1 Data Quality Checks

1.1 Exclusions (Qualtrics filters)


(For the tables, the column ‘n’ refers to the number of participants and the percentage is next to this.)

Below are some of the tags that Qualtrics put on certain participants for us to check. We can see here that a total of 2747 people accessed the survey. For the manuscript we will report 2344 (explained below).

2046 did not get assigned any tag. 400 did not consent, 155 who responded either that they will not provide their best answers or could not promise to, 16 were under the age of 18, 130 were white (this actually is for when we asked them to get us 200 more white participants. They used this to filter out 130 participants who did not indicate that they were white. I won’t include this in the manuscript as is technically a quota filter implemented by Qualtrics. We do mention the quota filters in the methods section).

term n percent
2046 74.5%
No_consent 400 14.6%
not_best_answers 155 5.6%
underage 16 0.6%
white 130 4.7%

Qualtrics also included a variable “gc” for us to filter participants:

  • Those that don’t have a gc value (""), are either responses that were gathered previously, or responses in progress that never finished the survey on their own (n=343)
  • Those with a gc value equal to 1 designate the Good Completes. (n=1703)
  • Those with a gc value equal to 2 are Screen Out responses. (n=546)
  • Those with a gc value equal to 3 are Over Quota responses which are complete responses that came in after the Total sample size quota was filled. (n=0)
  • Those with a gc value equal to 4 are those that have failed a quality check. (n=155)

I will double check on “speeders” (anyone who finished in less than 6 minutes) as it appears did we not have any.

gc n
343
1 1703
2 546
4 155

We will filter out all except the good completes so our final sample is 1703.

#df %>% filter(gc == "4") %>% group_by(gc, term) %>% tally() %>% dplyr::mutate(percent =  scales::percent(n/sum(n), accuracy = 0.1)) %>% arrange(desc(n)) %>% print(n = Inf)

df <-  df %>%filter(gc == "1")

1.2 Timing


1.2.1 Overall

Median completion timing for the study is 15 minutes and 1 second.

## [1] "15M 1S"

Mean completion timing for current study is 20 minutes and 15 seconds

## [1] "20M 15.4680000000001S"

1.2.2 Messages

Summary results of total time taken on the CDC message:

##    vars   n  mean    sd median trimmed   mad  min     max   range  skew
## X1    1 546 57.69 137.5  20.36   35.27 23.62 1.91 2349.12 2347.21 10.74
##    kurtosis   se
## X1   155.57 5.88

Written in time format as the mean,

## [1] "57.69S"

standard deviation,

## [1] "2M 17.5S"

and median

## [1] "20.36S"

Summary results of total time taken on the tailored message

##    vars   n  mean    sd median trimmed  mad  min    max  range skew kurtosis
## X1    1 575 76.01 96.78  51.45   58.44 48.7 4.58 979.64 975.06 4.67    30.69
##      se
## X1 4.04

Written in time format as the mean,

## [1] "1M 16.01S"

standard deviation,

## [1] "1M 36.78S"

and median

## [1] "51.45S"

1.3 Group and quota checks


1.3.1 Groups


Study groups assignment to the three groups (control;CDC;KS) looks good with around 33% in each.

Group n percent
Control 582 34.2%
CDC 546 32.1%
KS 575 33.8%

Framing groups assignment to the two question framings (out of 100…how many will die vs how many will recover) again looks good as exactly 50/50.

Frame n percent
How many die framing 852 50.0%
How many recover framing 851 50.0%

1.3.2 Quotas


Age quota looks good. We asked for 30.5%, 34.4%, and 35.2%.

Age_group n percent
18 to 34 511 30.0%
35 to 54 571 33.5%
55 and older 593 34.8%
NA 28 1.6%
##    vars    n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 1675 45.12 17.09     42   44.61 20.76  18  93    75 0.23       -1 0.42

Gender quota looks fine too. Close enough to 50/50.

GenderCHR n percent
Female 820 48.2%
Male or Other Gender 883 51.8%

Full breakdown here.

## # A tibble: 7 x 3
##   Gender                             n percent
##   <chr>                          <int> <chr>  
## 1 Female                           820 48.2%  
## 2 Male                             841 49.4%  
## 3 Non-binary / Third gender         14 0.8%   
## 4 Prefer not to say                  6 0.4%   
## 5 Prefer to self-describe           10 0.6%   
## 6 Transgender man / Transman         9 0.5%   
## 7 Transgender woman / Transwoman     3 0.2%

Income quota looks good and close to the 40%, 33% and 27% that we asked for.

Income_group n percent
$0 - $49k 861 50.6%
$50K to $99K 569 33.4%
$100K and more 271 15.9%
NA 2 0.1%
##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1701 5.96 3.71      5    5.91 4.45   1  12    11 0.11    -1.46 0.09

Race/Ethnicity quota it is a bit hard to tell right now. I have spoken to Qualtrics to try and get more information.

We asked for:

  • Non-Hispanic White 62.3%
  • Non-Hispanic Black 12.4%
  • Hispanic 17.3%
  • Asian/Other Race 8%




Here are the full results from the Race question that we put in (this was a multiple choice question and participants could mark as many as they wished) combined with our question about whether they are Hispanic or Non-Hispanic. This is what I used to work out the figures that are in the manuscript.

HispCHR RaceCHR n percent
Non-hispanic 2 0.1%
Non-hispanic American Indian or Alaskan Native 28 1.9%
Non-hispanic American Indian or Alaskan Native & Asian or Asian American 1 0.1%
Non-hispanic American Indian or Alaskan Native & Asian or Asian American & Black or African American 1 0.1%
Non-hispanic American Indian or Alaskan Native & Asian or Asian American & White or European American 2 0.1%
Non-hispanic American Indian or Alaskan Native & Black or African American 7 0.5%
Non-hispanic American Indian or Alaskan Native & Black or African American & White or European American 1 0.1%
Non-hispanic American Indian or Alaskan Native & Other 1 0.1%
Non-hispanic American Indian or Alaskan Native & White or European American 10 0.7%
Non-hispanic Asian or Asian American 59 4.1%
Non-hispanic Asian or Asian American & Black or African American 2 0.1%
Non-hispanic Asian or Asian American & Native Hawaiian or other Pacific Islander 1 0.1%
Non-hispanic Asian or Asian American & White or European American 3 0.2%
Non-hispanic Black or African American 314 21.8%
Non-hispanic Black or African American & Other 2 0.1%
Non-hispanic Black or African American & White or European American 5 0.3%
Non-hispanic Native Hawaiian or other Pacific Islander 4 0.3%
Non-hispanic Other 37 2.6%
Non-hispanic White or European American 959 66.6%
Non-hispanic White or European American & Other 2 0.1%
Hispanic 2 0.8%
Hispanic American Indian or Alaskan Native 10 3.9%
Hispanic American Indian or Alaskan Native & Black or African American 1 0.4%
Hispanic American Indian or Alaskan Native & Other 1 0.4%
Hispanic American Indian or Alaskan Native & White or European American 3 1.2%
Hispanic Asian or Asian American 17 6.7%
Hispanic Asian or Asian American & White or European American 1 0.4%
Hispanic Black or African American 39 15.3%
Hispanic Black or African American & Native Hawaiian or other Pacific Islander 1 0.4%
Hispanic Black or African American & White or European American 2 0.8%
Hispanic Native Hawaiian or other Pacific Islander 3 1.2%
Hispanic Other 73 28.6%
Hispanic White or European American 101 39.6%
Hispanic White or European American & Other 1 0.4%
American Indian or Alaskan Native 1 14.3%
American Indian or Alaskan Native & Black or African American 1 14.3%
Asian or Asian American 1 14.3%
Black or African American 2 28.6%
White or European American 2 28.6%

HispCHR RaceCHR count freq
Non-hispanic 2 2 (0.1%)
Non-hispanic American Indian or Alaskan Native 28 28 (1.6%)
Non-hispanic American Indian or Alaskan Native & Asian or Asian American 1 1 (0.1%)
Non-hispanic American Indian or Alaskan Native & Asian or Asian American & Black or African American 1 1 (0.1%)
Non-hispanic American Indian or Alaskan Native & Asian or Asian American & White or European American 2 2 (0.1%)
Non-hispanic American Indian or Alaskan Native & Black or African American 7 7 (0.4%)
Non-hispanic American Indian or Alaskan Native & Black or African American & White or European American 1 1 (0.1%)
Non-hispanic American Indian or Alaskan Native & Other 1 1 (0.1%)
Non-hispanic American Indian or Alaskan Native & White or European American 10 10 (0.6%)
Non-hispanic Asian or Asian American 59 59 (3.5%)
Non-hispanic Asian or Asian American & Black or African American 2 2 (0.1%)
Non-hispanic Asian or Asian American & Native Hawaiian or other Pacific Islander 1 1 (0.1%)
Non-hispanic Asian or Asian American & White or European American 3 3 (0.2%)
Non-hispanic Black or African American 314 314 (18.4%)
Non-hispanic Black or African American & Other 2 2 (0.1%)
Non-hispanic Black or African American & White or European American 5 5 (0.3%)
Non-hispanic Native Hawaiian or other Pacific Islander 4 4 (0.2%)
Non-hispanic Other 37 37 (2.2%)
Non-hispanic White or European American 959 959 (56.3%)
Non-hispanic White or European American & Other 2 2 (0.1%)
Hispanic 2 2 (0.1%)
Hispanic American Indian or Alaskan Native 10 10 (0.6%)
Hispanic American Indian or Alaskan Native & Black or African American 1 1 (0.1%)
Hispanic American Indian or Alaskan Native & Other 1 1 (0.1%)
Hispanic American Indian or Alaskan Native & White or European American 3 3 (0.2%)
Hispanic Asian or Asian American 17 17 (1.0%)
Hispanic Asian or Asian American & White or European American 1 1 (0.1%)
Hispanic Black or African American 39 39 (2.3%)
Hispanic Black or African American & Native Hawaiian or other Pacific Islander 1 1 (0.1%)
Hispanic Black or African American & White or European American 2 2 (0.1%)
Hispanic Native Hawaiian or other Pacific Islander 3 3 (0.2%)
Hispanic Other 73 73 (4.3%)
Hispanic White or European American 101 101 (5.9%)
Hispanic White or European American & Other 1 1 (0.1%)
American Indian or Alaskan Native 1 1 (0.1%)
American Indian or Alaskan Native & Black or African American 1 1 (0.1%)
Asian or Asian American 1 1 (0.1%)
Black or African American 2 2 (0.1%)
White or European American 2 2 (0.1%)


2 Participant Descriptives

2.1 Region


Q1. What state do you live in?


Response scale: List of all states (re-coded by region)


We did not set a quota for regions, but it is interesting to see how much these differ based on census data. I have worked out some rough estimates of how off we are below (seems mainly over-represented in NE and under-represented in MW).

  • Midwest: (-6.3%)
  • Northeast: (+7.7%)
  • South: (-2.5%)
  • West: (-0.9%)
region n percent
south 593 34.8%
northeast 432 25.4%
west 396 23.3%
midwest 258 15.1%
24 1.4%

  • Q2. How would you best describe the place where you live?
RuralSub n percent
Suburban near large city 574 33.7%
large city more than 1million 355 20.8%
Rural 305 17.9%
Small (less than 100,000) 232 13.6%
Mid sized city (100,000 to 1million) 221 13.0%
Other 13 0.8%
3 0.2%

2.2 CV19: Health


  • Q1. Have you been diagnosed with COVID-19?
HadCov1 n percent
No, I Haven’t had COVID-19 1393 81.8%
Yes, I currently have COVID-19 176 10.3%
Yes, I had COVID-19 and I recovered 134 7.9%

  • Q2. Do you have a pre-existing health condition (respiratory illness, cancer, heart disease, high blood pressure, diabetes etc.) that makes you more vulnerable to COVID-19?
CoVatRisk n percent
Yes 817 48.0%
No 786 46.2%
Unsure 99 5.8%
1 0.1%

2.3 CV19: Exposure


  • Q1. Has anyone you care about been diagnosed with COVID-19? select all that apply?
KnowCov1 n percent
No 803 47.2%
Yes immediate family 232 13.6%
yes, friend 217 12.7%
yes other family 184 10.8%
yes, co-worker 39 2.3%
yes, other family & friend 39 2.3%
No & yes, friend 29 1.7%
No & yes, other family 25 1.5%
yes, friend & co-worker 24 1.4%
Yes, immediate family & friend 23 1.4%
Yes, immediate family & other family 12 0.7%
Yes, immediate family & other family & friend 12 0.7%
yes, other family & friend & co-worker 11 0.6%
No & yes, co-worker 9 0.5%
Yes, immediate family & friend & co-worker 9 0.5%
Yes, immediate family & other family & friend & co-worker 8 0.5%
No & Yes, immediate family 7 0.4%
yes, other family & co-worker 7 0.4%
Yes, immediate family & other family & co-worker 3 0.2%
No & yes, friend & co-worker 2 0.1%
Yes, immediate family & co-worker 2 0.1%
1 0.1%
No & Yes immediate family & co-worker 1 0.1%
No & Yes immediate family & other family 1 0.1%
No & Yes immediate family & other family & friend & co-worker 1 0.1%
No & yes other family & co-worker 1 0.1%
No & yes other family & friend 1 0.1%

  • Q2. To the best of your knowledge, are there currently any people diagnosed with COVID-19 in your city or town?
KnowCov2 n percent
Yes 1206 70.8%
No 312 18.3%
Don’t know 185 10.9%

2.4 Medical work


  • Q1. Do you work in a medical field?
MedWork n percent
No 1545 90.7%
Yes 136 8.0%
22 1.3%

For those who said they work in a medical field (n=129) we asked them to specify their area of work. Only 68 gave written answer. The responses are below in a table with each row and each column representing a different response.

Home health care Healthy
Hospitality Adverting and marketing research
Good Doctors
Home health care yes
Nurse Foi o que
Doctor No
Home healthcare Call cenrer
Dentist Modesto
Cardiology Pharmacy
Y Clinical tech
Nursing Healthcare
Clinical lab CPR
RN LPN
Administration Cna
nurse Nurse
Pediatrics Retired LPN
Sleep apnea coloda
Nursing home Audiologist
Youth care worker just got laid off Nurse
Home health Care giver of elderly
1 ok
doctors like it
good urban
Good. Critical care and Rapid Response Team
bvhvhvh Endocrine
Alsome mental health
Medical xdcgb
good gftrf
it departmant pharmacy
I don’t but my mom does, she’s a nurse for premature babies Social Work in a Nursing Home
Nursing Customer service
Hospital in the ER Business office manager of skilled nursing facility
Emergency medical services 200
2 Medical assistant
Pharmacy 1
CNA Cna
Healthcare Retired RN
Med surg Home health care

2.5 Politics



2.5.1 Affiliation


  • Q1. Which political party are you affiliated with?
PolParty n percent
3 0.2%
Conservative third party 15 0.9%
Democrat 832 48.9%
Independent 308 18.1%
Liberal third party 27 1.6%
No political affiliation 112 6.6%
Republican 406 23.8%

2.5.2 CV19: Response


We asked: “Indicate whether you approve or disapprove of each individual or group’s handling of the COVID-19 pandemic. There are no right or wrong answers. Please answer in a way that reflects your own personal beliefs.”

  • Q1. President Trump
  • Q2. Centers for Disease Control and Prevention (CDC)
  • Q3. U.S. Senate
  • Q4. U.S. House of Representatives
  • Q5. Your State Governor

Response scale: Strongly disapprove(1), Disapprove(2), Neither approve nor disapprove(3), Approve(4), Strongly approve(5).


Below are the descriptive responses for these items overall.

##               vars    n mean   sd median trimmed  mad min max range  skew
## PolApproval_1    1 1696 2.66 1.61      2    2.58 1.48   1   5     4  0.28
## PolApproval_2    2 1700 3.52 1.18      4    3.61 1.48   1   5     4 -0.53
## PolApproval_3    3 1699 2.98 1.29      3    2.98 1.48   1   5     4 -0.04
## PolApproval_4    4 1700 3.09 1.26      3    3.11 1.48   1   5     4 -0.15
## PolApproval_5    5 1698 3.33 1.37      4    3.41 1.48   1   5     4 -0.42
##               kurtosis   se
## PolApproval_1    -1.55 0.04
## PolApproval_2    -0.58 0.03
## PolApproval_3    -1.01 0.03
## PolApproval_4    -0.97 0.03
## PolApproval_5    -1.05 0.03

  • Q1. In general, do you think the government is doing not enough or too much to address the spread of COVID-19?

Response scale (slider): Not enough (0) ——Just right (50) —— Too much (100).


Below are the descriptive responses for this item overall and then split by group.

##    vars    n  mean    sd median trimmed   mad min max range skew kurtosis   se
## X1    1 1506 56.14 28.45     55    56.6 35.58   1 100    99 -0.1    -1.06 0.73
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 512 56.89 28.56     56   57.48 35.58   1 100    99 -0.11    -1.07 1.26
## ------------------------------------------------------------ 
## group: CDC
##    vars   n  mean    sd median trimmed   mad min max range  skew kurtosis   se
## X1    1 480 56.54 28.13     54   56.85 35.58   1 100    99 -0.07    -1.12 1.28
## ------------------------------------------------------------ 
## group: KS
##    vars   n  mean    sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 514 55.01 28.67     54   55.43 34.1   1 100    99 -0.12    -1.02 1.26

2.5.3 Outlook


Currently, I’m just looking at overall alignments, but we can also use these to subset.

  • Q1. How would you describe your political outlook with regard to economic issues?
  • Q2. How would you describe your political outlook with regard to social issues?

Response scale (slider): Very liberal(1), Liberal(2), Slightly liberal(3), Moderate(4), Slightly conservative(5), Conservative(6), Very conservative(7).


Below are the descriptive responses for these items overall.

##         vars    n mean   sd median trimmed  mad min max range  skew kurtosis
## PolEcon    1 1694 4.17 1.93      4    4.21 2.97   1   7     6 -0.11    -1.00
## PolSoc     2 1698 4.10 1.86      4    4.13 2.97   1   7     6 -0.05    -0.96
##           se
## PolEcon 0.05
## PolSoc  0.05

2.6 Religion


  • Q1. How religious are you?

Response scale: Not at all religious(1), — (2), — (3), — (4), — (5), — (6), Very religious(7)


Descriptive statistics for this item overall shown below.

##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1703 4.78 2.08      5    4.97 2.97   1   7     6 -0.58    -0.94 0.05

  • Q2. How would you describe your religious views?

Response scale: Very traditional(1), — (2), — (3), — (4), — (5), — (6), Very Progressive(7), Not at all religious (8)


Around 12% of respondents said that they were not religious at all.

Relig2 n percent
1 216 12.7%
2 130 7.6%
3 156 9.2%
4 217 12.7%
5 211 12.4%
6 171 10.0%
7 385 22.6%
8 217 12.7%

Descriptive statistics for this item overall shown below. For this I excluded those who said they are not religious at all.

