da, sm )
## da = data.frame( c( paste( squ[[ j ]] ), "Total" ), da[,1], da[,2], da[,3] )
## names( da ) = c( "TOTAL", "DEM", "REP", "OTHER" )
##
## dal[[j]] = da
##
## }
##
## dal
##
## }
## <bytecode: 0x7f99431c4d08>
print( ia.count.fun.sen )
## function( ds=ia.senate.2012.2020, ind=4:5, n=25, dal=iowa.senate.2012.2020 ){
##
## squ = list( seq( 1, 49, 2 ), seq( 2, 50, 2 ) )
##
## for( j in ind ) {
##
## sm = c( 0, 0, 0 )
## da = matrix( 0, n, 3 )
## names( sm ) = c( "DEM", "REP", "OTHER" )
## colnames( da ) = c( "DEM", "REP", "OTHER" )
## for ( i in 1:n ){
## print( c( j, i ) )
## ei = which( grepl( "Write", names( ds[[j]][[i]] ) ) )
## di = which( grepl( "DEM", names( ds[[j]][[i]] ) ) )
## ri = which( grepl( "REP", names( ds[[j]][[i]] ) ) )
## print( names( ds[[j]][[i]] ) )
## sm1 = ifelse( length( di )>0, ds[[j]][[i]][di], 0 )
## sm2 = ifelse( length( ri )>0, ds[[j]][[i]][ri], 0 )
## sm3 = sum( ds[[j]][[i]][ ( max( di, ri )+1 ):ei ] )
## da[ i, ] = c( sm1, sm2, sm3 )
## sm = sm + c( sm1, sm2, sm3 )
## }
##
## da = rbind( da, sm )
## da = data.frame( c( paste( squ[[ j-3 ]] ), "Total" ), da[,1], da[,2], da[,3] )
## names( da ) = c( "TOTAL", "DEM", "REP", "OTHER" )
##
## dal[[j]] = da
##
## }
##
## dal
##
## }
## <bytecode: 0x7f99431699d0>
print( ia.count.fun.hou.early )
## function( ds=ia.house.2012.2020, ind=1:3, n=100 ){
##
## dal=vector( "list", 0 )
##
## for( j in ind ) {
##
## sm = c( 0, 0, 0 )
## da = matrix( 0, 100, 3 )
## names( sm ) = c( "DEM", "REP", "OTHER" )
## colnames( da ) = c( "DEM", "REP", "OTHER" )
## for ( i in 1:n ){
## print( c( j, i ) )
## ei = which( grepl( "Write", names( ds[[j]][[i]] ) ) )
## di = which( grepl( "Democratic", names( ds[[j]][[i]] ) ) )
## ri = which( grepl( "Republican", names( ds[[j]][[i]] ) ) )
## print( names( ds[[j]][[i]] ) )
## sm1 = ifelse( length( di )>0, ds[[j]][[i]][di], 0 )
## sm2 = ifelse( length( ri )>0, ds[[j]][[i]][ri], 0 )
## sm3 = sum( ds[[j]][[i]][ ( max( di, ri )+1 ):ei ] )
## da[ i, ] = c( sm1, sm2, sm3 )
## sm = sm + c( sm1, sm2, sm3 )
## }
##
## da = rbind( da, sm )
## da = data.frame( c( paste( 1:100 ), "Total" ), da[,1], da[,2], da[,3] )
## names( da ) = c( "TOTAL", "DEM", "REP", "OTHER" )
##
## dal[[j]] = da
##
## }
##
## dal
##
## }
## <bytecode: 0x7f994315e708>
print( ia.count.fun.hou )