##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1486 4.43 2.12      5    4.54 2.97   1   7     6 -0.27    -1.25 0.06

2.7 Literacy


  • Q1. How often do you have someone (like a family member, friend, hospital/clinic worker or caregiver) help you read instructions, pamphlets or other written health materials from your doctor or pharmacy?

Response scale (slider): Never(1), Rarely(2), Sometimes(3), Often(4), Always(5).


Below are the descriptive statistics for the health literacy item overall and then split by group assignment.

##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1701 2.44 1.46      2     2.3 1.48   1   5     4 0.54    -1.09 0.04
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 580 2.47 1.47      2    2.33 1.48   1   5     4 0.49    -1.16 0.06
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 546 2.43 1.48      2    2.29 1.48   1   5     4 0.55    -1.12 0.06
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 575 2.41 1.44      2    2.27 1.48   1   5     4 0.57    -1.01 0.06

2.8 Numeracy


  • Q1. How good are you at working with fractions?]
  • Q2. How good are you at figuring out how much a shirt will cost if it is 25% off?

Response scale (slider): Not at all good(1), — (2), — (3), — (4), — (5) Extremely good(6).


  • Q3. How often do you find numerical information to be useful?

Response scale (slider): Never(1), — (2), — (3), — (4), — (5) Very often (6).


Below are the descriptive statistics for the SNS items overall and then split by group assignment.

##      vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## Num1    1 1702 4.10 1.59      4    4.23 1.48   1   6     5 -0.46    -0.85 0.04
## Num2    2 1702 4.52 1.48      5    4.71 1.48   1   6     5 -0.78    -0.36 0.04
## Num3    3 1703 4.47 1.38      5    4.62 1.48   1   6     5 -0.64    -0.37 0.03
## 
##  Descriptive statistics by group 
## group: Control
##      vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## Num1    1 582 4.09 1.57      4    4.22 1.48   1   6     5 -0.43    -0.90 0.07
## Num2    2 582 4.49 1.49      5    4.67 1.48   1   6     5 -0.72    -0.49 0.06
## Num3    3 582 4.50 1.34      5    4.62 1.48   1   6     5 -0.54    -0.61 0.06
## ------------------------------------------------------------ 
## group: CDC
##      vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## Num1    1 546 4.08 1.60      4    4.23 1.48   1   6     5 -0.47    -0.86 0.07
## Num2    2 545 4.46 1.50      5    4.65 1.48   1   6     5 -0.76    -0.41 0.06
## Num3    3 546 4.45 1.38      5    4.61 1.48   1   6     5 -0.67    -0.31 0.06
## ------------------------------------------------------------ 
## group: KS
##      vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## Num1    1 574 4.11 1.59      4    4.25 1.48   1   6     5 -0.47    -0.79 0.07
## Num2    2 575 4.61 1.45      5    4.82 1.48   1   6     5 -0.86    -0.17 0.06
## Num3    3 575 4.46 1.41      5    4.63 1.48   1   6     5 -0.71    -0.26 0.06

The reliability looks good. Cronbach’s alpha is .84.

## 
## Reliability analysis   
## Call: psych::alpha(x = df[140:142])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.84      0.85    0.79      0.65 5.5 0.0065  4.4 1.3     0.65
## 
##  lower alpha upper     95% confidence boundaries
## 0.83 0.84 0.86 
## 
##  Reliability if an item is dropped:
##      raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## Num1      0.78      0.79    0.65      0.65 3.7    0.010    NA  0.65
## Num2      0.78      0.78    0.64      0.64 3.6    0.011    NA  0.64
## Num3      0.79      0.79    0.66      0.66 3.8    0.010    NA  0.66
## 
##  Item statistics 
##         n raw.r std.r r.cor r.drop mean  sd
## Num1 1702  0.88  0.87  0.78   0.71  4.1 1.6
## Num2 1702  0.88  0.88  0.78   0.72  4.5 1.5
## Num3 1703  0.86  0.87  0.77   0.71  4.5 1.4
## 
## Non missing response frequency for each item
##         1    2    3    4    5    6 miss
## Num1 0.09 0.08 0.17 0.20 0.21 0.25    0
## Num2 0.05 0.06 0.13 0.18 0.23 0.35    0
## Num3 0.03 0.06 0.15 0.23 0.24 0.30    0

Below are the descriptive statistics for the SNS overall and then split by group assignment.

##    vars    n mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1703 4.36 1.3   4.67    4.47 1.48   1   6     5 -0.54    -0.55 0.03
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 582 4.36 1.28   4.33    4.45 1.48   1   6     5 -0.39     -0.8 0.05
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 546 4.33 1.3   4.67    4.44 1.48   1   6     5 -0.6    -0.43 0.06
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 575 4.39 1.31   4.67    4.52 1.48   1   6     5 -0.62    -0.44 0.05

2.9 MinMax


Below are the descriptive statistics for the MinMax facts scale overall and then split by group assignment.

##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1703 3.92 1.61      4    4.03 1.48   1   6     5 -0.34    -0.95 0.04
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 582 3.88 1.61      4    3.97 1.48   1   6     5 -0.32       -1 0.07
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 546 3.94 1.6      4    4.05 1.48   1   6     5 -0.35    -0.92 0.07
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 575 3.95 1.61      4    4.07 1.48   1   6     5 -0.35    -0.95 0.07

3 Outcome Measures (Descriptives and reliability)

3.1 CV19-OAS


Items for the COVID-19 and older adults scale (CV19-OAS)

  • Q1. Only older adults really need to worry about getting COVID-19.
  • Q2. All adults over the age of 50 are at high risk from COVID-19.
  • Q3. People of all ages can be infected by COVID-19. (R) Denotes reverse coded question
  • Q4. Only older adults need to follow COVID-19 health guidelines (e.g., distancing and mask wearing).
  • Q5. A teenager dying from COVID-19 is more tragic than an older person dying from COVID-19.

Response scale: Strongly disagree (1), Disagree(2), Agree(3), Strongly agree(4)


Descriptive statistics for these items shown below.

##                   vars    n mean   sd median trimmed  mad min max range  skew
## Ageism_CVBelief_1    1 1702 2.17 1.15      2    2.09 1.48   1   4     3  0.44
## Ageism_CVBelief_2    2 1701 3.04 0.90      3    3.15 1.48   1   4     3 -0.72
## Ageism_CVBelief_3    3 1703 1.50 0.75      1    1.36 0.00   1   4     3  1.62
## Ageism_CVBelief_4    4 1702 2.02 1.15      2    1.90 1.48   1   4     3  0.61
## Ageism_CVBelief_5    5 1701 2.25 1.08      2    2.19 1.48   1   4     3  0.30
##                   kurtosis   se
## Ageism_CVBelief_1    -1.27 0.03
## Ageism_CVBelief_2    -0.21 0.02
## Ageism_CVBelief_3     2.43 0.02
## Ageism_CVBelief_4    -1.15 0.03
## Ageism_CVBelief_5    -1.21 0.03

The reliability of these items is not ideal, but okay I think. Cronbach’s Alpha is .63. The highest it can get is .71 by dropping the item “People of all ages can be infected by COVID-19”.

## 
## Reliability analysis   
## Call: psych::alpha(x = df[, c(14:18)])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.63      0.57    0.61      0.21 1.3 0.012  2.2 0.65     0.17
## 
##  lower alpha upper     95% confidence boundaries
## 0.6 0.63 0.65 
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r
## Ageism_CVBelief_1      0.44      0.37    0.43      0.13 0.58    0.019 0.072
## Ageism_CVBelief_2      0.67      0.63    0.62      0.30 1.73    0.012 0.060
## Ageism_CVBelief_3      0.71      0.69    0.66      0.36 2.27    0.011 0.033
## Ageism_CVBelief_4      0.43      0.36    0.41      0.12 0.55    0.020 0.066
## Ageism_CVBelief_5      0.49      0.41    0.48      0.15 0.69    0.018 0.080
##                   med.r
## Ageism_CVBelief_1  0.15
## Ageism_CVBelief_2  0.30
## Ageism_CVBelief_3  0.36
## Ageism_CVBelief_4  0.13
## Ageism_CVBelief_5  0.15
## 
##  Item statistics 
##                      n raw.r std.r r.cor r.drop mean   sd
## Ageism_CVBelief_1 1702  0.80  0.78 0.730 0.5976  2.2 1.15
## Ageism_CVBelief_2 1701  0.42  0.43 0.202 0.1552  3.0 0.90
## Ageism_CVBelief_3 1703  0.24  0.31 0.032 0.0046  1.5 0.75
## Ageism_CVBelief_4 1702  0.81  0.79 0.763 0.6171  2.0 1.15
## Ageism_CVBelief_5 1701  0.75  0.74 0.655 0.5382  2.2 1.08
## 
## Non missing response frequency for each item
##                      1    2    3    4 miss
## Ageism_CVBelief_1 0.39 0.24 0.17 0.20    0
## Ageism_CVBelief_2 0.08 0.15 0.43 0.35    0
## Ageism_CVBelief_3 0.61 0.30 0.05 0.04    0
## Ageism_CVBelief_4 0.48 0.18 0.17 0.17    0
## Ageism_CVBelief_5 0.32 0.28 0.23 0.17    0

Below are the descriptive statistics for the CV19-OAS scale overall.

##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1703  2.2 0.65    2.2    2.17 0.89   1   4     3 0.31    -0.82 0.02

3.2 CV19: Age CFR


  • Q6a. If 100 people between 50-64 years old got COVID-19, how many of them do you think would die from it?

  • Q7a. If 100 people between 65 years or older got COVID-19, how many of them do you think would die from it?

  • Q6b. If 100 people between 50-64 years old got COVID-19, how many of them do you think would recover from it? (R)

  • Q7b. If 100 people between 65 years or older got COVID-19, how many of them do you think would recover from it? (R)


Response scale: Slider from 0 to 100.


I believe this is essentially a proxy for what people think the age-related CFR is. Below are the initial descriptive results for each questions.

##                     vars   n  mean    sd median trimmed   mad min max range
## Ageism_CVBelief6a_1    1 839 44.71 31.46     44   43.24 41.51   1 100    99
## Ageism_CVBelief7a_1    2 843 53.83 30.70     55   54.10 40.03   1 100    99
## Ageism_CVBelief6b_1    3 848 65.04 25.05     67   66.37 29.65   3 100    97
## Ageism_CVBelief7b_1    4 844 57.61 28.35     59   58.33 35.58   1 100    99
##                      skew kurtosis   se
## Ageism_CVBelief6a_1  0.24    -1.19 1.09
## Ageism_CVBelief7a_1 -0.07    -1.29 1.06
## Ageism_CVBelief6b_1 -0.33    -0.92 0.86
## Ageism_CVBelief7b_1 -0.16    -1.13 0.98

I reversed the scale for the 6b and 7b questions so they represent number expected to die instead of recover. Now it is a bit easier for us to interpret the overall means.

##                     vars   n  mean    sd median trimmed   mad min max range
## Ageism_CVBelief6a_1    1 839 44.71 31.46     44   43.24 41.51   1 100    99
## Ageism_CVBelief7a_1    2 843 53.83 30.70     55   54.10 40.03   1 100    99
## Ageism_CVBelief6b_1    3 848 34.96 25.05     33   33.63 29.65   0  97    97
## Ageism_CVBelief7b_1    4 844 42.39 28.35     41   41.67 35.58   0  99    99
##                      skew kurtosis   se
## Ageism_CVBelief6a_1  0.24    -1.19 1.09
## Ageism_CVBelief7a_1 -0.07    -1.29 1.06
## Ageism_CVBelief6b_1  0.33    -0.92 0.86
## Ageism_CVBelief7b_1  0.16    -1.13 0.98

3.3 CV19: Priority preferences


  • Q1. For the sake of the economy we should all get back to work, even if it means that more older people will die from COVID-19.

Response scale: Strongly disagree(1), Disagree (2), Somewhat disagree(3), Somewhat agree(4), Agree(5), Strongly agree(6).


Below is the mean response for this preference item overall.

##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1673 3.16 1.83      3    3.08 2.97   1   6     5 0.23    -1.39 0.04

  • Q2: Using the scale below please indicate your preference between the two options

Response scale: Prefer to protect those at higher risk from COVID-19 (e.g., older adults) (1), — (2), — (3), — (4), — (5), Prefer to keep the economy going(6).


Below is the mean response for this preference overall.

##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1684  2.9 1.76      3    2.76 2.97   1   6     5 0.45     -1.1 0.04

  • Q3: Using the scale below please indicate your preference between the two options

Response scale: Prefer to protect those at higher risk from COVID-19 (e.g., older adults) (1), — (2), — (3), — (4), — (5), Prefer to get life ‘back to normal’(6).


Below is the mean response for this preference overall.

##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1668 2.88 1.71      3    2.73 2.97   1   6     5 0.45    -1.03 0.04

3.4 CV19: Willing (Stay home)


  • Q1. I am willing to do another period of staying at home and avoiding contact with other people this winter, if the number of COVID-19 infections starts increasing again.

Response scale: Strongly disagree (1), Disagree(2), Somewhat disagree(3), Somewhat agree (4), Agree (5), Strongly agree (6)


Below is the mean response for this preference overall.

##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1702 4.79 1.41      5    5.04 1.48   1   6     5 -1.22     0.73 0.03

3.5 CV19: Willing (Guidelines)


  • Q1. How willing or unwilling are you to follow COVID-19 guidelines (e.g., distancing and mask wearing)?

Response scale: Very unwilling (1), — (2), — (3), — (4), Very willing (5)


Below is the mean response for this preference overall.

##    vars    n mean   sd median trimmed mad min max range  skew kurtosis   se
## X1    1 1651 4.23 1.17      5    4.47   0   1   5     4 -1.41     0.92 0.03

3.6 CV19: Behavioral Intent_Risk


We asked: How frequently, if at all, do you plan to do the following things in the next month?

  • Q1. Going to gatherings of 10 or more people
  • Q2. Going on optional shopping trips
  • Q3. Going on optional travel
  • Q4. Having optional social visits
  • Q5. Eating inside restaurants, bars and food courts

Below are the descriptive statistics for these items.

##                vars    n mean   sd median trimmed  mad min max range skew
## AdhereIntent_1    1 1702 2.66 1.73      2    2.45 1.48   1   6     5 0.69
## AdhereIntent_2    2 1700 3.23 1.57      3    3.17 1.48   1   6     5 0.10
## AdhereIntent_3    3 1697 2.60 1.73      2    2.38 1.48   1   6     5 0.69
## AdhereIntent_4    4 1697 2.87 1.66      3    2.73 1.48   1   6     5 0.44
## AdhereIntent_5    5 1699 2.84 1.74      2    2.68 1.48   1   6     5 0.48
##                kurtosis   se
## AdhereIntent_1    -0.83 0.04
## AdhereIntent_2    -1.07 0.04
## AdhereIntent_3    -0.88 0.04
## AdhereIntent_4    -1.05 0.04
## AdhereIntent_5    -1.11 0.04


The reliability of these items is good. Cronbach’s Alpha is .83.

## 
## Reliability analysis   
## Call: psych::alpha(x = df[, c(27:31)])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.93      0.93    0.92      0.74  14 0.0025  2.8 1.5     0.75
## 
##  lower alpha upper     95% confidence boundaries
## 0.93 0.93 0.94 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## AdhereIntent_1      0.92      0.92    0.89      0.73  11   0.0033 0.00205  0.73
## AdhereIntent_2      0.93      0.93    0.91      0.77  13   0.0028 0.00031  0.76
## AdhereIntent_3      0.91      0.91    0.89      0.73  11   0.0034 0.00120  0.73
## AdhereIntent_4      0.92      0.92    0.89      0.73  11   0.0033 0.00177  0.74
## AdhereIntent_5      0.92      0.92    0.90      0.74  12   0.0031 0.00152  0.73
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean  sd
## AdhereIntent_1 1702  0.90  0.90  0.87   0.84  2.7 1.7
## AdhereIntent_2 1700  0.85  0.85  0.80   0.77  3.2 1.6
## AdhereIntent_3 1697  0.91  0.91  0.88   0.85  2.6 1.7
## AdhereIntent_4 1697  0.90  0.90  0.87   0.84  2.9 1.7
## AdhereIntent_5 1699  0.89  0.89  0.85   0.82  2.8 1.7
## 
## Non missing response frequency for each item
##                   1    2    3    4    5    6 miss
## AdhereIntent_1 0.39 0.15 0.17 0.11 0.07 0.11    0
## AdhereIntent_2 0.18 0.18 0.18 0.23 0.14 0.09    0
## AdhereIntent_3 0.42 0.15 0.13 0.13 0.08 0.10    0
## AdhereIntent_4 0.29 0.21 0.15 0.16 0.11 0.09    0
## AdhereIntent_5 0.34 0.16 0.14 0.14 0.10 0.11    0

Below are the descriptive statistics for the risky behavioral intentions scale overall.

##    vars    n mean  sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1702 2.84 1.5    2.6    2.71 1.78   1   6     5 0.57    -0.81 0.04

3.7 CV19: Behavioral Intent_Protect


We asked: How frequently, if at all, do you plan to do the following things in the next month?

  • Q6. Practicing good hygiene such as washing your hands, especially after touching frequently used items or surfaces
  • Q7. Wearing a mask over your nose and mouth when you are in a public place (e.g., store)
  • Q8. Wearing a mask over your nose and mouth when you are outdoors

Response scale: Never (1), Very rarely (2), Rarely (3), Occasionally (4), Frequently (5), Very frequently (6)


Below are the descriptive statistics for these items.

##                vars    n mean   sd median trimmed  mad min max range  skew
## AdhereIntent_6    1 1697 5.05 1.34      6    5.32 0.00   1   6     5 -1.46
## AdhereIntent_7    2 1697 5.17 1.31      6    5.46 0.00   1   6     5 -1.64
## AdhereIntent_8    3 1699 4.67 1.50      5    4.91 1.48   1   6     5 -0.99
##                kurtosis   se
## AdhereIntent_6     1.25 0.03
## AdhereIntent_7     1.81 0.03
## AdhereIntent_8    -0.03 0.04

The reliability of these items is good. Cronbach’s Alpha is .77.

## 
## Reliability analysis   
## Call: psych::alpha(x = df[, c(32:34)])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.77      0.78    0.72      0.54 3.5 0.0099    5 1.1     0.53
## 
##  lower alpha upper     95% confidence boundaries
## 0.75 0.77 0.79 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## AdhereIntent_6      0.69      0.69    0.53      0.53 2.3   0.0148    NA  0.53
## AdhereIntent_7      0.57      0.58    0.40      0.40 1.4   0.0205    NA  0.40
## AdhereIntent_8      0.80      0.80    0.67      0.67 4.1   0.0096    NA  0.67
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean  sd
## AdhereIntent_6 1697  0.82  0.83  0.72   0.60  5.0 1.3
## AdhereIntent_7 1697  0.88  0.88  0.82   0.71  5.2 1.3
## AdhereIntent_8 1699  0.80  0.78  0.58   0.51  4.7 1.5
## 
## Non missing response frequency for each item
##                   1    2    3    4    5    6 miss
## AdhereIntent_6 0.03 0.05 0.06 0.10 0.23 0.53    0
## AdhereIntent_7 0.03 0.04 0.06 0.10 0.16 0.62    0
## AdhereIntent_8 0.06 0.05 0.09 0.17 0.21 0.42    0

Below are the descriptive statistics for the protective behavioral intentions scale overall.

##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1699 4.96 1.15   5.33    5.15 0.99   1   6     5 -1.26     1.07 0.03

3.8 CV19: Attitudes (Guidelines)


  • Q1. The guidelines for slowing the spread of COVID-19 (e.g., distancing and mask wearing) are…

Response scale: Too restrictive(1), — (2), — (3), the right balance(4), — (5), —(6), Not restrictive enough(7)


Below are the descriptive statistics for this measure overall.

##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1690 4.21 1.78      4    4.26 1.48   1   7     6 -0.12    -0.47 0.04

  • Q2. Following COVID-19 guidelines (e.g., distancing and mask wearing) is an effective method for slowing the spread of COVID-19

Response scale: Strongly disagree(1), Disagree(2), Somewhat disagree(3), Somewhat agree(4), Agree(5), Strongly agree(6)


Below are the descriptive statistics for this measure overall.

##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1701 4.78 1.39      5    5.01 1.48   1   6     5 -1.12     0.48 0.03

  • Q3. Following COVID-19 guidelines (e.g., distancing and mask wearing) is an effective method to avoid getting COVID-19

Response scale: Strongly disagree(1), Disagree(2), Somewhat disagree(3), Somewhat agree(4), Agree(5), Strongly agree(6)


Below are the descriptive statistics for this measure overall.

##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1700 4.77 1.28      5    4.96 1.48   1   6     5 -1.07      0.6 0.03

  • Q4. Following COVID-19 guidelines (e.g., distancing and mask wearing) is currently the most effective method available for saving lives

Response scale: Strongly disagree(1), Disagree(2), Somewhat disagree(3), Somewhat agree(4), Agree(5), Strongly agree(6)


Below are the descriptive statistics for this measure overall.

##    vars    n mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1699 4.83 1.3      5    5.04 1.48   1   6     5 -1.15      0.8 0.03

3.9 CV19: Collective trust

(noted by Aaron that this may not be an accurate heading for these questions and we might describe it differently in any write ups)


  • Q1. How willing or unwilling do you think other people are to follow COVID-19 guidelines (e.g., distancing and mask wearing)?

Response scale: Very unwilling(1), — (2), — (3), — (4), Very willing(5)


  • Q2. Do you think that most people under the age of 50 are willing to follow COVID-19 guidelines (e.g., distancing and mask wearing) when in public to help protect older adults?
  • Q3. Do you think that people under the age of 50 have a moral obligation to follow COVID-19 guidelines (e.g., distancing and mask wearing) when in public to help protect older adults?

Response scale: Strongly disagree(1), Disagree (2), Somewhat disagree(3), Somewhat agree(4), Agree(5), Strongly agree(6).


  • Q4. In your opinion, to what extent can people in general be trusted to follow COVID-19 guidelines (e.g., distancing and mask wearing)?

Response scale: Slider from 0 to 100.


Below are the descriptive statistics for these items overall.

##               vars    n  mean    sd median trimmed   mad min max range  skew
## Coll_Trust1_1    1 1679  3.48  1.21      3    3.55  1.48   1   5     4 -0.26
## Coll_Trust2      2 1702  4.14  1.34      4    4.23  1.48   1   6     5 -0.47
## Coll_Trust3      3 1701  4.75  1.29      5    4.93  1.48   1   6     5 -1.04
## Coll_Trust4_1    4 1669 62.27 24.02     63   63.22 25.20   1 100    99 -0.31
##               kurtosis   se
## Coll_Trust1_1    -0.88 0.03
## Coll_Trust2      -0.39 0.03
## Coll_Trust3       0.57 0.03
## Coll_Trust4_1    -0.51 0.59

3.10 CV19: Social norms


We asked participants: “The following groups of people expect me to follow COVID-19 guidelines (e.g., distancing and mask wearing) when in public.”

  • Q1. Members of my family
  • Q2. My friends
  • Q3. Most people my age

Response scale: Strongly disagree(1), Disagree (2), Somewhat disagree(3), Somewhat agree(4), Agree(5), Strongly agree(6).


Below are the descriptive statistics for these items overall.

##              vars    n mean   sd median trimmed  mad min max range  skew
## Socialnorm_1    1 1700 4.91 1.36      5    5.17 1.48   1   6     5 -1.33
## Socialnorm_2    2 1700 4.90 1.23      5    5.11 1.48   1   6     5 -1.29
## Socialnorm_3    3 1699 4.78 1.27      5    4.97 1.48   1   6     5 -1.03
##              kurtosis   se
## Socialnorm_1     1.01 0.03
## Socialnorm_2     1.34 0.03
## Socialnorm_3     0.56 0.03

The reliability of these items is ideal. Cronbach’s Alpha is .86.

## 
## Reliability analysis   
## Call: psych::alpha(x = df[, c(44:46)])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.86      0.86    0.82      0.68 6.3 0.0058  4.9 1.1      0.7
## 
##  lower alpha upper     95% confidence boundaries
## 0.85 0.86 0.87 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## Socialnorm_1      0.82      0.82    0.70      0.70 4.7   0.0086    NA  0.70
## Socialnorm_2      0.75      0.75    0.60      0.60 3.0   0.0120    NA  0.60
## Socialnorm_3      0.84      0.85    0.73      0.73 5.5   0.0075    NA  0.73
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean  sd
## Socialnorm_1 1700  0.89  0.88  0.79   0.72  4.9 1.4
## Socialnorm_2 1700  0.91  0.92  0.86   0.80  4.9 1.2
## Socialnorm_3 1699  0.86  0.87  0.75   0.70  4.8 1.3
## 
## Non missing response frequency for each item
##                 1    2    3    4    5    6 miss
## Socialnorm_1 0.04 0.04 0.07 0.12 0.26 0.46    0
## Socialnorm_2 0.03 0.04 0.05 0.17 0.32 0.39    0
## Socialnorm_3 0.03 0.04 0.08 0.21 0.28 0.37    0

Below are the descriptive statistics for the social norm perception scale overall. ***

##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1700 4.87 1.14      5    5.04 0.99   1   6     5 -1.25      1.3 0.03

3.11 Pro-social behaviors


We asked participants: “If you were confident that you did not have COVID-19, how likely would you be to voluntarily engage with the following?.”

  • Q1. Go shopping for an older person
  • Q2. Donate to a charity for older people
  • Q3. Frequently call an older person for a chat to help them manage isolation
  • Q4. Collect prescriptions and other supplies for an older person
  • Q5. Helping with some chores for someone who cannot go outside (i.e., taking out trash/gardening)
  • Q6. Share resources to help educate others about what they can do to help others

Response scale: I would never do this(1), — (2), — (3), — (4), — (5), — (6), I would certainly do this(7), I already do this(8).


Below are the descriptive statistics for these items overall and split by group. For these I removed all those who answered that they already do (8).

##             vars    n mean   sd median trimmed  mad min max range  skew
## ProSocial_1    1 1466 5.19 1.97      6    5.47 1.48   1   7     6 -0.84
## ProSocial_2    2 1512 5.17 1.81      5    5.42 2.97   1   7     6 -0.78
## ProSocial_3    3 1419 5.39 1.77      6    5.67 1.48   1   7     6 -0.97
## ProSocial_4    4 1492 5.52 1.77      6    5.85 1.48   1   7     6 -1.19
## ProSocial_5    5 1482 5.46 1.77      6    5.75 1.48   1   7     6 -1.06
## ProSocial_6    6 1470 5.46 1.72      6    5.74 1.48   1   7     6 -1.06
##             kurtosis   se
## ProSocial_1    -0.50 0.05
## ProSocial_2    -0.35 0.05
## ProSocial_3    -0.06 0.05
## ProSocial_4     0.47 0.05
## ProSocial_5     0.14 0.05
## ProSocial_6     0.25 0.04
## 
##  Descriptive statistics by group 
## group: Control
##             vars   n mean   sd median trimmed  mad min max range  skew kurtosis
## ProSocial_1    1 497 5.18 1.98      6    5.45 1.48   1   7     6 -0.81    -0.58
## ProSocial_2    2 510 5.10 1.86      5    5.33 2.97   1   7     6 -0.73    -0.51
## ProSocial_3    3 479 5.28 1.83      6    5.54 1.48   1   7     6 -0.84    -0.34
## ProSocial_4    4 504 5.41 1.86      6    5.72 1.48   1   7     6 -1.06     0.04
## ProSocial_5    5 504 5.38 1.81      6    5.66 1.48   1   7     6 -0.98    -0.09
## ProSocial_6    6 495 5.29 1.80      6    5.55 1.48   1   7     6 -0.93    -0.12
##               se
## ProSocial_1 0.09
## ProSocial_2 0.08
## ProSocial_3 0.08
## ProSocial_4 0.08
## ProSocial_5 0.08
## ProSocial_6 0.08
## ------------------------------------------------------------ 
## group: CDC
##             vars   n mean   sd median trimmed  mad min max range  skew kurtosis
## ProSocial_1    1 471 5.17 2.00      6    5.46 1.48   1   7     6 -0.85    -0.51
## ProSocial_2    2 493 5.24 1.77      5    5.48 2.97   1   7     6 -0.80    -0.27
## ProSocial_3    3 456 5.44 1.74      6    5.71 1.48   1   7     6 -1.04     0.17
## ProSocial_4    4 478 5.54 1.74      6    5.85 1.48   1   7     6 -1.20     0.57
## ProSocial_5    5 468 5.47 1.75      6    5.77 1.48   1   7     6 -1.09     0.29
## ProSocial_6    6 473 5.55 1.68      6    5.83 1.48   1   7     6 -1.13     0.49
##               se
## ProSocial_1 0.09
## ProSocial_2 0.08
## ProSocial_3 0.08
## ProSocial_4 0.08
## ProSocial_5 0.08
## ProSocial_6 0.08
## ------------------------------------------------------------ 
## group: KS
##             vars   n mean   sd median trimmed  mad min max range  skew kurtosis
## ProSocial_1    1 498 5.23 1.94      6    5.50 1.48   1   7     6 -0.87    -0.42
## ProSocial_2    2 509 5.19 1.79      6    5.43 1.48   1   7     6 -0.82    -0.27
## ProSocial_3    3 484 5.46 1.75      6    5.74 1.48   1   7     6 -1.02     0.03
## ProSocial_4    4 510 5.63 1.71      6    5.95 1.48   1   7     6 -1.31     0.88
## ProSocial_5    5 510 5.53 1.74      6    5.82 1.48   1   7     6 -1.10     0.22
## ProSocial_6    6 502 5.55 1.67      6    5.82 1.48   1   7     6 -1.11     0.41
##               se
## ProSocial_1 0.09
## ProSocial_2 0.08
## ProSocial_3 0.08
## ProSocial_4 0.08
## ProSocial_5 0.08
## ProSocial_6 0.07

Here I am just checking how many people said they already do this to each item.,which is row 8. Works out as between 7-9% of people said they already do these things.

ProSocial_1 ProSocial_2 ProSocial_3 ProSocial_4 ProSocial_5 ProSocial_6
128 91 69 87 73 68
69 69 61 56 62 54
99 112 100 58 92 84
173 203 150 140 141 159
199 286 229 235 235 241
225 242 253 277 272 290
573 509 557 639 607 574
236 188 283 209 218 229

To check the reliability of these items as a scale I am going to remove everyone who answered 8 and recode them as NA.

The reliability of these items is ideal for a scale. Cronbach’s Alpha is .89.

## 
## Reliability analysis   
## Call: psych::alpha(x = df[, c(47:52)])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.89       0.9    0.89      0.59 8.6 0.004  5.4 1.5      0.6
## 
##  lower alpha upper     95% confidence boundaries
## 0.89 0.89 0.9 
## 
##  Reliability if an item is dropped:
##             raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## ProSocial_1      0.89      0.89    0.87      0.62 8.2   0.0042 0.0034  0.63
## ProSocial_2      0.88      0.89    0.87      0.61 7.8   0.0045 0.0065  0.63
## ProSocial_3      0.87      0.87    0.86      0.58 6.9   0.0050 0.0075  0.57
## ProSocial_4      0.86      0.86    0.84      0.56 6.4   0.0053 0.0054  0.57
## ProSocial_5      0.87      0.87    0.85      0.57 6.7   0.0051 0.0062  0.59
## ProSocial_6      0.87      0.88    0.86      0.59 7.1   0.0048 0.0063  0.59
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean  sd
## ProSocial_1 1466  0.76  0.74  0.67   0.63  5.2 2.0
## ProSocial_2 1512  0.77  0.77  0.69   0.66  5.2 1.8
## ProSocial_3 1419  0.82  0.83  0.79   0.74  5.4 1.8
## ProSocial_4 1492  0.86  0.87  0.85   0.80  5.5 1.8
## ProSocial_5 1482  0.84  0.84  0.81   0.76  5.5 1.8
## ProSocial_6 1470  0.81  0.81  0.77   0.72  5.5 1.7
## 
## Non missing response frequency for each item
##                1    2    3    4    5    6    7 miss
## ProSocial_1 0.09 0.05 0.07 0.12 0.14 0.15 0.39 0.14
## ProSocial_2 0.06 0.05 0.07 0.13 0.19 0.16 0.34 0.11
## ProSocial_3 0.05 0.04 0.07 0.11 0.16 0.18 0.39 0.17
## ProSocial_4 0.06 0.04 0.04 0.09 0.16 0.19 0.43 0.12
## ProSocial_5 0.05 0.04 0.06 0.10 0.16 0.18 0.41 0.13
## ProSocial_6 0.05 0.04 0.06 0.11 0.16 0.20 0.39 0.14

Below are the descriptive statistics for the social norm perception scale overall. ***

##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1650 5.44 1.46   5.83    5.64 1.46   1   7     6 -1.03     0.53 0.04

3.12 CV19: Societal risk


  • Q1 How serious of a threat do you think COVID-19 is to the U.S.?

Response scale: Not a serious threat at all(1), — (2), — (3), — (4), — (5), — (6), A very serious threat(7).


Below are the descriptive statistics for this item overall.

##    vars    n mean   sd median trimmed mad min max range  skew kurtosis   se
## X1    1 1702 5.88 1.54      7    6.19   0   1   7     6 -1.37        1 0.04

  • Q2 Compared to now, do you think the COVID-19 pandemic in the U.S. will be better or worse in six months?

Response scale: Much worse(1), — (2), — (3), — (4), — (5), — (6), Much better(7).


Below are the descriptive statistics for this item overall.

##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1700 4.61 1.83      5    4.76 1.48   1   7     6 -0.44    -0.69 0.04

3.13 CV19: Individual risk


  • Q1. How likely does it feel that you will get COVID-19 within the next month?
  • Q2. How certain do you feel about your chances of getting COVID-19 in the next month?
  • Q3. How worried are you that you will get COVID-19 in the next month?
  • Q4. If you were to get COVID-19, how sick do you think you would feel?
  • Q5. If you were to get COVID-19, how likely do you think it is that you would experience the most serious symptoms (e.g., severe shortness of breath, high fever)?
  • Q6. If you were to get COVID-19, how worried are you that you would experience the most serious symptoms (e.g., severe shortness breath, high fever)?
  • Q7. If you were to get COVID-19, how likely do you think it is that you would die?
  • Q8. How likely do you think it is that you would get COVID-19 but not have any symptoms?
  • Q9. How worried are you that you will spread COVID-19 if you were infected but didn’t have any symptoms?

Response scale: Very unlikely/Not certain at all/Not sick at all/Not worried at all(1), — (2), — (3), — (4), — (5), — (6), Very likely/ Very certain/ Very sick/Very worried(7).


Below are the descriptive statistics for these items overall.

##            vars    n mean   sd median trimmed  mad min max range  skew kurtosis
## IndivRisk1    1 1392 3.15 1.91      3    2.96 2.97   1   7     6  0.55    -0.77
## IndivRisk2    2 1391 3.75 1.99      4    3.69 2.97   1   7     6  0.12    -1.16
## IndivRisk3    3 1388 4.00 2.10      4    4.00 2.97   1   7     6  0.02    -1.30
## IndivRisk4    4 1392 4.70 1.84      5    4.84 1.48   1   7     6 -0.41    -0.82
## IndivRisk5    5 1393 4.52 1.91      5    4.64 1.48   1   7     6 -0.32    -0.96
## IndivRisk6    6 1391 4.66 1.97      5    4.82 2.97   1   7     6 -0.42    -0.99
## IndivRisk7    7 1390 3.86 2.00      4    3.82 2.97   1   7     6  0.02    -1.19
## IndivRisk8    8 1391 4.01 1.87      4    4.02 1.48   1   7     6 -0.06    -0.98
## IndivRisk9    9 1392 4.66 1.98      5    4.83 2.97   1   7     6 -0.43    -0.98
##              se
## IndivRisk1 0.05
## IndivRisk2 0.05
## IndivRisk3 0.06
## IndivRisk4 0.05
## IndivRisk5 0.05
## IndivRisk6 0.05
## IndivRisk7 0.05
## IndivRisk8 0.05
## IndivRisk9 0.05

The reliability of these items is ideal for a scale. Cronbach’s Alpha is .86.