## function( ds=ia.house.2012.2020, dal=iowa.house.2012.2020, ind=4:5, n=100 ){
##
## for( j in ind ) {
##
## sm = c( 0, 0, 0 )
## da = matrix( 0, 100, 3 )
## names( sm ) = c( "DEM", "REP", "OTHER" )
## colnames( da ) = c( "DEM", "REP", "OTHER" )
## for ( i in 1:n ){
## print( c( j, i ) )
## ei = which( grepl( "Write", names( ds[[j]][[i]] ) ) )
## di = which( grepl( "DEM", names( ds[[j]][[i]] ) ) )
## ri = which( grepl( "REP", names( ds[[j]][[i]] ) ) )
## print( names( ds[[j]][[i]] ) )
## sm1 = ifelse( length( di )>0, ds[[j]][[i]][di], 0 )
## sm2 = ifelse( length( ri )>0, ds[[j]][[i]][ri], 0 )
## sm3 = sum( ds[[j]][[i]][ ( max( di, ri )+1 ):ei ] )
## da[ i, ] = c( sm1, sm2, sm3 )
## sm = sm + c( sm1, sm2, sm3 )
## }
##
## da = rbind( da, sm )
## da = data.frame( c( paste( 1:100 ), "Total" ), da[,1], da[,2], da[,3] )
## names( da ) = c( "TOTAL", "DEM", "REP", "OTHER" )
##
## dal[[j]] = da
##
## }
##
## dal
##
## }
## <bytecode: 0x7f9943180250>
The functions create five element lists containing a data frame for each year with, for the senate districts, 25 rows for the districts and one row for the sums over the districts and, for the house districts, 100 rows for the districts and one row for the sums. The columns contain the district number - or Total in the last row; the number of votes for Democrats; the number of votes for Republicans; and the number of votes for other types of candidates.
The plots were generated with two functions, one for the senate and one for the house.
print( iowa.senate.plot.fun2 )
## function(lst = iowa.senate.2012.2020 ){
##
## par( oma=c( 0, 4, 5, 0 ), mfrow=c( 5, 2 ), cex=0.8, mar=c( 0.2, 0.2, 0.2, 0.2 ), col="darkblue" )
##
## for ( i in 5:1 ) {
##
## pie( unlist( lst[[i]][ 26, 2:4 ] ), col=c( "blue", "red", "white" ), labels=NA,
## cex=0.75, font=2 )
##
## if ( i==5 ) legend( 2, 1.9, c( "Democratic", "Republican", "Other" ), fill=c( "blue", "red", "white" ),
## xpd=NA, box.col="transparent" )
##
## p2 = ifelse( ( lst[[i]]$DEM[1:25] - lst[[i]]$REP[1:25] ) > 0, "DEM", "REP" )
## pie( table( p2 ), col=c( "blue", "red" ), labels=NA, cex=0.75, font=2 )
## mtext( paste( seq( 2012, 2020, 2 ) )[i], side=2, outer=TRUE, las=1, adj=0,
## at=seq( 0.1, 0.9, 0.2 )[i], line=2 )
## mtext( "Iowa Senate Statehouse Races", side=3, outer=TRUE, las=1, adj=0.5,
## at=0.5, line=3.5, cex=1.3 )
## mtext( "Votes Recieved", side=3, outer=TRUE, las=1, adj=0.5,
## at=0.25, line=1.5 )
## mtext( "Senate Seats", side=3, outer=TRUE, las=1, adj=0.5,
## at=0.75, line=1.5 )
##
## }
##
## par( mfrow=c( 1, 1 ), oma=rep( 0, 4 ), mar=c( 5, 4, 4, 2 ), cex=1 )
## }
## <bytecode: 0x7f994319dd58>
iowa.senate.plot.fun2()
print( iowa.house.plot.fun )
## function(lst = iowa.house.2012.2020 ){
##
## par( oma=c( 0, 4, 5, 0 ), mfrow=c( 5, 2 ), cex=0.8, mar=c( 0.2, 0.2, 0.2, 0.2 ), col="darkblue" )
##
## for ( i in 5:1 ) {
##
## pie( unlist( lst[[i]][ 101, 2:4 ] ), col=c( "blue", "red", "white" ), labels=NA,
## cex=0.75, font=2 )
##
## if ( i==5 ) legend( 2, 1.9, c( "Democratic", "Republican", "Other" ), fill=c( "blue", "red", "white" ),
## xpd=NA, box.col="transparent" )
##
## p2 = ifelse( ( lst[[i]]$DEM[1:100] - lst[[i]]$REP[1:100] ) > 0, "DEM", "REP" )
## pie( table( p2 ), col=c( "blue", "red" ), labels=NA, cex=0.75, font=2 )
## mtext( paste( seq( 2012, 2020, 2 ) )[i], side=2, outer=TRUE, las=1, adj=0,
## at=seq( 0.1, 0.9, 0.2 )[i], line=2 )
## mtext( "Iowa House Statehouse Races", side=3, outer=TRUE, las=1, adj=0.5,
## at=0.5, line=3.5, cex=1.3 )
## mtext( "Votes Recieved", side=3, outer=TRUE, las=1, adj=0.5,
## at=0.25, line=1.5 )
## mtext( "House Seats", side=3, outer=TRUE, las=1, adj=0.5,
## at=0.75, line=1.5 )
##
## }
##
## par( mfrow=c( 1, 1 ), oma=rep( 0, 4 ), mar=c( 5, 4, 4, 2 )+0.1, cex=1 )
## }
## <bytecode: 0x7f9943d69be8>
iowa.house.plot.fun()
The data are below.
print( iowa.senate.2012.2020 )
## [[1]]
## TOTAL DEM REP OTHER
## 1 2 0 26030 97
## 2 4 14299 16033 28
## 3 6 12058 16023 19
## 4 8 12632 10198 33
## 5 10 0 22594 480
## 6 12 0 22205 210
## 7 14 11011 17141 26
## 8 16 16065 8469 40
## 9 18 18954 8455 58
## 10 20 0 24236 994
## 11 22 14626 19067 143
## 12 24 14049 17035 32
## 13 26 14851 14868 21
## 14 28 16946 16265 24
## 15 30 16338 14346 27
## 16 32 21178 13401 24
## 17 34 15733 13360 30
## 18 36 14137 17124 22
## 19 38 11670 17628 24
## 20 40 15058 13281 1423
## 21 42 16125 12168 47
## 22 44 15960 13950 36
## 23 46 15858 16415 17
## 24 48 17305 14398 17
## 25 50 20808 9790 28
## 26 Total 325661 394480 3900
##
## [[2]]
## TOTAL DEM REP OTHER
## 1 1 0 18774 189
## 2 3 0 17176 195
## 3 5 9801 12383 14
## 4 7 5738 8766 848
## 5 9 0 16293 148
## 6 11 0 17681 206
## 7 13 8900 15326 907
## 8 15 13307 12008 39
## 9 17 10548 5374 1026
## 10 19 0 16742 3915
## 11 21 17851 0 512
## 12 23 11713 8094 38
## 13 25 0 18267 238
## 14 27 12898 10012 17
## 15 29 13245 11002 22
## 16 31 13387 0 186
## 17 33 14430 8932 38
## 18 35 15671 0 342
## 19 37 16613 0 364
## 20 39 12371 11306 29
## 21 41 9982 10356 53
## 22 43 18000 0 294
## 23 45 13013 0 246
## 24 47 11580 14988 19
## 25 49 11690 10808 23
## 26 Total 240738 244288 9908
##
## [[3]]
## TOTAL DEM REP OTHER
## 1 2 0 27522 103
## 2 4 11889 18359 22
## 3 6 0 20223 4105
## 4 8 10510 12379 44
## 5 10 10006 20053 53
## 6 12 0 20012 5570
## 7 14 0 19482 6780
## 8 16 14046 8114 1325
## 9 18 20388 0 469
## 10 20 15238 22431 69
## 11 