## 
## Reliability analysis   
## Call: psych::alpha(x = df[, c(56:64)])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.87      0.87    0.89      0.43 6.8 0.0047  4.1 1.4     0.42
## 
##  lower alpha upper     95% confidence boundaries
## 0.86 0.87 0.88 
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## IndivRisk1      0.86      0.86    0.87      0.43 6.1   0.0051 0.036  0.46
## IndivRisk2      0.87      0.87    0.89      0.46 6.8   0.0046 0.032  0.48
## IndivRisk3      0.85      0.85    0.87      0.42 5.7   0.0055 0.036  0.36
## IndivRisk4      0.85      0.85    0.87      0.42 5.8   0.0054 0.025  0.38
## IndivRisk5      0.85      0.85    0.86      0.41 5.5   0.0056 0.023  0.36
## IndivRisk6      0.85      0.85    0.86      0.41 5.5   0.0056 0.023  0.38
## IndivRisk7      0.85      0.85    0.87      0.41 5.5   0.0057 0.030  0.36
## IndivRisk8      0.88      0.88    0.89      0.48 7.4   0.0044 0.025  0.48
## IndivRisk9      0.86      0.86    0.88      0.43 6.1   0.0052 0.036  0.38
## 
##  Item statistics 
##               n raw.r std.r r.cor r.drop mean  sd
## IndivRisk1 1392  0.68  0.68  0.63   0.59  3.2 1.9
## IndivRisk2 1391  0.56  0.56  0.48   0.44  3.7 2.0
## IndivRisk3 1388  0.76  0.76  0.72   0.68  4.0 2.1
## IndivRisk4 1392  0.74  0.75  0.73   0.66  4.7 1.8
## IndivRisk5 1393  0.80  0.81  0.81   0.74  4.5 1.9
## IndivRisk6 1391  0.80  0.80  0.80   0.73  4.7 2.0
## IndivRisk7 1390  0.80  0.80  0.78   0.73  3.9 2.0
## IndivRisk8 1391  0.48  0.48  0.38   0.35  4.0 1.9
## IndivRisk9 1392  0.69  0.69  0.63   0.59  4.7 2.0
## 
## Non missing response frequency for each item
##               1    2    3    4    5    6    7 miss
## IndivRisk1 0.27 0.17 0.14 0.19 0.09 0.05 0.09 0.18
## IndivRisk2 0.19 0.13 0.12 0.20 0.13 0.10 0.12 0.18
## IndivRisk3 0.17 0.13 0.12 0.16 0.12 0.11 0.19 0.18
## IndivRisk4 0.07 0.08 0.10 0.19 0.18 0.15 0.23 0.18
## IndivRisk5 0.09 0.09 0.11 0.18 0.18 0.14 0.21 0.18
## IndivRisk6 0.10 0.08 0.11 0.15 0.16 0.16 0.25 0.18
## IndivRisk7 0.18 0.11 0.13 0.18 0.15 0.12 0.13 0.18
## IndivRisk8 0.14 0.10 0.12 0.24 0.16 0.12 0.12 0.18
## IndivRisk9 0.10 0.08 0.10 0.16 0.16 0.16 0.25 0.18

Below are the descriptive statistics for the individual risk scale overall.

##    vars    n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 1393 4.15 1.37   4.11    4.16 1.32   1   7     6 -0.1    -0.34 0.04

3.14 Trust in the CDC


Q1. How confident are you that the CDC has been providing accurate information to the public about COVID-19? Q2. How confident are you that the CDC is responding effectively to protect the health of the public against COVID-19? *Q3. In general, how much do you trust the CDC?


Response scale: Not at all confident/Not at all(1), — (2), — (3), — (4), Very confident/Completely(5).


Below are the descriptive statistics for these items overall.

##           vars    n mean   sd median trimmed  mad min max range  skew kurtosis
## CDCTrust1    1 1701 3.64 1.26      4    3.79 1.48   1   5     4 -0.66    -0.52
## CDCTrust2    2 1701 3.63 1.19      4    3.76 1.48   1   5     4 -0.66    -0.35
## CDCTrust3    3 1701 3.61 1.23      4    3.74 1.48   1   5     4 -0.62    -0.53
##             se
## CDCTrust1 0.03
## CDCTrust2 0.03
## CDCTrust3 0.03

The reliability of these items is ideal. Cronbach’s Alpha is .91.

## 
## Reliability analysis   
## Call: psych::alpha(x = df[, c(65:67)])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean  sd median_r
##       0.92      0.92    0.88      0.79  11 0.0034  3.6 1.1     0.79
## 
##  lower alpha upper     95% confidence boundaries
## 0.91 0.92 0.92 
## 
##  Reliability if an item is dropped:
##           raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CDCTrust1      0.88      0.88    0.78      0.78 7.1   0.0060    NA  0.78
## CDCTrust2      0.89      0.89    0.80      0.80 7.9   0.0054    NA  0.80
## CDCTrust3      0.88      0.88    0.79      0.79 7.5   0.0057    NA  0.79
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean  sd
## CDCTrust1 1701  0.93  0.93  0.88   0.84  3.6 1.3
## CDCTrust2 1701  0.92  0.92  0.86   0.83  3.6 1.2
## CDCTrust3 1701  0.93  0.93  0.87   0.83  3.6 1.2
## 
## Non missing response frequency for each item
##              1    2    3    4    5 miss
## CDCTrust1 0.09 0.08 0.23 0.28 0.32    0
## CDCTrust2 0.08 0.08 0.25 0.32 0.28    0
## CDCTrust3 0.08 0.10 0.24 0.30 0.29    0

Below are the descriptive statistics for the trust in CDC scale overall.

##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1702 3.63 1.14      4    3.75 1.48   1   5     4 -0.68     -0.3 0.03

3.15 Ageism facts


  • Q1 The majority of old people (age 65+) are senile (have defective memory, or are disoriented or demented). Correct answer = False
  • Q2 The five senses (sight, hearing, taste, touch and smell) tend to decline in old age. Correct answer = True
  • Q3 The majority of old people feel miserable most of the time. Correct answer = False
  • Q4 Physical strength tends to decline in old age. Correct answer = True
  • Q5 At least one-tenth of the aged are living in long-stay institutions such as nursing homes. Correct answer = False
  • Q6 Over three-fourths of the aged are healthy enough to carry out their normal activities without help. Correct answer = True
  • Q7 Older workers usually cannot work as effectively as younger workers. Correct answer = False
  • Q8 Older people usually take longer to learn something new. Correct answer = True
  • Q9 The majority of old people are unable to adapt to change. Correct answer = False
  • Q10 Old people tend to react more slowly than younger people. Correct answer = True
  • Q11 Depression is more frequent among the elderly than among younger people. Correct answer = False
  • Q12 In general, old people tend to be pretty much alike. Correct answer = False

Response scale: False(1), True (2).


I re-coded these variables to be 0 for incorrect and 1 for correct. So a mean of 1 for an item would indicate that everyone got the item correct.

Descriptive statistics for these items shown below.

##                 vars    n mean   sd median trimmed mad min max range  skew
## Ageism_Facts1_1    1 1700 0.68 0.47      1    0.72   0   0   1     1 -0.76
## Ageism_Facts1_2    2 1699 0.76 0.43      1    0.83   0   0   1     1 -1.22
## Ageism_Facts1_3    3 1700 0.67 0.47      1    0.71   0   0   1     1 -0.71
## Ageism_Facts1_4    4 1698 0.82 0.39      1    0.89   0   0   1     1 -1.63
## Ageism_Facts1_5    5 1702 0.34 0.48      0    0.31   0   0   1     1  0.65
## Ageism_Facts1_6    6 1700 0.74 0.44      1    0.80   0   0   1     1 -1.09
## Ageism_Facts2_1    7 1695 0.51 0.50      1    0.52   0   0   1     1 -0.05
## Ageism_Facts2_2    8 1696 0.54 0.50      1    0.55   0   0   1     1 -0.16
## Ageism_Facts2_3    9 1694 0.53 0.50      1    0.54   0   0   1     1 -0.13
## Ageism_Facts2_4   10 1695 0.68 0.47      1    0.72   0   0   1     1 -0.76
## Ageism_Facts2_5   11 1694 0.52 0.50      1    0.53   0   0   1     1 -0.09
## Ageism_Facts2_6   12 1694 0.58 0.49      1    0.60   0   0   1     1 -0.33
##                 kurtosis   se
## Ageism_Facts1_1    -1.42 0.01
## Ageism_Facts1_2    -0.51 0.01
## Ageism_Facts1_3    -1.50 0.01
## Ageism_Facts1_4     0.66 0.01
## Ageism_Facts1_5    -1.58 0.01
## Ageism_Facts1_6    -0.81 0.01
## Ageism_Facts2_1    -2.00 0.01
## Ageism_Facts2_2    -1.98 0.01
## Ageism_Facts2_3    -1.98 0.01
## Ageism_Facts2_4    -1.42 0.01
## Ageism_Facts2_5    -1.99 0.01
## Ageism_Facts2_6    -1.89 0.01

The reliability of these items is awful. Cronbach’s Alpha is .18. The highest it can get is .26 by dropping the item “Over three-fourths of the aged are healthy enough to carry out their normal activities without help.”.

## Warning in psych::alpha(df[, c(77:88)]): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( Ageism_Facts1_2 Ageism_Facts1_4 Ageism_Facts2_2 Ageism_Facts2_4 ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = df[, c(77:88)])
## 
##   raw_alpha std.alpha G6(smc) average_r  S/N  ase mean   sd median_r
##       0.43      0.43    0.51     0.059 0.75 0.02 0.61 0.17    0.061
## 
##  lower alpha upper     95% confidence boundaries
## 0.39 0.43 0.47 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## Ageism_Facts1_1      0.31      0.32    0.41     0.040 0.46    0.024 0.032 0.036
## Ageism_Facts1_2      0.44      0.43    0.51     0.065 0.76    0.019 0.039 0.078
## Ageism_Facts1_3      0.31      0.32    0.41     0.040 0.46    0.024 0.032 0.020
## Ageism_Facts1_4      0.42      0.41    0.50     0.060 0.71    0.020 0.039 0.071
## Ageism_Facts1_5      0.45      0.45    0.53     0.070 0.83    0.019 0.038 0.062
## Ageism_Facts1_6      0.40      0.40    0.49     0.057 0.66    0.021 0.041 0.036
## Ageism_Facts2_1      0.36      0.37    0.46     0.051 0.59    0.022 0.032 0.036
## Ageism_Facts2_2      0.55      0.54    0.58     0.097 1.18    0.016 0.026 0.090
## Ageism_Facts2_3      0.35      0.35    0.45     0.048 0.55    0.023 0.033 0.036
## Ageism_Facts2_4      0.47      0.47    0.54     0.074 0.88    0.018 0.036 0.078
## Ageism_Facts2_5      0.39      0.40    0.49     0.056 0.66    0.021 0.036 0.062
## Ageism_Facts2_6      0.33      0.34    0.43     0.044 0.51    0.024 0.032 0.020
## 
##  Item statistics 
##                    n raw.r std.r  r.cor r.drop mean   sd
## Ageism_Facts1_1 1700  0.61  0.60  0.625  0.434 0.68 0.47
## Ageism_Facts1_2 1699  0.26  0.29  0.130  0.053 0.76 0.43
## Ageism_Facts1_3 1700  0.60  0.59  0.616  0.426 0.67 0.47
## Ageism_Facts1_4 1698  0.30  0.35  0.213  0.116 0.82 0.39
## Ageism_Facts1_5 1702  0.24  0.23  0.031  0.015 0.34 0.48
## Ageism_Facts1_6 1700  0.37  0.39  0.258  0.169 0.74 0.44
## Ageism_Facts2_1 1695  0.49  0.47  0.417  0.277 0.51 0.50
## Ageism_Facts2_2 1696 -0.10 -0.10 -0.383 -0.325 0.54 0.50
## Ageism_Facts2_3 1694  0.53  0.51  0.469  0.321 0.53 0.50
## Ageism_Facts2_4 1695  0.16  0.17 -0.024 -0.064 0.68 0.47
## Ageism_Facts2_5 1694  0.42  0.40  0.284  0.196 0.52 0.50
## Ageism_Facts2_6 1694  0.56  0.55  0.534  0.368 0.58 0.49
## 
## Non missing response frequency for each item
##                    0    1 miss
## Ageism_Facts1_1 0.32 0.68 0.00
## Ageism_Facts1_2 0.24 0.76 0.00
## Ageism_Facts1_3 0.33 0.67 0.00
## Ageism_Facts1_4 0.18 0.82 0.00
## Ageism_Facts1_5 0.66 0.34 0.00
## Ageism_Facts1_6 0.26 0.74 0.00
## Ageism_Facts2_1 0.49 0.51 0.00
## Ageism_Facts2_2 0.46 0.54 0.00
## Ageism_Facts2_3 0.47 0.53 0.01
## Ageism_Facts2_4 0.32 0.68 0.00
## Ageism_Facts2_5 0.48 0.52 0.01
## Ageism_Facts2_6 0.42 0.58 0.01

Below are the descriptive statistics for the ageism facts scale overall.

##    vars    n mean   sd median trimmed  mad  min max range  skew kurtosis se
## X1    1 1703 0.61 0.17   0.58    0.62 0.25 0.08   1  0.92 -0.16     -0.5  0
##    vars    n mean   sd median trimmed  mad min  max range skew kurtosis se
## X1    1 1703 0.39 0.17   0.42    0.38 0.25   0 0.92  0.92 0.16     -0.5  0

3.16 Ageism Fraboni


  • Q1. Many old people are stingy and hoard their money and possessions.
  • Q2. Many old people are not interested in making new friends, preferring instead the circle of friends they have had for years.
  • Q3. Many old people just live in the past.
  • Q4. Most old people should not be trusted to take care of infants.
  • Q5. Many old people are happiest when they are with people their own age.
  • Q6. Most old people would be considered to have poor personal hygiene.
  • Q7. Most old people can be irritating because they tell the same stories over and over again.
  • Q8. Old people complain more than other people do.
  • Q9. I would prefer not to go to an open house at a senior’s club, if invited.
  • Q10. Teenage suicide is more tragic than suicide among the old.
  • Q11. I sometimes avoid eye contact with old people when I see them.
  • Q12. I don’t like it when old people try to make conversation with me.
  • Q13. Complex and interesting conversation cannot be expected from most old people.
  • Q14. Feeling depressed when around old people is probably a common feeling.
  • Q15. Old people should find friends their own age.
  • Q16. Old people should feel welcome at the social gatherings of young people. (R)
  • Q17. Old people don’t really need to use our community sports facilities.
  • Q18. It is best that old people live where they won’t bother anyone.
  • Q19. The company of most old people is quite enjoyable. (R)
  • Q20. It is sad to hear about the plight of the old in our society these days. (R)
  • Q21. Old people should be encouraged to speak out politically. (R)
  • Q22. Most old people are interesting, individualistic people. (R)
  • Q23. I personally would not want to spend much time with an old person.

Response scale: Strongly disagree(1), Disagree(2). Agree(3), Strongly agree(4).


Descriptive statistics for these items shown below.

##                   vars    n mean   sd median trimmed  mad min max range  skew
## Ageism_Fabroni1_1    1 1703 2.38 0.97      2    2.35 1.48   1   4     3  0.17
## Ageism_Fabroni1_2    2 1702 2.51 0.93      3    2.52 1.48   1   4     3 -0.04
## Ageism_Fabroni1_3    3 1701 2.44 0.95      2    2.43 1.48   1   4     3  0.12
## Ageism_Fabroni1_4    4 1702 2.28 0.99      2    2.23 1.48   1   4     3  0.28
## Ageism_Fabroni1_5    5 1703 2.70 0.86      3    2.73 1.48   1   4     3 -0.13
## Ageism_Fabroni1_6    6 1701 2.27 1.00      2    2.22 1.48   1   4     3  0.30
## Ageism_Fabroni2_1    7 1702 2.43 0.95      2    2.41 1.48   1   4     3  0.10
## Ageism_Fabroni2_2    8 1698 2.45 0.94      2    2.44 1.48   1   4     3  0.10
## Ageism_Fabroni2_3    9 1697 2.43 0.94      2    2.42 1.48   1   4     3  0.12
## Ageism_Fabroni2_4   10 1700 2.47 1.04      2    2.47 1.48   1   4     3  0.02
## Ageism_Fabroni2_5   11 1700 2.12 1.04      2    2.03 1.48   1   4     3  0.48
## Ageism_Fabroni2_6   12 1700 2.09 1.05      2    1.98 1.48   1   4     3  0.57
## Ageism_Fabroni3_1   13 1701 2.19 1.04      2    2.11 1.48   1   4     3  0.37
## Ageism_Fabroni3_2   14 1697 2.27 0.97      2    2.21 1.48   1   4     3  0.32
## Ageism_Fabroni3_3   15 1695 2.29 0.99      2    2.24 1.48   1   4     3  0.28
## Ageism_Fabroni3_4   16 1701 1.89 0.83      2    1.78 1.48   1   4     3  0.84
## Ageism_Fabroni3_5   17 1700 2.22 1.00      2    2.15 1.48   1   4     3  0.38
## Ageism_Fabroni3_6   18 1701 2.09 1.05      2    1.98 1.48   1   4     3  0.53
## Ageism_Fabroni4_1   19 1703 1.78 0.74      2    1.68 0.00   1   4     3  0.90
## Ageism_Fabroni4_2   20 1701 1.86 0.77      2    1.78 1.48   1   4     3  0.70
## Ageism_Fabroni4_3   21 1703 1.81 0.75      2    1.72 1.48   1   4     3  0.75
## Ageism_Fabroni4_4   22 1702 1.75 0.77      2    1.64 1.48   1   4     3  0.96
## Ageism_Fabroni4_5   23 1699 2.14 1.08      2    2.05 1.48   1   4     3  0.48
##                   kurtosis   se
## Ageism_Fabroni1_1    -0.95 0.02
## Ageism_Fabroni1_2    -0.85 0.02
## Ageism_Fabroni1_3    -0.90 0.02
## Ageism_Fabroni1_4    -0.97 0.02
## Ageism_Fabroni1_5    -0.69 0.02
## Ageism_Fabroni1_6    -0.98 0.02
## Ageism_Fabroni2_1    -0.91 0.02
## Ageism_Fabroni2_2    -0.88 0.02
## Ageism_Fabroni2_3    -0.89 0.02
## Ageism_Fabroni2_4    -1.16 0.03
## Ageism_Fabroni2_5    -0.98 0.03
## Ageism_Fabroni2_6    -0.91 0.03
## Ageism_Fabroni3_1    -1.07 0.03
## Ageism_Fabroni3_2    -0.85 0.02
## Ageism_Fabroni3_3    -0.96 0.02
## Ageism_Fabroni3_4     0.31 0.02
## Ageism_Fabroni3_5    -0.92 0.02
## Ageism_Fabroni3_6    -0.96 0.03
## Ageism_Fabroni4_1     0.94 0.02
## Ageism_Fabroni4_2     0.22 0.02
## Ageism_Fabroni4_3     0.43 0.02
## Ageism_Fabroni4_4     0.78 0.02
## Ageism_Fabroni4_5    -1.05 0.03

The reliability of these items is ideal Cronbach’s Alpha is .94.

## Warning in psych::alpha(df[, c(89:111)]): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( Ageism_Fabroni3_4 Ageism_Fabroni4_1 Ageism_Fabroni4_2 Ageism_Fabroni4_3 ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = df[, c(89:111)])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.94      0.93    0.95      0.36  13 0.002  2.2 0.61      0.5
## 
##  lower alpha upper     95% confidence boundaries
## 0.93 0.94 0.94 
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## Ageism_Fabroni1_1      0.93      0.92    0.95      0.35  12   0.0021 0.089
## Ageism_Fabroni1_2      0.93      0.92    0.95      0.36  12   0.0021 0.091
## Ageism_Fabroni1_3      0.93      0.92    0.95      0.35  12   0.0021 0.089
## Ageism_Fabroni1_4      0.93      0.92    0.95      0.35  12   0.0021 0.089
## Ageism_Fabroni1_5      0.93      0.93    0.95      0.36  12   0.0020 0.091
## Ageism_Fabroni1_6      0.93      0.92    0.95      0.35  12   0.0022 0.088
## Ageism_Fabroni2_1      0.93      0.92    0.95      0.35  12   0.0021 0.088
## Ageism_Fabroni2_2      0.93      0.92    0.95      0.35  12   0.0021 0.089
## Ageism_Fabroni2_3      0.93      0.92    0.95      0.35  12   0.0021 0.090
## Ageism_Fabroni2_4      0.93      0.92    0.95      0.36  12   0.0021 0.092
## Ageism_Fabroni2_5      0.93      0.92    0.94      0.35  12   0.0022 0.088
## Ageism_Fabroni2_6      0.93      0.92    0.94      0.35  12   0.0022 0.089
## Ageism_Fabroni3_1      0.93      0.92    0.94      0.35  12   0.0022 0.088
## Ageism_Fabroni3_2      0.93      0.92    0.95      0.35  12   0.0022 0.088
## Ageism_Fabroni3_3      0.93      0.92    0.95      0.35  12   0.0021 0.089
## Ageism_Fabroni3_4      0.94      0.93    0.95      0.39  14   0.0018 0.081
## Ageism_Fabroni3_5      0.93      0.92    0.95      0.35  12   0.0022 0.089
## Ageism_Fabroni3_6      0.93      0.92    0.94      0.35  12   0.0022 0.088
## Ageism_Fabroni4_1      0.94      0.93    0.95      0.39  14   0.0018 0.083
## Ageism_Fabroni4_2      0.94      0.93    0.95      0.39  14   0.0018 0.083
## Ageism_Fabroni4_3      0.94      0.93    0.95      0.39  14   0.0019 0.085
## Ageism_Fabroni4_4      0.94      0.93    0.95      0.38  14   0.0019 0.087
## Ageism_Fabroni4_5      0.93      0.92    0.95      0.35  12   0.0021 0.090
##                   med.r
## Ageism_Fabroni1_1  0.49
## Ageism_Fabroni1_2  0.51
## Ageism_Fabroni1_3  0.49
## Ageism_Fabroni1_4  0.49
## Ageism_Fabroni1_5  0.52
## Ageism_Fabroni1_6  0.49
## Ageism_Fabroni2_1  0.49
## Ageism_Fabroni2_2  0.49
## Ageism_Fabroni2_3  0.50
## Ageism_Fabroni2_4  0.50
## Ageism_Fabroni2_5  0.49
## Ageism_Fabroni2_6  0.49
## Ageism_Fabroni3_1  0.49
## Ageism_Fabroni3_2  0.49
## Ageism_Fabroni3_3  0.49
## Ageism_Fabroni3_4  0.52
## Ageism_Fabroni3_5  0.49
## Ageism_Fabroni3_6  0.49
## Ageism_Fabroni4_1  0.52
## Ageism_Fabroni4_2  0.52
## Ageism_Fabroni4_3  0.52
## Ageism_Fabroni4_4  0.52
## Ageism_Fabroni4_5  0.49
## 
##  Item statistics 
##                      n raw.r std.r r.cor r.drop mean   sd
## Ageism_Fabroni1_1 1703 0.737 0.727 0.717  0.703  2.4 0.97
## Ageism_Fabroni1_2 1702 0.645 0.636 0.616  0.604  2.5 0.93
## Ageism_Fabroni1_3 1701 0.743 0.735 0.726  0.710  2.4 0.95
## Ageism_Fabroni1_4 1702 0.773 0.764 0.756  0.742  2.3 0.99
## Ageism_Fabroni1_5 1703 0.603 0.596 0.570  0.561  2.7 0.86
## Ageism_Fabroni1_6 1701 0.821 0.811 0.809  0.795  2.3 1.00
## Ageism_Fabroni2_1 1702 0.759 0.749 0.742  0.728  2.4 0.95
## Ageism_Fabroni2_2 1698 0.746 0.738 0.727  0.714  2.5 0.94
## Ageism_Fabroni2_3 1697 0.698 0.689 0.671  0.661  2.4 0.94
## Ageism_Fabroni2_4 1700 0.662 0.652 0.627  0.617  2.5 1.04
## Ageism_Fabroni2_5 1700 0.827 0.817 0.818  0.801  2.1 1.04
## Ageism_Fabroni2_6 1700 0.819 0.810 0.810  0.793  2.1 1.05
## Ageism_Fabroni3_1 1701 0.820 0.810 0.808  0.793  2.2 1.04
## Ageism_Fabroni3_2 1697 0.820 0.812 0.811  0.796  2.3 0.97
## Ageism_Fabroni3_3 1695 0.791 0.783 0.776  0.763  2.3 0.99
## Ageism_Fabroni3_4 1701 0.044 0.076 0.025 -0.016  1.9 0.83
## Ageism_Fabroni3_5 1700 0.802 0.794 0.789  0.775  2.2 1.00
## Ageism_Fabroni3_6 1701 0.844 0.835 0.837  0.821  2.1 1.05
## Ageism_Fabroni4_1 1703 0.093 0.134 0.095  0.041  1.8 0.74
## Ageism_Fabroni4_2 1701 0.094 0.131 0.086  0.039  1.9 0.77
## Ageism_Fabroni4_3 1703 0.146 0.187 0.148  0.094  1.8 0.75
## Ageism_Fabroni4_4 1702 0.203 0.242 0.206  0.150  1.8 0.77
## Ageism_Fabroni4_5 1699 0.787 0.777 0.771  0.756  2.1 1.08
## 
## Non missing response frequency for each item
##                      1    2    3    4 miss
## Ageism_Fabroni1_1 0.20 0.36 0.28 0.15    0
## Ageism_Fabroni1_2 0.15 0.33 0.36 0.15    0
## Ageism_Fabroni1_3 0.17 0.38 0.30 0.16    0
## Ageism_Fabroni1_4 0.25 0.36 0.25 0.14    0
## Ageism_Fabroni1_5 0.08 0.33 0.40 0.19    0
## Ageism_Fabroni1_6 0.26 0.36 0.24 0.15    0
## Ageism_Fabroni2_1 0.18 0.36 0.31 0.15    0
## Ageism_Fabroni2_2 0.16 0.37 0.31 0.15    0
## Ageism_Fabroni2_3 0.17 0.37 0.30 0.15    0
## Ageism_Fabroni2_4 0.22 0.29 0.30 0.20    0
## Ageism_Fabroni2_5 0.35 0.31 0.20 0.14    0
## Ageism_Fabroni2_6 0.37 0.32 0.17 0.14    0
## Ageism_Fabroni3_1 0.32 0.31 0.23 0.14    0
## Ageism_Fabroni3_2 0.23 0.39 0.24 0.13    0
## Ageism_Fabroni3_3 0.24 0.37 0.25 0.15    0
## Ageism_Fabroni3_4 0.35 0.47 0.12 0.06    0
## Ageism_Fabroni3_5 0.28 0.37 0.22 0.14    0
## Ageism_Fabroni3_6 0.38 0.30 0.19 0.13    0
## Ageism_Fabroni4_1 0.37 0.51 0.08 0.04    0
## Ageism_Fabroni4_2 0.34 0.49 0.13 0.04    0
## Ageism_Fabroni4_3 0.36 0.50 0.11 0.03    0
## Ageism_Fabroni4_4 0.41 0.46 0.09 0.04    0
## Ageism_Fabroni4_5 0.36 0.30 0.18 0.16    0

Below are the descriptive statistics for the ageism Fraboni scale overall.

##    vars    n mean   sd median trimmed  mad min  max range skew kurtosis   se
## X1    1 1703 2.21 0.61   2.17    2.21 0.71   1 3.57  2.57 0.06    -0.89 0.01

3.17 Social values


  • Q1.How important is it to you to help those in need?
  • Q2.How important is it to you to consider the needs of other people?
  • Q3.How important is it to you to think about how your actions affect people in the future?

Response scale: Not important at all(1), A little important(2), Somewhat important(3), Quite important(4), Extremely important(5).


Descriptive statistics for these items shown below.

##                 vars    n mean   sd median trimmed  mad min max range  skew
## Social_Values_1    1 1703 4.04 0.99      4    4.17 1.48   1   5     4 -0.94
## Social_Values_2    2 1702 4.03 0.98      4    4.16 1.48   1   5     4 -0.90
## Social_Values_3    3 1699 4.04 1.03      4    4.18 1.48   1   5     4 -0.94
##                 kurtosis   se
## Social_Values_1     0.44 0.02
## Social_Values_2     0.31 0.02
## Social_Values_3     0.26 0.03
## 
##  Descriptive statistics by group 
## group: Control
##                 vars   n mean   sd median trimmed  mad min max range  skew
## Social_Values_1    1 582 4.00 0.98      4    4.12 1.48   1   5     4 -0.81
## Social_Values_2    2 582 4.00 1.00      4    4.15 1.48   1   5     4 -0.93
## Social_Values_3    3 582 3.98 1.05      4    4.13 1.48   1   5     4 -0.88
##                 kurtosis   se
## Social_Values_1     0.12 0.04
## Social_Values_2     0.31 0.04
## Social_Values_3     0.17 0.04
## ------------------------------------------------------------ 
## group: CDC
##                 vars   n mean   sd median trimmed  mad min max range  skew
## Social_Values_1    1 546 4.07 0.98      4    4.20 1.48   1   5     4 -1.00
## Social_Values_2    2 545 4.07 0.96      4    4.19 1.48   1   5     4 -0.91
## Social_Values_3    3 544 4.08 1.02      4    4.23 1.48   1   5     4 -1.08
##                 kurtosis   se
## Social_Values_1     0.66 0.04
## Social_Values_2     0.32 0.04
## Social_Values_3     0.69 0.04
## ------------------------------------------------------------ 
## group: KS
##                 vars   n mean   sd median trimmed  mad min max range  skew
## Social_Values_1    1 575 4.05 1.02      4    4.19 1.48   1   5     4 -1.00
## Social_Values_2    2 575 4.02 0.98      4    4.14 1.48   1   5     4 -0.86
## Social_Values_3    3 573 4.06 1.03      4    4.20 1.48   1   5     4 -0.86
##                 kurtosis   se
## Social_Values_1     0.53 0.04
## Social_Values_2     0.26 0.04
## Social_Values_3    -0.05 0.04

The reliability of these items is ideal Cronbach’s Alpha is .86.

## 
## Reliability analysis   
## Call: psych::alpha(x = df[, c(112:114)])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##       0.86      0.86    0.81      0.68 6.3 0.0058    4 0.89     0.67
## 
##  lower alpha upper     95% confidence boundaries
## 0.85 0.86 0.87 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## Social_Values_1      0.80      0.81    0.67      0.67 4.1   0.0094    NA  0.67
## Social_Values_2      0.78      0.78    0.64      0.64 3.5   0.0108    NA  0.64
## Social_Values_3      0.84      0.84    0.72      0.72 5.1   0.0079    NA  0.72
## 
##  Item statistics 
##                    n raw.r std.r r.cor r.drop mean   sd
## Social_Values_1 1703  0.88  0.89  0.80   0.74    4 0.99
## Social_Values_2 1702  0.90  0.90  0.83   0.77    4 0.98
## Social_Values_3 1699  0.87  0.87  0.76   0.71    4 1.03
## 
## Non missing response frequency for each item
##                    1    2    3    4    5 miss
## Social_Values_1 0.02 0.05 0.18 0.35 0.39    0
## Social_Values_2 0.02 0.07 0.17 0.37 0.38    0
## Social_Values_3 0.02 0.06 0.19 0.31 0.42    0

Below are the descriptive statistics for the social values scale overall.

##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1703 4.04 0.89      4    4.14 0.99   1   5     4 -0.82     0.06 0.02

3.18 Self values


  • Q1. How important is it to you to put your own needs before the needs of others?
  • Q2. How important is it to you to do what you want, regardless of what other people might want?

Response scale: Not important at all(1), A little important(2), Somewhat important(3), Quite important(4), Extremely important(5).


Below are the descriptive statistics for these items overall.

##               vars    n mean   sd median trimmed  mad min max range  skew
## Self_Values_1    1 1703 3.19 1.32      3    3.24 1.48   1   5     4 -0.14
## Self_Values_2    2 1702 2.99 1.40      3    2.99 1.48   1   5     4 -0.03
##               kurtosis   se
## Self_Values_1    -1.09 0.03
## Self_Values_2    -1.26 0.03
## 
## Reliability analysis   
## Call: psych::alpha(x = df[, c(115:116)])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.77      0.77    0.63      0.63 3.4 0.011  3.1 1.2     0.63
## 
##  lower alpha upper     95% confidence boundaries
## 0.75 0.77 0.79 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## Self_Values_1      0.60      0.63     0.4      0.63 1.7       NA     0  0.63
## Self_Values_2      0.66      0.63     0.4      0.63 1.7       NA     0  0.63
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean  sd
## Self_Values_1 1703  0.90   0.9  0.72   0.63  3.2 1.3
## Self_Values_2 1702  0.91   0.9  0.72   0.63  3.0 1.4
## 
## Non missing response frequency for each item
##                  1    2    3    4    5 miss
## Self_Values_1 0.14 0.18 0.27 0.20 0.22    0
## Self_Values_2 0.21 0.18 0.22 0.21 0.18    0

Below are the descriptive statistics for the self values scale overall.

##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1703 3.09 1.23      3    3.11 1.48   1   5     4 -0.05    -1.02 0.03

3.19 Death anxiety


  • Q1. The thought of death seldom enters my mind. (R)
  • Q2. I am very much afraid to die.
  • Q3. I am often distressed by the way time flies so very rapidly.
  • Q4. The subject of life after death troubles me a lot.
  • Q5. I often think about how short life really is.
  • Q6. I feel that the future holds nothing for me to fear. (R)
  • Q7. I fear dying a painful death.
  • Q8. I am preoccupied with the fear of having a serious illness.
  • Q9. I see death as a passage to an eternal and blessed place. (R)

Response scale (slider): Strongly disagree(1), Disagree(2), Uncertain or Not applicable(3), Agree(4), Strongly agree(5).


Below are the descriptive statistics for these items overall.

##             vars    n mean   sd median trimmed  mad min max range  skew
## D_Anxiety_1    1 1703 2.83 1.29      3    2.79 1.48   1   5     4  0.17
## D_Anxiety_2    2 1701 3.14 1.29      3    3.17 1.48   1   5     4 -0.20
## D_Anxiety_3    3 1702 3.41 1.21      4    3.50 1.48   1   5     4 -0.47
## D_Anxiety_4    4 1701 2.97 1.33      3    2.96 1.48   1   5     4 -0.01
## D_Anxiety_5    5 1698 3.62 1.14      4    3.74 1.48   1   5     4 -0.75
## D_Anxiety_6    6 1700 2.75 1.25      3    2.69 1.48   1   5     4  0.27
## D_Anxiety_7    7 1698 3.42 1.26      4    3.52 1.48   1   5     4 -0.47
## D_Anxiety_8    8 1699 2.95 1.32      3    2.94 1.48   1   5     4  0.03
## D_Anxiety_9    9 1700 2.36 1.16      2    2.24 1.48   1   5     4  0.62
##             kurtosis   se
## D_Anxiety_1    -1.11 0.03
## D_Anxiety_2    -1.09 0.03
## D_Anxiety_3    -0.73 0.03
## D_Anxiety_4    -1.16 0.03
## D_Anxiety_5    -0.17 0.03
## D_Anxiety_6    -0.93 0.03
## D_Anxiety_7    -0.80 0.03
## D_Anxiety_8    -1.17 0.03
## D_Anxiety_9    -0.31 0.03

The reliability of these items is ideal. Cronbach’s Alpha is .84.

## Warning in psych::alpha(df[, c(128:136)]): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( D_Anxiety_1 D_Anxiety_6 D_Anxiety_9 ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = df[, c(128:136)])
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.56      0.55    0.69      0.12 1.2 0.015  3.1 0.59    0.095
## 
##  lower alpha upper     95% confidence boundaries
## 0.53 0.56 0.59 
## 
##  Reliability if an item is dropped:
##             raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## D_Anxiety_1      0.65      0.64    0.74     0.182 1.78    0.011  0.15  0.38
## D_Anxiety_2      0.42      0.42    0.59     0.082 0.71    0.021  0.13 -0.13
## D_Anxiety_3      0.44      0.43    0.61     0.085 0.75    0.020  0.14 -0.11
## D_Anxiety_4      0.42      0.41    0.58     0.080 0.70    0.021  0.13 -0.13
## D_Anxiety_5      0.49      0.48    0.64     0.103 0.91    0.018  0.15 -0.11
## D_Anxiety_6      0.67      0.66    0.75     0.194 1.92    0.011  0.14  0.38
## D_Anxiety_7      0.44      0.43    0.61     0.085 0.74    0.020  0.14 -0.11
## D_Anxiety_8      0.44      0.43    0.60     0.087 0.76    0.020  0.13 -0.11
## D_Anxiety_9      0.62      0.62    0.72     0.168 1.62    0.013  0.16  0.38
## 
##  Item statistics 
##                n  raw.r  std.r r.cor r.drop mean  sd
## D_Anxiety_1 1703  0.034  0.039 -0.18  -0.21  2.8 1.3
## D_Anxiety_2 1701  0.720  0.710  0.72   0.56  3.1 1.3
## D_Anxiety_3 1702  0.685  0.687  0.67   0.53  3.4 1.2
## D_Anxiety_4 1701  0.731  0.720  0.74   0.57  3.0 1.3
## D_Anxiety_5 1698  0.561  0.572  0.51   0.39  3.6 1.1
## D_Anxiety_6 1700 -0.046 -0.039 -0.27  -0.27  2.8 1.2
## D_Anxiety_7 1698  0.692  0.688  0.66   0.53  3.4 1.3
## D_Anxiety_8 1699  0.689  0.677  0.68   0.52  3.0 1.3
## D_Anxiety_9 1700  0.119  0.133 -0.07  -0.10  2.4 1.2
## 
## Non missing response frequency for each item
##                1    2    3    4    5 miss
## D_Anxiety_1 0.17 0.29 0.20 0.22 0.12    0
## D_Anxiety_2 0.14 0.20 0.21 0.29 0.16    0
## D_Anxiety_3 0.09 0.15 0.21 0.35 0.19    0
## D_Anxiety_4 0.18 0.21 0.23 0.23 0.15    0
## D_Anxiety_5 0.07 0.11 0.19 0.42 0.22    0
## D_Anxiety_6 0.18 0.29 0.25 0.18 0.11    0
## D_Anxiety_7 0.10 0.14 0.22 0.32 0.22    0
## D_Anxiety_8 0.17 0.23 0.22 0.23 0.15    0
## D_Anxiety_9 0.27 0.31 0.27 0.08 0.07    0

Below are the descriptive statistics for the death anxiety scale overall.

##    vars    n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 1703 3.05 0.59   3.11    3.08 0.49   1   5     4 -0.46     0.45 0.01

  • Q1. How worried are you about getting older?
  • Q2. How worried are you about dying?

Response scale (slider): Not worried at all(1), — (2), — (3), — (4), Very worried(5).


Below are the descriptive statistics for these items overall.