22 15343 19413 53
## 12 24 11006 19435 41
## 13 26 11557 19165 28
## 14 28 10823 17501 1664
## 15 30 19568 13754 33
## 16 32 12441 18641 29
## 17 34 20008 15673 30
## 18 36 13111 14731 33
## 19 38 10524 18567 1837
## 20 40 0 23768 200
## 21 42 13434 13266 35
## 22 44 13000 14410 37
## 23 46 12615 16576 39
## 24 48 10596 20065 1244
## 25 50 18345 10635 42
## 26 Total 274448 424175 23885
##
## [[4]]
## TOTAL DEM REP OTHER
## 1 1 0 21245 384
## 2 3 8884 16366 34
## 3 5 8935 14571 19
## 4 7 9125 8676 26
## 5 9 0 18533 417
## 6 11 8770 18007 16
## 7 13 13558 17199 30
## 8 15 12830 16988 38
## 9 17 17808 0 633
## 10 19 17608 18598 37
## 11 21 20499 10511 46
## 12 23 19020 0 6414
## 13 25 10345 16621 23
## 14 27 12823 12322 15
## 15 29 13437 15493 10
## 16 31 14573 0 356
## 17 33 17912 9407 35
## 18 35 19875 0 784
## 19 37 20321 0 5724
## 20 39 15758 13130 21
## 21 41 10652 11460 36
## 22 43 23790 6107 29
## 23 45 14629 0 599
## 24 47 14418 16125 17
## 25 49 10916 13305 12
## 26 Total 336486 274664 15755
##
## [[5]]
## TOTAL DEM REP OTHER
## 1 2 0 26395 178
## 2 4 0 25450 584
## 3 6 8418 18919 34
## 4 8 11344 12391 31
## 5 10 14704 24538 49
## 6 12 8999 20165 51
## 7 14 0 24623 452
## 8 16 16868 0 5417
## 9 18 20696 0 565
## 10 20 20968 21943 51
## 11 22 23110 22946 61
## 12 24 11327 21732 30
## 13 26 10858 20655 23
## 14 28 11785 19630 28
## 15 30 17543 16516 41
## 16 32 12700 19990 15
## 17 34 29342 0 1066
## 18 36 10957 16841 39
## 19 38 11948 21238 45
## 20 40 8760 22022 36
## 21 42 11228 16766 31
## 22 44 12493 16447 50
## 23 46 12653 18479 25
## 24 48 12050 22544 34
## 25 50 18044 12677 41
## 26 Total 316795 442907 8977
print( iowa.house.2012.2020 )
## [[1]]
## TOTAL DEM REP OTHER
## 1 1 0 13604 106
## 2 2 6652 8652 14
## 3 3 0 12461 48
## 4 4 0 13846 55
## 5 5 0 12011 79
## 6 6 0 10793 242
## 7 7 7625 7669 18
## 8 8 0 11585 134
## 9 9 8399 5450 15
## 10 10 0 12339 177
## 11 11 0 9980 126
## 12 12 9189 5861 9
## 13 13 6410 5615 15
## 14 14 6617 4494 23
## 15 15 5013 5452 18
## 16 16 5117 6847 26
## 17 17 0 11153 143
## 18 18 4406 8351 53
## 19 19 7009 9908 23
## 20 20 5883 8109 27
## 21 21 6297 8322 19
## 22 22 0 13180 223
## 23 23 0 10743 112
## 24 24 0 11036 86
## 25 25 7487 9082 15
## 26 26 8452 7758 53
## 27 27 0 8230 3992
## 28 28 6569 8197 10
## 29 29 9831 5927 25
## 30 30 8764 8044 36
## 31 31 9803 0 250
## 32 32 8073 3109 13
## 33 33 8772 3303 34
## 34 34 8813 4608 38
## 35 35 7508 2727 26
## 36 36 11360 5368 43
## 37 37 0 11042 3712
## 38 38 6865 8334 704
## 39 39 8466 9218 26
## 40 40 9113 8044 16
## 41 41 12055 5054 49
## 42 42 7341 9581 17
## 43 43 8719 8742 17
## 44 44 7242 10101 17
## 45 45 8699 5081 914
## 46 46 8830 5209 28
## 47 47 7377 8133 15
## 48 48 6889 8485 15
## 49 49 6171 9192 16
## 50 50 0 12187 290
## 51 51 5324 9714 11
## 52 52 9777 0 3930
## 53 53 12269 0 262
## 54 54 0 12349 153
## 55 55 7781 7585 10
## 56 56 7361 7054 16
## 57 57 11779 0 225
## 58 58 7549 7964 16
## 59 59 8762 6621 17
## 60 60 8298 8966 12
## 61 61 9602 4063 15
## 62 62 10488 0 1562
## 63 63 8183 8298 11
## 64 64 9493 5007 17
## 65 65 12269 0 184
## 66 66 9286 7575 26
## 67 67 7947 8898 14
## 68 68 8480 8363 20
## 69 69 11316 0 164
## 70 70 10487 5929 23
## 71 71 7911 5431 10
## 72 72 7562 7778 17
## 73 73 7016 9068 31
## 74 74 12246 0 226
## 75 75 6479 9166 12
## 76 76 7561 8401 13
## 77 77 9907 6641 11
## 78 78 0 10715 188
## 79 79 4177 10804 29
## 80 80 7161 7271 18
## 81 81 7706 5158 22
## 82 82 8613 5984 16
## 83 83 9447 5373 29
## 84 84 0 11674 177
## 85 85 14241 0 234
## 86 86 12834 0 223
## 87 87 6898 2489 5240
## 88 88 6550 7548 25
## 89 89 10357 4992 21
## 90 90 8988 2692 601
## 91 91 6511 7426 21
## 92 92 8392 7626 15
## 93 93 9679 7429 16
## 94 94 8314 10330 14
## 95 95 8294 8494 10
## 96 96 0 10276 181
## 97 97 6572 10088 10
## 98 98 10052 0 3146
## 99 99 10098 6822 13
## 100 100 10557 0 210
## 101 Total 682390 710279 29629
##
## [[2]]
## TOTAL DEM REP OTHER
## 1 1 0 9997 109
## 2 2 0 8770 1327
## 3 3 2305 9225 8
## 4 4 0 11125 53
## 5 5 0 9164 46
## 6 6 0 8292 143
## 7 7 4894 6628 9
## 8 8 4021 7288 17
## 9 9 7279 0 193
## 10 10 0 8437 2327
## 11 11 0 7715 86
## 12 12 5349 6445 10
## 13 13 4766 3027 14
## 14 14 4812 0 128
## 15 15 3069 2994 14
## 16 16 2795 4477 10
## 17 17 3174 7641 13
## 18 18 2867 6405 9
## 19 19 0 10340 216
## 20 20 4266 6358 19
## 21 21 3842 6909 8
## 22 22 0 9217 148
## 23 23 0 7834 106
## 24 24 0 8442 58
## 25 25 0 9603 146
## 26 26 6725 5726 21
## 27 27 3278 6609 17
## 28 28 4360 7079 5
## 29 29 6557 5628 25
## 30 30 5733 7323 16
## 31 31 5950 0 1593
## 32 32 5449 0 119
## 33 33 5852 0 163
## 34 34 5765 3065 41
## 35 35 4876 0 182
## 36 36 9307 0 252
## 37 37 0 10134 231
## 38 38 4695 6909 16
## 39 39 6529 7965 20
## 40 40 7219 5782 20
## 41 41 8902 0 1982
## 42 42 4911 7419 24
## 43 43 5916 7598 12
## 44 44 0 9967 155
## 45 45 6445 0 2111
## 46 46 6722 0 167
## 47 47 4386 7173 15
## 48 48 0 8613 126
## 49 49 4085 7727 13
## 50 50 3164 8931 24
## 51 51 4272 7268 8
## 52 52 8509 0 128
## 53 53 8558 0 161
## 54 54 0 9569 122
## 55 55 5935 5962 14
## 56 56 6189 4895 11
## 57 57 7020 