##         vars    n mean   sd median trimmed  mad min max range  skew kurtosis
## O_Worry    1 1703 3.13 1.42      3    3.16 1.48   1   5     4 -0.16    -1.23
## D_Worry    2 1701 3.06 1.41      3    3.08 1.48   1   5     4 -0.10    -1.25
##           se
## O_Worry 0.03
## D_Worry 0.03

4 Research Q1


Is there a relationship between attitudes towards/knowledge about older people and willingness/intentions/attitudes regarding COVID-19 health guidelines and behaviors?



To answer this question, we analyzed results from respondents in the control condition. This was to ensure that we could estimate the relationships of interest as they were naturally distributed in the sample without concern about whether responses were influenced by the public health messages. The sample size for the control group (n=582) was sensitive enough to detect a conventionally small effect (f2=.02), for a linear multiple regression analysis (fixed model, single regression coefficient, 13 predictors), assuming α=.05 and 1-β=.95, two-tailed.


Outcome measures

CV19-OAS

  • (e.g., “All adults over the age of 50 are at high risk from COVID-19.”). Higher scores correspond to more misconceptions

Fraboni ageism

  • (e.g., “Many old people are stingy and hoard their money and possessions.”)). Higher scores correspond to more negative attitudes towards older adults

Facts of aging

  • (e.g., “Physical strength tends to decline in old age.”). Higher scores correspond to better knowledge

and our measures related to willingness to follow guidelines, intentions to engage in COVID relevant behaviors, and attitudes towards guidelines (listed below).


Ageism_CVPriority1

  • (“For the sake of the economy we should all get back to work, even if it means that more older people will die from COVID-19.”). Higher scores correspond to greater agreement

Ageism_CVPriority2_1

  • (“Please indicate your preference between the two options.”). Lower scores correspond to preference to protect those at higher risk from COVID-19 (e.g., older adults). Higher scores correspond to preference to keep the economy going

Ageism_CVPriority2_1

  • (“Please indicate your preference between the two options.”). Lower scores correspond to preference to protect those at higher risk from COVID-19 (e.g., older adults). Higher scores correspond to preference to get life back to normal

Adhere_willing

  • (“I am willing to do another period of staying at home and avoiding contact with other people this winter, if the number of COVID-19 infections starts increasing again.”). Higher scores correspond to greater willingness

AdhereAttitude1_1

  • (“How willing or unwilling are you to follow COVID-19 guidelines (e.g., distancing and mask wearing)?”)). Higher scores correspond to greater willingness

AdhereAttitude2

  • (“The guidelines for slowing the spread of COVID-19 (e.g., distancing and mask wearing) are…”). Higher scores correspond to belief they are not restrictive enough; lower scores correspond to belief they are too restrictive; midpoint(4) is that they are just right

AdhereAttitude3_1

  • (“Following COVID-19 guidelines (e.g., distancing and mask wearing) is an effective method for slowing the spread of COVID-19”). Higher scores correspond to greater agreement

AdhereAttitude3_2

  • (“Following COVID-19 guidelines (e.g., distancing and mask wearing) is An effective method to avoid getting COVID-19”). Higher scores correspond to greater agreement

AdhereAttitude3_2

  • (“Following COVID-19 guidelines (e.g., distancing and mask wearing) is currently the most effective method available for saving lives”). Higher scores correspond to greater agreement

BehavIntRisk_Avg

  • (e.g., “Going to gatherings of 10 or more people.”). Five items, higher scores correspond to plans to more frequently engage in these riskier behaviors in the next month

BehavIntPrtct_Avg

  • (e.g., “Practicing good hygiene such as washing your hands, especially after touching frequently used items or surfaces.”). Three items, higher scores correspond to plans to more frequently engage in these protective behaviors in the next month

Prosocial_Avg

  • (e.g., “Go shopping for an older person.”). Six items, higher scores correspond to plans to more frequently engage in these behaviors

IndivRisk_Avg

  • (e.g., “How likely does it feel that you will get COVID-19 within the next month?”). Nine items, higher scores correspond to greater perceived likelihood and severity of getting COVID-19

4.1 Correlations


For a pure test we look at the results just in the control group alone. The three dependent variables are the CV19-OAS (attitudes and misconceptions towards older adults in the context of COVID-19), FSA (Fraboni Scale of Ageism), and FAQ (Facts on Aging quiz). Bonferroni correction applied to all correlations

  CV19-OAS: correlation estimate (r) CV19-OAS: Bonferroni adjusted p FSA: correlation estimate (r) FSA: Bonferroni adjusted p FAQ: correlation estimate (r) FAQ: Bonferroni adjusted p
Ageism_CVPriority1 0.51 0.00 0.54 0.00 0.32 0.00
Ageism_CVPriority2_1 0.31 0.00 0.27 0.00 0.12 0.11
Ageism_CVPriority2_2 0.29 0.00 0.28 0.00 0.13 0.03
Adhere_willing 0.10 0.29 0.10 0.26 0.02 1.00
AdhereAttitude1_1 -0.08 1.00 -0.04 1.00 -0.16 0.00
AdhereAttitude2 -0.28 0.00 -0.27 0.00 -0.22 0.00
AdhereAttitude3_1 0.00 1.00 -0.03 1.00 -0.14 0.01
AdhereAttitude3_2 0.05 1.00 0.09 0.79 -0.05 1.00
AdhereAttitude3_3 0.06 1.00 0.08 0.99 -0.04 1.00
BehavIntRisk_Avg 0.58 0.00 0.60 0.00 0.42 0.00
BehavIntPrtct_Avg -0.09 0.68 -0.12 0.09 -0.22 0.00
Prosocial_Avg 0.11 0.22 0.07 1.00 -0.05 1.00
IndivRisk_Avg 0.26 0.00 0.35 0.00 0.23 0.00



4.2 Regression


Again we look at the results just in the control group alone. The CV19-OAS (attitudes and misconceptions towards older adults in the context of COVID-19), FSA (Fraboni Scale of Ageism), and FAQ (Facts on Aging quiz), were each regressed on attitudes and intentions regarding infection control guidelines and COVID-19 risk perceptions.


  CV19-OAS FSA FAQ
Predictors Beta (95% CI) Statistic p value Beta (95% CI) Statistic p value Beta (95% CI) Statistic p value
(Intercept) 0.00
(-0.08 – 0.08)
7.50 <0.001 0.00
(-0.07 – 0.07)
9.60 <0.001 -0.00
(-0.08 – 0.08)
7.36 <0.001
Priority: Back to work 0.28
(0.17 – 0.39)
4.94 <0.001 0.29
(0.19 – 0.39)
5.52 <0.001 0.07
(-0.05 – 0.19)
1.21 0.227
Priority: Economy 0.09
(-0.02 – 0.20)
1.61 0.109 0.01
(-0.09 – 0.11)
0.16 0.871 -0.06
(-0.17 – 0.06)
-0.95 0.342
Priority: Normal -0.02
(-0.13 – 0.09)
-0.38 0.703 0.00
(-0.10 – 0.10)
0.01 0.992 -0.01
(-0.13 – 0.11)
-0.17 0.863
Guidelines restrictive 0.01
(-0.08 – 0.11)
0.30 0.765 0.02
(-0.07 – 0.11)
0.46 0.642 0.00
(-0.10 – 0.10)
0.04 0.964
Guidelines effective prevent getting CV19 -0.02
(-0.16 – 0.12)
-0.26 0.792 0.12
(-0.02 – 0.25)
1.73 0.083 0.08
(-0.07 – 0.23)
1.05 0.296
Guidelines effective save lives 0.11
(-0.02 – 0.23)
1.65 0.100 0.06
(-0.06 – 0.17)
0.95 0.342 0.02
(-0.11 – 0.15)
0.29 0.773
Guidelines effective slow spread 0.00
(-0.15 – 0.15)
0.01 0.992 -0.16
(-0.30 – -0.02)
-2.27 0.024 -0.10
(-0.26 – 0.07)
-1.18 0.239
Willingness to stay home again 0.21
(0.10 – 0.32)
3.73 <0.001 0.20
(0.10 – 0.30)
3.85 <0.001 0.16
(0.04 – 0.28)
2.65 0.008
Willingness to follow guidelines -0.07
(-0.17 – 0.04)
-1.30 0.194 0.05
(-0.04 – 0.15)
1.05 0.294 -0.06
(-0.17 – 0.06)
-0.98 0.328
Risky Behavioral intent scale 0.34
(0.23 – 0.44)
6.55 <0.001 0.39
(0.30 – 0.49)
8.29 <0.001 0.34
(0.24 – 0.45)
6.29 <0.001
Protective Behavioral intent scale -0.14
(-0.24 – -0.04)
-2.70 0.007 -0.19
(-0.29 – -0.10)
-4.12 <0.001 -0.24
(-0.35 – -0.13)
-4.42 <0.001
Prosocial scale -0.05
(-0.14 – 0.04)
-1.14 0.253 -0.09
(-0.17 – -0.01)
-2.13 0.034 -0.10
(-0.19 – -0.01)
-2.15 0.032
Individual risk 0.04
(-0.06 – 0.13)
0.78 0.433 0.12
(0.03 – 0.21)
2.75 0.006 0.12
(0.02 – 0.22)
2.41 0.016
Observations 429 429 429
R2 / R2 adjusted 0.346 / 0.326 0.439 / 0.421 0.253 / 0.230

VIF scores are less than 3.8 for all models

##   Ageism_CVPriority1 Ageism_CVPriority2_1 Ageism_CVPriority2_2 
##             2.042947             1.973152             1.966206 
##      AdhereAttitude2    AdhereAttitude3_2    AdhereAttitude3_3 
##             1.489788             3.256179             2.572886 
##    AdhereAttitude3_1       Adhere_willing    AdhereAttitude1_1 
##             3.823082             1.973162             1.768511 
##     BehavIntRisk_Avg    BehavIntPrtct_Avg        Prosocial_Avg 
##             1.664469             1.649452             1.224190 
##        IndivRisk_Avg 
##             1.439253

4.2.1 Regression (Moderated by age)


What I have done here is run the same model, but added age (mean centered) and then also added all the interaction terms of the outcome measures with age.

  CV19-OAS FSA FAQ
Predictors Beta (95% CI) Statistic std. Statistic p std. p Beta (95% CI) Statistic std. Statistic p std. p Beta (95% CI) Statistic std. Statistic p std. p
(Intercept) -0.03
(-0.12 – 0.05)
78.81 -0.79 <0.001 0.430 -0.03
(-0.11 – 0.05)
95.17 -0.71 <0.001 0.481 -0.00
(-0.09 – 0.09)
49.63 -0.03 <0.001 0.978
Priority: Back to work 0.31
(0.19 – 0.42)
5.21 5.27 <0.001 <0.001 0.28
(0.18 – 0.39)
5.30 5.23 <0.001 <0.001 0.09
(-0.03 – 0.21)
1.52 1.53 0.130 0.127
Priority: Economy 0.10
(-0.01 – 0.21)
1.76 1.74 0.079 0.083 0.04
(-0.07 – 0.14)
0.55 0.66 0.581 0.508 -0.04
(-0.15 – 0.08)
-0.69 -0.65 0.492 0.517
Priority: Normal -0.01
(-0.12 – 0.10)
-0.10 -0.17 0.922 0.869 -0.01
(-0.11 – 0.10)
-0.05 -0.10 0.960 0.917 -0.00
(-0.12 – 0.12)
0.09 -0.02 0.929 0.982
Guidelines restrictive -0.01
(-0.11 – 0.08)
-0.39 -0.29 0.695 0.771 0.00
(-0.09 – 0.09)
0.08 0.01 0.939 0.995 -0.01
(-0.11 – 0.10)
-0.12 -0.10 0.901 0.920
Guidelines effective prevent getting CV19 -0.03
(-0.18 – 0.12)
-0.38 -0.38 0.704 0.706 0.09
(-0.05 – 0.23)
1.24 1.25 0.217 0.211 0.03
(-0.12 – 0.18)
0.47 0.39 0.639 0.697
Guidelines effective save lives 0.14
(0.01 – 0.28)
2.08 2.07 0.038 0.039 0.07
(-0.06 – 0.20)
1.12 1.07 0.264 0.284 0.08
(-0.07 – 0.22)
1.07 1.05 0.287 0.294
Guidelines effective slow spread -0.04
(-0.21 – 0.12)
-0.40 -0.52 0.693 0.605 -0.16
(-0.31 – 0.00)
-1.99 -1.96 0.047 0.050 -0.08
(-0.25 – 0.09)
-0.91 -0.93 0.365 0.352
Willingness to stay home again 0.21
(0.09 – 0.32)
3.63 3.58 <0.001 <0.001 0.22
(0.11 – 0.33)
4.00 4.00 <0.001 <0.001 0.15
(0.03 – 0.27)
2.52 2.53 0.012 0.012
Willingness to follow guidelines -0.06
(-0.16 – 0.05)
-1.04 -1.07 0.298 0.286 0.07
(-0.03 – 0.17)
1.33 1.31 0.184 0.191 -0.05
(-0.16 – 0.06)
-0.88 -0.87 0.381 0.385
Risky Behavioral intent scale 0.31
(0.20 – 0.41)
5.76 5.61 <0.001 <0.001 0.33
(0.23 – 0.43)
6.64 6.45 <0.001 <0.001 0.24
(0.13 – 0.35)
4.29 4.25 <0.001 <0.001
Protective Behavioral intent scale -0.07
(-0.19 – 0.04)
-1.55 -1.30 0.123 0.194 -0.16
(-0.27 – -0.06)
-3.23 -3.09 0.001 0.002 -0.18
(-0.29 – -0.06)
-3.15 -3.03 0.002 0.003
Prosocial scale -0.04
(-0.13 – 0.05)
-0.93 -0.93 0.352 0.352 -0.09
(-0.17 – -0.00)
-2.05 -2.02 0.041 0.045 -0.11
(-0.21 – -0.02)
-2.47 -2.42 0.014 0.016
Individual risk 0.02
(-0.07 – 0.12)
0.37 0.46 0.714 0.645 0.12
(0.03 – 0.21)
2.67 2.63 0.008 0.009 0.12
(0.02 – 0.22)
2.50 2.45 0.013 0.015
Age -0.09
(-0.18 – -0.00)
-1.88 -1.99 0.061 0.047 -0.16
(-0.24 – -0.07)
-3.40 -3.56 0.001 <0.001 -0.31
(-0.40 – -0.21)
-5.64 -6.41 <0.001 <0.001
AgeXPriority: Back to work 0.10
(-0.03 – 0.23)
1.54 1.54 0.125 0.125 -0.02
(-0.14 – 0.10)
-0.33 -0.33 0.741 0.741 0.02
(-0.11 – 0.16)
0.37 0.37 0.715 0.715
AgeXPriority: Economy -0.01
(-0.13 – 0.12)
-0.12 -0.12 0.904 0.904 0.10
(-0.02 – 0.22)
1.71 1.71 0.088 0.088 0.03
(-0.10 – 0.16)
0.47 0.47 0.640 0.640
AgeXPriority: Normal -0.07
(-0.19 – 0.06)
-1.05 -1.05 0.296 0.296 -0.05
(-0.17 – 0.07)
-0.83 -0.83 0.407 0.407 -0.11
(-0.24 – 0.02)
-1.69 -1.69 0.092 0.092
AgeXGuidelines restrictive 0.08
(-0.03 – 0.19)
1.47 1.47 0.144 0.144 -0.05
(-0.16 – 0.05)
-1.04 -1.04 0.297 0.297 0.02
(-0.09 – 0.13)
0.36 0.36 0.721 0.721
AgeXGuidelines effective prevent getting CV19 0.00
(-0.15 – 0.15)
0.01 0.01 0.995 0.995 0.03
(-0.11 – 0.17)
0.41 0.41 0.681 0.681 -0.10
(-0.25 – 0.06)
-1.22 -1.22 0.225 0.225
AgeXGuidelines effective save lives 0.03
(-0.10 – 0.17)
0.47 0.47 0.640 0.640 -0.03
(-0.15 – 0.10)
-0.41 -0.41 0.681 0.681 0.01
(-0.13 – 0.14)
0.09 0.09 0.927 0.927
AgeXGuidelines effective slow spread -0.18
(-0.35 – -0.01)
-2.09 -2.09 0.037 0.037 -0.01
(-0.18 – 0.15)
-0.18 -0.18 0.855 0.855 -0.06
(-0.24 – 0.11)
-0.72 -0.72 0.474 0.474
AgeXWillingness to stay home again 0.00
(-0.13 – 0.13)
0.01 0.01 0.993 0.993 0.04
(-0.08 – 0.16)
0.60 0.60 0.549 0.549 0.04
(-0.09 – 0.18)
0.67 0.67 0.506 0.506
AgeXWillingness to follow guidelines -0.02
(-0.12 – 0.09)
-0.30 -0.30 0.762 0.762 -0.03
(-0.13 – 0.07)
-0.52 -0.52 0.604 0.604 0.01
(-0.10 – 0.12)
0.23 0.23 0.819 0.819
AgeXRisky Behavioral intent scale -0.08
(-0.20 – 0.05)
-1.14 -1.14 0.254 0.254 -0.09
(-0.21 – 0.03)
-1.51 -1.51 0.133 0.133 0.01
(-0.12 – 0.14)
0.13 0.13 0.897 0.897
AgeXProtective Behavioral intent scale 0.19
(0.05 – 0.32)
2.77 2.77 0.006 0.006 0.05
(-0.08 – 0.17)
0.72 0.72 0.475 0.475 0.04
(-0.10 – 0.17)
0.51 0.51 0.608 0.608
AgeXProsocial scale 0.01
(-0.08 – 0.09)
0.18 0.18 0.855 0.855 0.04
(-0.04 – 0.12)
0.97 0.97 0.335 0.335 0.06
(-0.03 – 0.15)
1.41 1.41 0.160 0.160
AgeXIndividual risk 0.08
(-0.02 – 0.17)
1.50 1.50 0.135 0.135 -0.03
(-0.13 – 0.06)
-0.73 -0.73 0.467 0.467 -0.04
(-0.14 – 0.06)
-0.73 -0.73 0.466 0.466
Observations 424 424 424
R2 / R2 adjusted 0.389 / 0.347 0.464 / 0.428 0.350 / 0.306



5 Research Q2


Do the public health messages (CDC & ours) influence willingness/intentions/attitudes regarding COVID-19 health guidelines?

To answer this question, we ran omnibus one-way ANOVA models to test the effect of group assignment (control; CDC message; tailored message) on our outcome measures and also analyzed whether age moderated the effect of the messages. For each model, we conducted two orthogonal planned contrasts, with Bonferroni correction (αadj=.025), to compare both public health message groups to the control group (contrast 1: control vs CDC and our message) and to compare the two message groups (contrast 2: CDC vs our message).

##         CvsCD_KS CDCvsKS
## Control       -2       0
## CDC            1      -1
## KS             1       1

We ran follow up independent samples t-tests when the planned contrasts revealed a significant effect and applied Bonferroni correction for multiple comparisons. The final sample (n=1,703) was sufficient to detect a conventionally small effect size (f=.10), for one-way ANOVA (fixed effects, omnibus, 3 groups), with 1-β=0.95 and two-sided α=.025.