5380 376
## 58 58 4591 7123 11
## 59 59 6036 4867 12
## 60 60 5456 7841 9
## 61 61 5503 3782 10
## 62 62 6733 0 84
## 63 63 5299 7347 10
## 64 64 5737 5497 15
## 65 65 7993 0 181
## 66 66 8420 0 252
## 67 67 0 9405 211
## 68 68 6171 6989 23
## 69 69 6974 0 129
## 70 70 8576 0 185
## 71 71 5300 4334 10
## 72 72 4242 7362 16
## 73 73 4035 8448 8
## 74 74 8916 0 141
## 75 75 3854 7865 13
## 76 76 5052 7133 14
## 77 77 8910 0 209
## 78 78 3494 7356 4
## 79 79 0 9507 99
## 80 80 3232 6241 1021
## 81 81 6484 0 194
## 82 82 5885 5487 20
## 83 83 6033 0 234
## 84 84 0 7457 1623
## 85 85 9780 0 135
## 86 86 8191 0 134
## 87 87 6786 0 157
## 88 88 0 7574 138
## 89 89 6961 0 163
## 90 90 5374 0 111
## 91 91 4042 5286 22
## 92 92 5175 6117 17
## 93 93 6381 5699 5
## 94 94 0 10414 155
## 95 95 5737 7624 15
## 96 96 0 7226 2194
## 97 97 4990 7595 14
## 98 98 6892 0 173
## 99 99 7072 4567 23
## 100 100 6657 0 157
## 101 Total 447712 519198 21738
##
## [[3]]
## TOTAL DEM REP OTHER
## 1 1 0 14627 122
## 2 2 0 12756 186
## 3 3 2848 12096 17
## 4 4 0 9815 5848
## 5 5 3445 11774 9
## 6 6 5086 9655 38
## 7 7 5608 9665 11
## 8 8 4701 10078 8
## 9 9 7461 5562 14
## 10 10 0 13063 151
## 11 11 4475 8279 15
## 12 12 4369 10349 8
## 13 13 7027 4365 16
## 14 14 5365 5126 22
## 15 15 5424 5056 17
## 16 16 5120 6847 16
## 17 17 3866 10712 16
## 18 18 0 10603 139
## 19 19 6597 10393 20
## 20 20 4006 7204 2492
## 21 21 0 11716 127
## 22 22 0 14015 258
## 23 23 4061 10068 17
## 24 24 0 11702 97
## 25 25 5850 11280 32
## 26 26 9122 7769 24
## 27 27 3885 9478 15
## 28 28 5230 9593 14
## 29 29 7903 5831 1767
## 30 30 6999 11442 31
## 31 31 7160 5027 824
## 32 32 7142 2920 492
## 33 33 7785 0 2452
## 34 34 9677 0 268
## 35 35 6458 0 2120
## 36 36 10348 5853 43
## 37 37 8954 12059 35
## 38 38 7264 8793 821
## 39 39 8549 11492 44
## 40 40 9660 7332 45
## 41 41 13363 0 287
## 42 42 7948 9065 26
## 43 43 8273 8809 33
## 44 44 0 13818 258
## 45 45 9036 5730 1305
## 46 46 11927 0 247
## 47 47 5983 9165 18
## 48 48 5397 9829 16
## 49 49 4382 9315 1884
## 50 50 3901 11493 18
## 51 51 5647 9408 13
## 52 52 8160 6847 10
## 53 53 8977 5869 20
## 54 54 0 12675 151
## 55 55 6697 8943 18
## 56 56 6605 7910 10
## 57 57 8249 9023 15
## 58 58 6296 9048 16
## 59 59 8567 4891 2329
## 60 60 7267 10115 17
## 61 61 9206 0 152
## 62 62 7113 3354 816
## 63 63 6644 9927 29
## 64 64 8288 5912 20
## 65 65 9724 4881 43
## 66 66 11669 0 287
## 67 67 6749 11248 15
## 68 68 7921 9317 20
## 69 69 10730 0 236
## 70 70 8877 5698 1074
## 71 71 8668 0 205
## 72 72 5841 9397 20
## 73 73 0 12388 247
## 74 74 12839 0 201
## 75 75 4924 10448 21
## 76 76 5907 9754 27
## 77 77 10217 7461 26
## 78 78 0 10138 2834
## 79 79 0 12615 114
## 80 80 5009 8557 512
## 81 81 8356 0 302
## 82 82 10488 0 302
## 83 83 9617 0 236
## 84 84 4225 9636 9
## 85 85 15213 0 209
## 86 86 12689 0 194
## 87 87 9333 0 196
## 88 88 5469 8619 18
## 89 89 10549 0 302
## 90 90 8442 0 219
## 91 91 6229 7293 20
## 92 92 6782 8676 21
## 93 93 8470 7865 22
## 94 94 0 14696 285
## 95 95 7085 9868 18
## 96 96 4950 9276 14
## 97 97 6202 9345 1255
## 98 98 8547 4306 19
## 99 99 10780 0 234
## 100 100 9213 0 192
## 101 Total 641085 727023 36348
##
## [[4]]
## TOTAL DEM REP OTHER
## 1 1 3617 10501 8
## 2 2 4231 8241 14
## 3 3 0 10694 102
## 4 4 0 11037 565
## 5 5 2949 9774 8
## 6 6 5469 7092 14
## 7 7 5404 7153 8
## 8 8 4125 8413 4
## 9 9 5221 5604 8
## 10 10 4211 8595 15
## 11 11 0 8376 186
## 12 12 4402 8458 5
## 13 13 6685 0 312
## 14 14 4606 3936 9
## 15 15 4635 3590 10
## 16 16 4835 4949 212
## 17 17 3468 8584 18
## 18 18 0 8316 242
## 19 19 7689 10539 513
## 20 20 4625 7659 15
## 21 21 4139 7932 6
## 22 22 5003 9707 21
## 23 23 4060 7931 7
## 24 24 3666 7709 5
## 25 25 6470 9420 10
## 26 26 8195 6572 24
## 27 27 3441 7691 11
## 28 28 4538 8132 7
## 29 29 7620 5354 16
## 30 30 7378 9463 14
## 31 31 8576 0 360
## 32 32 6250 2388 263
## 33 33 6886 3283 22
## 34 34 7930 3229 601
## 35 35 5682 0 1617
## 36 36 11246 0 2754
## 37 37 9618 10428 25
## 38 38 8216 7710 15
## 39 39 9658 9353 371
## 40 40 11565 0 382
## 41 41 12279 0 2196
## 42 42 8346 7155 10
## 43 43 8852 6431 329
## 44 44 11169 9959 479
## 45 45 9607 4342 16
## 46 46 10725 0 258
## 47 47 5974 6856 429
## 48 48 5643 8052 12
## 49 49 5524 7950 536
## 50 50 4346 8763 5
## 51 51 5254 7379 4
## 52 52 9465 0 267
## 53 53 9787 0 351
## 54 54 0 10370 284
## 55 55 6915 6924 7
## 56 56 5136 7090 15
## 57 57 6627 8655 475
## 58 58 4004 9004 10
## 59 59 10431 0 388
## 60 60 7945 7711 13
## 61 61 7596 0 197
## 62 62 7005 0 189
## 63 63 6168 8059 7
## 64 64 9008 0 272
## 65 65 9002 3956 20
## 66 66 8725 5571 17
## 67 67 7932 8593 12
## 68 68 8608 6979 15
## 69 69 8276 0 2738
## 70 70 9364 0 113
## 71 71 5868 4172 8
## 72 72 5243 7708 13
## 73 73 6349 8004 13
## 74 74 12514 0 244
## 75 75 4918 7904 348
## 76 76 5731 8068 13
## 77 77 12330 0 448
## 78 78 4369 7766 16
## 79 79 2978 9186 432
## 80 80 4391 7630 13
## 81 81 5372 4501 9
## 82 82 6083 6120 17
## 83 83 5552 4705 17
## 84 84 4289 6982 7
## 85 85 14183 0 214
## 86 86 11900 0 207
## 87 87 6010 4596 7
## 88 88 4965 6279 217