5.1 Priority



5.1.1 Back to work



Omnibus ANOVA test: CV19 priority preference (get to work even if means more older people will die)

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 9.122 4.561 1.359 0.257
Residuals 1670 5604.625 3.356

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 9.122 4.561 1.359 0.257 0.002 0.002 0 0 0 0.04 0.294
…2 Residuals 1670 5604.625 3.356

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.159 0.045 70.509 0.000
GroupCvsCD_KS -0.052 0.031 -1.644 0.100
GroupCDCvsKS -0.006 0.055 -0.108 0.914
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1673 1.832 0.002 0

Planned contrast effect sizes

  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c1 Group.c1 9.083 9.083 1 2.708 0.1 0.002 0.002 0.001 0.001 0.001 0.04 0.377
…2 Residuals 5604.665 3.354 1671
  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c2 Group.c2 0.039 0.039 1 0.012 0.914 0 0 -0.001 -0.001 -0.001 0.003 0.051
…2 Residuals 3701.279 3.377 1096

Contrast v2

##                               Df Sum Sq Mean Sq F value Pr(>F)
## Group                          2      9   4.561   1.359  0.257
##   Group: Control vs. CDC_KS    1      9   9.083   2.706  0.100
##   Group: CDC vs KS             1      0   0.039   0.012  0.914
## Residuals                   1670   5605   3.356               
## 30 observations deleted due to missingness

lsmeans contrast (unadjusted)


contrast estimate SE df lower.CL upper.CL t.ratio p.value
Control vs CDC and KS -0.310 0.189 1670 -0.680 0.060 -1.644 0.100
CDC vs KS -0.012 0.111 1670 -0.229 0.205 -0.108 0.914

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 3.263 0.076 1670 3.113 3.412
CDC 3.114 0.079 1670 2.959 3.269
KS 3.102 0.077 1670 2.950 3.253
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 575 3.26 1.82      3     3.2 2.97   1   6     5 0.14    -1.43 0.08
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 537 3.11 1.82      3    3.02 2.97   1   6     5 0.27    -1.36 0.08
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 561  3.1 1.85      3       3 2.97   1   6     5  0.3    -1.36 0.08


Here is the moderated model. I just included age (mean centered) as an interaction term. Basically, "lm(DV ~ Group*AgeR, df)"

## 
## Call:
## lm(formula = Ageism_CVPriority1 ~ Group * AgeR, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.6792 -1.7271 -0.2377  1.6376  3.4155 
## 
## Coefficients:
##                      Estimate Std. Error t value       Pr(>|t|)    
## (Intercept)         3.1559024  0.0447532  70.518        < 2e-16 ***
## GroupCvsCD_KS      -0.0521692  0.0314222  -1.660         0.0971 .  
## GroupCDCvsKS        0.0053884  0.0551950   0.098         0.9222    
## AgeR               -0.0164966  0.0026176  -6.302 0.000000000376 ***
## GroupCvsCD_KS:AgeR -0.0002279  0.0018219  -0.125         0.9005    
## GroupCDCvsKS:AgeR  -0.0035093  0.0032552  -1.078         0.2812    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.814 on 1640 degrees of freedom
##   (57 observations deleted due to missingness)
## Multiple R-squared:  0.02645,    Adjusted R-squared:  0.02348 
## F-statistic: 8.911 on 5 and 1640 DF,  p-value: 0.00000002315
##                           2.5 %       97.5 %
## (Intercept)         3.068122920  3.243681808
## GroupCvsCD_KS      -0.113801015  0.009462690
## GroupCDCvsKS       -0.102871651  0.113648432
## AgeR               -0.021630715 -0.011362491
## GroupCvsCD_KS:AgeR -0.003801428  0.003345679
## GroupCDCvsKS:AgeR  -0.009894115  0.002875608

5.1.2 Economy



Omnibus ANOVA test: CV19 priority preference (get to work even if means more older people will die)

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 28.97 14.485 4.702 0.009
Residuals 1681 5178.64 3.081

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 28.97 14.485 4.702 0.009 0.006 0.006 0.004 0.004 0.004 0.075 0.79
…2 Residuals 1681 5178.64 3.081

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.903 0.043 67.857 0.000
GroupCvsCD_KS -0.089 0.030 -2.974 0.003
GroupCDCvsKS -0.038 0.053 -0.713 0.476
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1684 1.755 0.006 0.004

Planned contrast effect sizes

  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c1 Group.c1 27.4 27.40 1 8.898 0.003 0.005 0.005 0.005 0.005 0.005 0.073 0.847
…2 Residuals 5180.2 3.08 1682
  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c2 Group.c2 1.565 1.565 1 0.516 0.473 0 0 0 0 0 0.022 0.111
…2 Residuals 3367.493 3.037 1109

Contrast v2

##                               Df Sum Sq Mean Sq F value Pr(>F)   
## Group                          2     29  14.485   4.702 0.0092 **
##   Group: Control vs. CDC_KS    1     27  27.404   8.895 0.0029 **
##   Group: CDC vs KS             1      2   1.565   0.508 0.4761   
## Residuals                   1681   5179   3.081                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 19 observations deleted due to missingness

lsmeans contrast (unadjusted)


contrast estimate SE df lower.CL upper.CL t.ratio p.value
Control vs CDC and KS -0.537 0.181 1681 -0.891 -0.183 -2.974 0.003
CDC vs KS -0.075 0.105 1681 -0.282 0.132 -0.713 0.476

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 3.082 0.073 1681 2.938 3.226
CDC 2.851 0.075 1681 2.704 2.999
KS 2.776 0.074 1681 2.631 2.921
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 573 3.08 1.78      3    2.98 2.97   1   6     5 0.33    -1.18 0.07
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 544 2.85 1.76      3    2.69 2.97   1   6     5 0.48     -1.1 0.08
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 567 2.78 1.72      3     2.6 2.97   1   6     5 0.52    -0.99 0.07


Exploratory: Age moderation

## 
## Call:
## lm(formula = Ageism_CVPriority2_1 ~ Group * AgeR, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.2065 -1.7232 -0.1141  1.2092  3.4214 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         2.8936106  0.0432264  66.941  < 2e-16 ***
## GroupCvsCD_KS      -0.0848113  0.0304309  -2.787  0.00538 ** 
## GroupCDCvsKS       -0.0275402  0.0531736  -0.518  0.60458    
## AgeR               -0.0063828  0.0025330  -2.520  0.01183 *  
## GroupCvsCD_KS:AgeR -0.0005494  0.0017726  -0.310  0.75666    
## GroupCDCvsKS:AgeR   0.0006742  0.0031340   0.215  0.82969    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.757 on 1650 degrees of freedom
##   (47 observations deleted due to missingness)
## Multiple R-squared:  0.008968,   Adjusted R-squared:  0.005965 
## F-statistic: 2.986 on 5 and 1650 DF,  p-value: 0.0109
##                           2.5 %       97.5 %
## (Intercept)         2.808826219  2.978394892
## GroupCvsCD_KS      -0.144498678 -0.025124000
## GroupCDCvsKS       -0.131835086  0.076754617
## AgeR               -0.011350973 -0.001414561
## GroupCvsCD_KS:AgeR -0.004026103  0.002927393
## GroupCDCvsKS:AgeR  -0.005472792  0.006821253


5.1.3 Normal



Omnibus ANOVA test: CV19 priority preference (get to work even if means more older people will die)

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 32.83 16.41 5.66 0.004
Residuals 1665 4828.90 2.90

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 32.83 16.41 5.66 0.004 0.007 0.007 0.006 0.006 0.006 0.082 0.863
…2 Residuals 1665 4828.90 2.90

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.879 0.042 69.027 0.000
GroupCvsCD_KS -0.098 0.029 -3.348 0.001
GroupCDCvsKS 0.019 0.051 0.369 0.712
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1668 1.703 0.007 0.006

Planned contrast effect sizes

  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c1 Group.c1 32.44 32.436 1 11.19 0.001 0.007 0.007 0.006 0.006 0.006 0.082 0.917
…2 Residuals 4829.30 2.899 1666
  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c2 Group.c2 0.395 0.395 1 0.14 0.709 0 0 -0.001 -0.001 -0.001 0.011 0.066
…2 Residuals 3093.146 2.822 1096

Contrast v2

##                               Df Sum Sq Mean Sq F value   Pr(>F)    
## Group                          2     33   16.42   5.660 0.003550 ** 
##   Group: Control vs. CDC_KS    1     32   32.44  11.184 0.000843 ***
##   Group: CDC vs KS             1      0    0.39   0.136 0.712309    
## Residuals                   1665   4829    2.90                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 35 observations deleted due to missingness

lsmeans contrast (unadjusted)


contrast estimate SE df lower.CL upper.CL t.ratio p.value
Control vs CDC and KS -0.589 0.176 1665 -0.934 -0.244 -3.348 0.001
CDC vs KS 0.038 0.103 1665 -0.164 0.240 0.369 0.712

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 3.075 0.071 1665 2.936 3.215
CDC 2.762 0.073 1665 2.618 2.906
KS 2.800 0.072 1665 2.659 2.941
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 570 3.08 1.75      3    2.97 2.97   1   6     5  0.3    -1.18 0.07
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 538 2.76 1.69      3    2.58 2.97   1   6     5 0.56    -0.92 0.07
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 560  2.8 1.67      3    2.63 2.97   1   6     5 0.49    -0.94 0.07


Exploratory: Age moderation

## 
## Call:
## lm(formula = Ageism_CVPriority2_2 ~ Group * AgeR, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.2069 -1.6814 -0.0693  1.1687  3.5166 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         2.8774608  0.0421183  68.319  < 2e-16 ***
## GroupCvsCD_KS      -0.0956208  0.0296114  -3.229  0.00127 ** 
## GroupCDCvsKS        0.0262946  0.0518782   0.507  0.61233    
## AgeR               -0.0063822  0.0024676  -2.586  0.00978 ** 
## GroupCvsCD_KS:AgeR -0.0006433  0.0017250  -0.373  0.70923    
## GroupCDCvsKS:AgeR  -0.0002102  0.0030562  -0.069  0.94517    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.704 on 1635 degrees of freedom
##   (62 observations deleted due to missingness)
## Multiple R-squared:  0.0108, Adjusted R-squared:  0.007773 
## F-statistic:  3.57 on 5 and 1635 DF,  p-value: 0.003253
##                           2.5 %       97.5 %
## (Intercept)         2.794849277  2.960072317
## GroupCvsCD_KS      -0.153701069 -0.037540512
## GroupCDCvsKS       -0.075460189  0.128049354
## AgeR               -0.011222136 -0.001542174
## GroupCvsCD_KS:AgeR -0.004026768  0.002740082
## GroupCDCvsKS:AgeR  -0.006204665  0.005784256


5.2 Guidelines



5.2.1 Too restrictive



Omnibus ANOVA test: The guidelines for slowing the spread of COVID-19 (e.g., distancing and mask wearing) are too restrictive; just right; not restrictive enough.


Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 6.476 3.238 1.02 0.361
Residuals 1687 5358.208 3.176

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 6.476 3.238 1.02 0.361 0.001 0.001 0 0 0 0.035 0.229
…2 Residuals 1687 5358.208 3.176

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.210 0.043 97.074 0.000
GroupCvsCD_KS 0.035 0.030 1.141 0.254
GroupCDCvsKS -0.047 0.053 -0.876 0.381
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1690 1.782 0.001 0

Planned contrast effect sizes

  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c1 Group.c1 4.04 4.040 1 1.272 0.26 0.001 0.001 0 0 0 0.027 0.204
…2 Residuals 5360.64 3.176 1688
  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c2 Group.c2 2.437 2.437 1 0.788 0.375 0.001 0.001 0 0 0 0.027 0.144
…2 Residuals 3434.578 3.091 1111

Contrast v2

##                               Df Sum Sq Mean Sq F value Pr(>F)
## Group                          2      6   3.238   1.020  0.361
##   Group: Control vs. CDC_KS    1      4   4.040   1.272  0.260
##   Group: CDC vs KS             1      2   2.437   0.767  0.381
## Residuals                   1687   5358   3.176               
## 13 observations deleted due to missingness

lsmeans contrast (unadjusted)


contrast estimate SE df lower.CL upper.CL t.ratio p.value
Control vs CDC and KS 0.209 0.183 1687 -0.150 0.567 1.141 0.254
CDC vs KS -0.094 0.107 1687 -0.303 0.116 -0.876 0.381

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 4.140 0.074 1687 3.995 4.286
CDC 4.292 0.077 1687 4.141 4.442
KS 4.198 0.075 1687 4.052 4.344
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 577 4.14 1.83      4    4.17 1.48   1   7     6 -0.14    -0.57 0.08
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 542 4.29 1.78      4    4.36 1.48   1   7     6 -0.11    -0.47 0.08
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 571  4.2 1.74      4    4.25 1.48   1   7     6 -0.1    -0.38 0.07


Exploratory: Age moderation

## 
## Call:
## lm(formula = AdhereAttitude2 ~ Group * AgeR, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.7471 -0.5921 -0.0838  1.0094  3.2556 
## 
## Coefficients:
##                      Estimate Std. Error t value      Pr(>|t|)    
## (Intercept)         4.2165458  0.0432150  97.571       < 2e-16 ***
## GroupCvsCD_KS       0.0281966  0.0303920   0.928         0.354    
## GroupCDCvsKS       -0.0582234  0.0532127  -1.094         0.274    
## AgeR                0.0149079  0.0025292   5.894 0.00000000455 ***
## GroupCvsCD_KS:AgeR -0.0000022  0.0017644  -0.001         0.999    
## GroupCDCvsKS:AgeR   0.0013968  0.0031387   0.445         0.656    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.761 on 1657 degrees of freedom
##   (40 observations deleted due to missingness)
## Multiple R-squared:  0.02195,    Adjusted R-squared:  0.019 
## F-statistic: 7.437 on 5 and 1657 DF,  p-value: 0.0000006552
##                           2.5 %      97.5 %
## (Intercept)         4.131784088 4.301307555
## GroupCvsCD_KS      -0.031414118 0.087807299
## GroupCDCvsKS       -0.162594609 0.046147765
## AgeR                0.009947079 0.019868648
## GroupCvsCD_KS:AgeR -0.003462921 0.003458520
## GroupCDCvsKS:AgeR  -0.004759354 0.007552979


5.2.2 Prevent CV19



Omnibus ANOVA test: Following COVID-19 guidelines (e.g., distancing and mask wearing) is an effective method for preventing getting COVID-19


Strongly disagree(1), Disagree(2), Somewhat disagree(3), Somewhat agree(4), Agree(5), Strongly agree(6)

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 6.16 3.080 1.879 0.153
Residuals 1697 2782.13 1.639

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 6.16 3.080 1.879 0.153 0.002 0.002 0.001 0.001 0.001 0.047 0.393
…2 Residuals 1697 2782.13 1.639

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.768 0.031 153.471 0.000
GroupCvsCD_KS 0.042 0.022 1.932 0.054
GroupCDCvsKS -0.007 0.038 -0.184 0.854
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1700 1.28 0.002 0.001

Planned contrast effect sizes

  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c1 Group.c1 6.105 6.105 1 3.726 0.054 0.002 0.002 0.002 0.002 0.002 0.047 0.488
…2 Residuals 2782.184 1.639 1698
  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c2 Group.c2 0.055 0.055 1 0.036 0.85 0 0 -0.001 -0.001 -0.001 0.006 0.054
…2 Residuals 1720.401 1.540 1117

Contrast v2

##                               Df Sum Sq Mean Sq F value Pr(>F)  
## Group                          2    6.2   3.080   1.879 0.1531  
##   Group: Control vs. CDC_KS    1    6.1   6.105   3.724 0.0538 .
##   Group: CDC vs KS             1    0.1   0.055   0.034 0.8544  
## Residuals                   1697 2782.1   1.639                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 3 observations deleted due to missingness

lsmeans contrast (unadjusted)


contrast estimate SE df lower.CL upper.CL t.ratio p.value
Control vs CDC and KS 0.253 0.131 1697 -0.004 0.510 1.932 0.054
CDC vs KS -0.014 0.077 1697 -0.164 0.136 -0.184 0.854

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 4.683 0.053 1697 4.579 4.787
CDC 4.817 0.055 1697 4.709 4.924
KS 4.803 0.053 1697 4.698 4.908
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 581 4.68 1.35      5    4.89 1.48   1   6     5 -1.06     0.47 0.06
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 546 4.82 1.23      5       5 1.48   1   6     5 -1.06     0.59 0.05
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 573  4.8 1.25      5    4.98 1.48   1   6     5 -1.05     0.61 0.05


Exploratory: Age moderation. Plots shown following significant interaction

## 
## Call:
## lm(formula = AdhereAttitude3_2 ~ Group * AgeR, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.2508 -0.6716  0.2812  1.0373  1.5674 
## 
## Coefficients:
##                      Estimate Std. Error t value     Pr(>|t|)    
## (Intercept)         4.7765255  0.0309515 154.323      < 2e-16 ***
## GroupCvsCD_KS       0.0415431  0.0217587   1.909       0.0564 .  
## GroupCDCvsKS       -0.0168321  0.0381269  -0.441       0.6589    
## AgeR                0.0101718  0.0018125   5.612 0.0000000234 ***
## GroupCvsCD_KS:AgeR  0.0029501  0.0012640   2.334       0.0197 *  
## GroupCDCvsKS:AgeR   0.0004722  0.0022499   0.210       0.8338    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.264 on 1666 degrees of freedom
##   (31 observations deleted due to missingness)
## Multiple R-squared:  0.02356,    Adjusted R-squared:  0.02063 
## F-statistic:  8.04 on 5 and 1666 DF,  p-value: 0.0000001671
##                            2.5 %      97.5 %
## (Intercept)         4.7158175840 4.837233406
## GroupCvsCD_KS      -0.0011342281 0.084220433
## GroupCDCvsKS       -0.0916137480 0.057949453
## AgeR                0.0066168573 0.013726814
## GroupCvsCD_KS:AgeR  0.0004708257 0.005429348
## GroupCDCvsKS:AgeR  -0.0039406197 0.004885118



5.2.3 Save lives



Omnibus ANOVA test: Following COVID-19 guidelines (e.g., distancing and mask wearing) is an effective method for slowing the spread of COVID-19


Strongly disagree(1), Disagree(2), Somewhat disagree(3), Somewhat agree(4), Agree(5), Strongly agree(6)

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 10.57 5.286 3.145 0.043
Residuals 1696 2850.59 1.681

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 10.57 5.286 3.145 0.043 0.004 0.004 0.003 0.003 0.003 0.061 0.606
…2 Residuals 1696 2850.59 1.681

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.830 0.031 153.506 0.000
GroupCvsCD_KS 0.054 0.022 2.459 0.014
GroupCDCvsKS 0.018 0.039 0.462 0.644
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1699 1.296 0.004 0.003