## 89 89 8261 0 342
## 90 90 6135 0 249
## 91 91 4880 5669 17
## 92 92 5911 6552 10
## 93 93 9660 0 484
## 94 94 7572 9226 7
## 95 95 7029 8227 11
## 96 96 4629 7721 19
## 97 97 6322 7580 364
## 98 98 7614 0 305
## 99 99 8476 5564 14
## 100 100 6799 4015 19
## 101 Total 652355 565787 22547
##
## [[5]]
## TOTAL DEM REP OTHER
## 1 1 0 15367 212
## 2 2 0 13597 216
## 3 3 0 12445 109
## 4 4 2870 13149 43
## 5 5 0 13942 150
## 6 6 0 12097 303
## 7 7 5847 9464 13
## 8 8 3838 11250 23
## 9 9 5720 7717 20
## 10 10 3823 11871 29
## 11 11 4411 8474 11
## 12 12 3280 11702 457
## 13 13 6625 4719 25
## 14 14 5980 4711 13
## 15 15 5718 4990 13
## 16 16 5889 6615 547
## 17 17 3682 11397 25
## 18 18 3762 10321 15
## 19 19 9469 14765 33
## 20 20 4157 10822 29
## 21 21 4348 10194 30
## 22 22 5840 13308 12
## 23 23 0 12917 219
## 24 24 3694 10574 14
## 25 25 7416 12944 22
## 26 26 8431 9784 26
## 27 27 3565 10109 33
## 28 28 0 12707 185
## 29 29 8471 7954 12
## 30 30 8384 12924 26
## 31 31 10070 0 435
## 32 32 9000 0 287
## 33 33 8248 4666 38
## 34 34 9470 4787 48
## 35 35 7542 0 235
## 36 36 13198 0 374
## 37 37 12578 14309 37
## 38 38 9927 10084 22
## 39 39 12040 12455 24
## 40 40 10589 7108 28
## 41 41 13914 0 329
## 42 42 10102 7896 30
## 43 43 9948 7375 14
## 44 44 15244 13138 367
## 45 45 11399 0 4226
## 46 46 10689 0 251
## 47 47 6512 9503 20
## 48 48 6280 10381 17
## 49 49 6820 10464 26
## 50 50 4733 11683 20
## 51 51 4772 11388 11
## 52 52 8210 7072 11
## 53 53 9772 5081 20
## 54 54 3602 10217 1919
## 55 55 7463 8886 14
## 56 56 4617 10369 22
## 57 57 6330 12878 13
## 58 58 7884 9123 12
## 59 59 11606 0 341
## 60 60 9558 9082 26
## 61 61 9589 0 248
## 62 62 8801 0 192
## 63 63 6489 11209 6
## 64 64 6435 8284 4
## 65 65 11841 0 393
## 66 66 10271 6766 27
## 67 67 10541 9274 20
## 68 68 10201 8484 20
## 69 69 11932 0 411
## 70 70 10916 0 3819
## 71 71 6800 5315 15
## 72 72 6119 9739 23
## 73 73 7307 11067 18
## 74 74 15407 0 245
## 75 75 5907 10377 21
## 76 76 6491 9760 551
## 77 77 15416 0 506
## 78 78 4842 10284 27
## 79 79 0 13434 187
## 80 80 0 12113 157
## 81 81 5894 6684 22
## 82 82 7604 7770 26
## 83 83 6197 6967 11
## 84 84 4146 10282 23
## 85 85 15107 0 195
## 86 86 13758 0 202
## 87 87 9992 0 331
## 88 88 5141 9880 22
## 89 89 7967 6159 421
## 90 90 8363 0 310
## 91 91 6130 8093 19
## 92 92 7304 9302 13
## 93 93 9530 7549 20
## 94 94 9727 12042 16
## 95 95 8619 10071 13
## 96 96 4693 10765 26
## 97 97 6630 11403 19
## 98 98 7872 5329 16
## 99 99 9449 7232 30
## 100 100 9953 0 367
## 101 Total 726718 786409 21074