Planned contrast effect sizes

  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c1 Group.c1 10.21 10.21 1 6.079 0.014 0.004 0.004 0.003 0.003 0.003 0.06 0.693
…2 Residuals 2850.95 1.68 1697
  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c2 Group.c2 0.358 0.358 1 0.223 0.637 0 0 -0.001 -0.001 -0.001 0.014 0.076
…2 Residuals 1791.757 1.606 1116

Contrast v2

##                               Df Sum Sq Mean Sq F value Pr(>F)  
## Group                          2   10.6   5.286   3.145 0.0433 *
##   Group: Control vs. CDC_KS    1   10.2  10.213   6.077 0.0138 *
##   Group: CDC vs KS             1    0.4   0.358   0.213 0.6445  
## Residuals                   1696 2850.6   1.681                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness

lsmeans contrast (unadjusted)


contrast estimate SE df lower.CL upper.CL t.ratio p.value
Control vs CDC and KS 0.326 0.133 1696 0.066 0.586 2.459 0.014
CDC vs KS 0.036 0.078 1696 -0.116 0.188 0.462 0.644

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 4.721 0.054 1696 4.616 4.827
CDC 4.866 0.055 1696 4.757 4.975
KS 4.902 0.054 1696 4.796 5.008
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 581 4.72 1.35      5    4.93 1.48   1   6     5 -1.11     0.66 0.06
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 546 4.87 1.25      5    5.06 1.48   1   6     5 -1.14     0.84 0.05
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 572  4.9 1.28      5    5.12 1.48   1   6     5 -1.2     0.84 0.05


Exploratory: Age moderation

## 
## Call:
## lm(formula = AdhereAttitude3_3 ~ Group * AgeR, data = df)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.316 -0.684  0.316  1.034  1.581 
## 
## Coefficients:
##                    Estimate Std. Error t value         Pr(>|t|)    
## (Intercept)        4.838197   0.031154 155.302          < 2e-16 ***
## GroupCvsCD_KS      0.054539   0.021897   2.491           0.0128 *  
## GroupCDCvsKS       0.001868   0.038382   0.049           0.9612    
## AgeR               0.013092   0.001824   7.176 0.00000000000107 ***
## GroupCvsCD_KS:AgeR 0.002144   0.001272   1.686           0.0921 .  
## GroupCDCvsKS:AgeR  0.002292   0.002265   1.012           0.3117    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.272 on 1665 degrees of freedom
##   (32 observations deleted due to missingness)
## Multiple R-squared:  0.036,  Adjusted R-squared:  0.03311 
## F-statistic: 12.44 on 5 and 1665 DF,  p-value: 0.00000000000717
##                            2.5 %      97.5 %
## (Intercept)         4.7770931402 4.899301466
## GroupCvsCD_KS       0.0115903323 0.097488392
## GroupCDCvsKS       -0.0734130964 0.077149830
## AgeR                0.0095139167 0.016670541
## GroupCvsCD_KS:AgeR -0.0003507873 0.004639408
## GroupCDCvsKS:AgeR  -0.0021505199 0.006734616


5.2.4 Slow spread



Omnibus ANOVA test: Following COVID-19 guidelines (e.g., distancing and mask wearing) is an effective method for slowing the spread of COVID-19


Strongly disagree(1), Disagree(2), Somewhat disagree(3), Somewhat agree(4), Agree(5), Strongly agree(6)

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 12.79 6.397 3.303 0.037
Residuals 1698 3288.16 1.936

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 12.79 6.397 3.303 0.037 0.004 0.004 0.003 0.003 0.003 0.062 0.628
…2 Residuals 1698 3288.16 1.936

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.785 0.034 141.770 0.000
GroupCvsCD_KS 0.054 0.024 2.286 0.022
GroupCDCvsKS -0.050 0.042 -1.210 0.226
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1701 1.392 0.004 0.003

Planned contrast effect sizes

  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c1 Group.c1 9.958 9.958 1 5.141 0.023 0.003 0.003 0.002 0.002 0.002 0.055 0.621
…2 Residuals 3290.994 1.937 1699
  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c2 Group.c2 2.835 2.835 1 1.546 0.214 0.001 0.001 0 0 0 0.037 0.237
…2 Residuals 2048.888 1.834 1117

Contrast v2

##                               Df Sum Sq Mean Sq F value Pr(>F)  
## Group                          2     13   6.397   3.303 0.0370 *
##   Group: Control vs. CDC_KS    1     10   9.958   5.142 0.0235 *
##   Group: CDC vs KS             1      3   2.835   1.464 0.2264  
## Residuals                   1698   3288   1.936                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 2 observations deleted due to missingness

lsmeans contrast (unadjusted)


contrast estimate SE df lower.CL upper.CL t.ratio p.value
Control vs CDC and KS 0.325 0.142 1698 0.046 0.604 2.286 0.022
CDC vs KS -0.101 0.083 1698 -0.264 0.063 -1.210 0.226

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 4.677 0.058 1698 4.564 4.790
CDC 4.890 0.060 1698 4.773 5.007
KS 4.789 0.058 1698 4.675 4.903
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 582 4.68 1.46      5    4.91 1.48   1   6     5 -1.07     0.25 0.06
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 545 4.89 1.31      5     5.1 1.48   1   6     5 -1.21     0.87 0.06
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 574 4.79 1.4      5    5.02 1.48   1   6     5 -1.08     0.32 0.06


Exploratory: Age moderation

## 
## Call:
## lm(formula = AdhereAttitude3_1 ~ Group * AgeR, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4694 -0.6392  0.3972  1.0171  1.7864 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         4.799540   0.033056 145.195   <2e-16 ***
## GroupCvsCD_KS       0.051853   0.023231   2.232   0.0257 *  
## GroupCDCvsKS       -0.072093   0.040732  -1.770   0.0769 .  
## AgeR                0.017556   0.001936   9.069   <2e-16 ***
## GroupCvsCD_KS:AgeR  0.001176   0.001350   0.871   0.3840    
## GroupCDCvsKS:AgeR   0.002127   0.002403   0.885   0.3762    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.351 on 1667 degrees of freedom
##   (30 observations deleted due to missingness)
## Multiple R-squared:  0.05228,    Adjusted R-squared:  0.04943 
## F-statistic: 18.39 on 5 and 1667 DF,  p-value: < 2.2e-16
##                           2.5 %      97.5 %
## (Intercept)         4.734704368 4.864375149
## GroupCvsCD_KS       0.006289194 0.097417324
## GroupCDCvsKS       -0.151984792 0.007797953
## AgeR                0.013758795 0.021352421
## GroupCvsCD_KS:AgeR -0.001472117 0.003823297
## GroupCDCvsKS:AgeR  -0.002586277 0.006840558


5.3 Willing



5.3.1 Stay home



Omnibus ANOVA test: CV19 willingness (to do another period of staying at home in Winter if cases rise)

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 18.89 9.445 4.751 0.009
Residuals 1699 3377.81 1.988

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 18.89 9.445 4.751 0.009 0.006 0.006 0.004 0.004 0.004 0.075 0.794
…2 Residuals 1699 3377.81 1.988

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.791 0.034 140.127 0.000
GroupCvsCD_KS 0.072 0.024 2.982 0.003
GroupCDCvsKS 0.031 0.042 0.738 0.460
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1702 1.41 0.006 0.004

Planned contrast effect sizes

  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c1 Group.c1 17.81 17.807 1 8.959 0.003 0.005 0.005 0.005 0.005 0.005 0.073 0.849
…2 Residuals 3378.89 1.988 1700
  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c2 Group.c2 1.084 1.084 1 0.573 0.449 0.001 0.001 0 0 0 0.023 0.118
…2 Residuals 2113.016 1.890 1118

Contrast v2

##                               Df Sum Sq Mean Sq F value  Pr(>F)   
## Group                          2     19   9.445   4.751 0.00876 **
##   Group: Control vs. CDC_KS    1     18  17.807   8.957 0.00280 **
##   Group: CDC vs KS             1      1   1.084   0.545 0.46047   
## Residuals                   1699   3378   1.988                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness

lsmeans contrast (unadjusted)


contrast estimate SE df lower.CL upper.CL t.ratio p.value
Control vs CDC and KS 0.430 0.144 1699 0.147 0.712 2.982 0.003
CDC vs KS 0.062 0.084 1699 -0.103 0.228 0.738 0.460

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 4.648 0.058 1699 4.533 4.762
CDC 4.832 0.060 1699 4.713 4.950
KS 4.894 0.059 1699 4.778 5.009
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 582 4.65 1.48      5    4.89 1.48   1   6     5 -1.07     0.23 0.06
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 546 4.83 1.42      5    5.09 1.48   1   6     5 -1.26     0.81 0.06
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 574 4.89 1.33      5    5.13 1.48   1   6     5 -1.33     1.24 0.06


Exploratory: Age moderation

## 
## Call:
## lm(formula = Adhere_willing ~ Group * AgeR, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.1917 -0.7787  0.2879  1.1550  1.4848 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        4.7971171  0.0344228 139.359  < 2e-16 ***
## GroupCvsCD_KS      0.0732758  0.0241950   3.029  0.00249 ** 
## GroupCDCvsKS       0.0186262  0.0424099   0.439  0.66058    
## AgeR               0.0058217  0.0020164   2.887  0.00394 ** 
## GroupCvsCD_KS:AgeR 0.0003193  0.0014062   0.227  0.82039    
## GroupCDCvsKS:AgeR  0.0039874  0.0025032   1.593  0.11137    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.407 on 1668 degrees of freedom
##   (29 observations deleted due to missingness)
## Multiple R-squared:  0.01261,    Adjusted R-squared:  0.009651 
## F-statistic: 4.261 on 5 and 1668 DF,  p-value: 0.0007468
##                            2.5 %      97.5 %
## (Intercept)         4.7296005926 4.864633565
## GroupCvsCD_KS       0.0258200433 0.120731473
## GroupCDCvsKS       -0.0645560922 0.101808485
## AgeR                0.0018667609 0.009776709
## GroupCvsCD_KS:AgeR -0.0024387321 0.003077341
## GroupCDCvsKS:AgeR  -0.0009223315 0.008897070


5.3.2 Follow Guidelines



Omnibus ANOVA test: CV19 willingness (to do another period of staying at home in Winter if cases rise)

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 2.245 1.122 0.82 0.44
Residuals 1648 2254.486 1.368

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 2.245 1.122 0.82 0.44 0.001 0.001 0 0 0 0.032 0.192
…2 Residuals 1648 2254.486 1.368

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.227 0.029 146.780 0.000
GroupCvsCD_KS 0.025 0.020 1.214 0.225
GroupCDCvsKS -0.015 0.035 -0.429 0.668
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1651 1.17 0.001 0

Planned contrast effect sizes

  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c1 Group.c1 1.993 1.993 1 1.458 0.227 0.001 0.001 0 0 0 0.03 0.227
…2 Residuals 2254.737 1.367 1649
  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c2 Group.c2 0.251 0.251 1 0.187 0.665 0 0 -0.001 -0.001 -0.001 0.013 0.072
…2 Residuals 1458.248 1.343 1086

Contrast v2

##                               Df Sum Sq Mean Sq F value Pr(>F)
## Group                          2    2.2  1.1223   0.820  0.440
##   Group: Control vs. CDC_KS    1    2.0  1.9934   1.457  0.228
##   Group: CDC vs KS             1    0.3  0.2513   0.184  0.668
## Residuals                   1648 2254.5  1.3680               
## 52 observations deleted due to missingness

lsmeans contrast (unadjusted)


contrast estimate SE df lower.CL upper.CL t.ratio p.value
Control vs CDC and KS 0.147 0.121 1648 -0.091 0.386 1.214 0.225
CDC vs KS -0.030 0.071 1648 -0.170 0.109 -0.429 0.668

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 4.178 0.049 1648 4.081 4.274
CDC 4.267 0.051 1648 4.167 4.366
KS 4.236 0.049 1648 4.139 4.333
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed mad min max range  skew kurtosis   se
## X1    1 563 4.18 1.19      5    4.41   0   1   5     4 -1.31     0.63 0.05
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed mad min max range  skew kurtosis   se
## X1    1 529 4.27 1.16      5    4.52   0   1   5     4 -1.48     1.13 0.05
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed mad min max range  skew kurtosis   se
## X1    1 559 4.24 1.16      5    4.48   0   1   5     4 -1.43     1.03 0.05


Exploratory: Age moderation

## 
## Call:
## lm(formula = AdhereAttitude1_1 ~ Group * AgeR, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.9021 -0.5462  0.4862  0.8116  1.2208 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         4.2337180  0.0283498 149.339   <2e-16 ***
## GroupCvsCD_KS       0.0254209  0.0199400   1.275    0.203    
## GroupCDCvsKS       -0.0321206  0.0349044  -0.920    0.358    
## AgeR                0.0142210  0.0016482   8.628   <2e-16 ***
## GroupCvsCD_KS:AgeR -0.0001221  0.0011494  -0.106    0.915    
## GroupCDCvsKS:AgeR   0.0024136  0.0020460   1.180    0.238    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.141 on 1617 degrees of freedom
##   (80 observations deleted due to missingness)
## Multiple R-squared:  0.04691,    Adjusted R-squared:  0.04396 
## F-statistic: 15.92 on 5 and 1617 DF,  p-value: 2.475e-15
##                           2.5 %      97.5 %
## (Intercept)         4.178111906 4.289324149
## GroupCvsCD_KS      -0.013690006 0.064531767
## GroupCDCvsKS       -0.100583290 0.036342062
## AgeR                0.010988190 0.017453747
## GroupCvsCD_KS:AgeR -0.002376527 0.002132315
## GroupCDCvsKS:AgeR  -0.001599545 0.006426743


5.4 Behavioral intentions



5.4.1 Risk increasing



Omnibus ANOVA test: How frequently, if at all, do you plan to do the following things in the next month?


(e.g., going to gatherings of 10 or more people)

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 23.09 11.547 5.151 0.006
Residuals 1699 3808.57 2.242

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 23.09 11.547 5.151 0.006 0.006 0.006 0.005 0.005 0.005 0.078 0.827
…2 Residuals 1699 3808.57 2.242

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.839 0.036 78.201 0.000
GroupCvsCD_KS -0.082 0.026 -3.200 0.001
GroupCDCvsKS -0.009 0.045 -0.209 0.835
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1702 1.497 0.006 0.005

Planned contrast effect sizes

  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c1 Group.c1 23 23.00 1 10.27 0.001 0.006 0.006 0.005 0.005 0.005 0.078 0.893
…2 Residuals 3809 2.24 1700
  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c2 Group.c2 0.098 0.098 1 0.044 0.834 0 0 -0.001 -0.001 -0.001 0.006 0.055
…2 Residuals 2473.896 2.213 1118

Contrast v2

##                               Df Sum Sq Mean Sq F value  Pr(>F)   
## Group                          2     23  11.547   5.151 0.00588 **
##   Group: Control vs. CDC_KS    1     23  22.997  10.259 0.00139 **
##   Group: CDC vs KS             1      0   0.098   0.044 0.83471   
## Residuals                   1699   3809   2.242                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness

lsmeans contrast (unadjusted)


contrast estimate SE df lower.CL upper.CL t.ratio p.value
Control vs CDC and KS -0.490 0.153 1699 -0.790 -0.189 -3.200 0.001
CDC vs KS -0.019 0.090 1699 -0.194 0.157 -0.209 0.835

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 3.002 0.062 1699 2.881 3.124
CDC 2.767 0.064 1699 2.641 2.893
KS 2.748 0.062 1699 2.626 2.871
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 582    3 1.52    2.8     2.9 1.78   1   6     5 0.45    -0.93 0.06
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 546 2.77 1.48    2.4    2.63 1.48   1   6     5 0.62    -0.74 0.06
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 574 2.75 1.49    2.4     2.6 1.48   1   6     5 0.66    -0.73 0.06


Exploratory: Age moderation

## 
## Call:
## lm(formula = BehavIntRisk_Avg ~ Group * AgeR, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7038 -1.0880 -0.2833  0.9014  3.6812 
## 
## Coefficients:
##                        Estimate   Std. Error t value Pr(>|t|)    
## (Intercept)         2.829922260  0.034765759  81.400  < 2e-16 ***
## GroupCvsCD_KS      -0.077087260  0.024436016  -3.155  0.00164 ** 
## GroupCDCvsKS        0.004238658  0.042832433   0.099  0.92118    
## AgeR               -0.027563545  0.002036505 -13.535  < 2e-16 ***
## GroupCvsCD_KS:AgeR -0.000003949  0.001420175  -0.003  0.99778    
## GroupCDCvsKS:AgeR  -0.001888044  0.002528115  -0.747  0.45528    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.421 on 1668 degrees of freedom
##   (29 observations deleted due to missingness)
## Multiple R-squared:  0.1056, Adjusted R-squared:  0.1029 
## F-statistic: 39.38 on 5 and 1668 DF,  p-value: < 2.2e-16
##                           2.5 %       97.5 %
## (Intercept)         2.761733144  2.898111375
## GroupCvsCD_KS      -0.125015749 -0.029158770
## GroupCDCvsKS       -0.079772329  0.088249646
## AgeR               -0.031557921 -0.023569170
## GroupCvsCD_KS:AgeR -0.002789462  0.002781564
## GroupCDCvsKS:AgeR  -0.006846658  0.003070569


5.4.2 Risk reducing



Omnibus ANOVA test: How frequently, if at all, do you plan to do the following things in the next month?


(e.g., Wearing a mask over your nose and mouth when you are in a public place (e.g., store))

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 3.691 1.845 1.399 0.247
Residuals 1696 2237.984 1.320

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 3.691 1.845 1.399 0.247 0.002 0.002 0 0 0 0.041 0.302
…2 Residuals 1696 2237.984 1.320

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.963 0.028 178.032 0.000
GroupCvsCD_KS 0.030 0.020 1.521 0.129
GroupCDCvsKS -0.025 0.034 -0.716 0.474
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1699 1.149 0.002 0

Planned contrast effect sizes

  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c1 Group.c1 3.014 3.014 1 2.285 0.131 0.001 0.001 0.001 0.001 0.001 0.037 0.327
…2 Residuals 2238.661 1.319 1697
  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c2 Group.c2 0.676 0.676 1 0.515 0.473 0 0 0 0 0 0.021 0.111
…2 Residuals 1463.595 1.313 1115

Contrast v2

##                               Df Sum Sq Mean Sq F value Pr(>F)
## Group                          2    3.7  1.8454   1.399  0.247
##   Group: Control vs. CDC_KS    1    3.0  3.0145   2.284  0.131
##   Group: CDC vs KS             1    0.7  0.6764   0.513  0.474
## Residuals                   1696 2238.0  1.3196               
## 4 observations deleted due to missingness

lsmeans contrast (unadjusted)


contrast estimate SE df lower.CL upper.CL t.ratio p.value
Control vs CDC and KS 0.179 0.117 1696 -0.052 0.409 1.521 0.129
CDC vs KS -0.049 0.069 1696 -0.184 0.086 -0.716 0.474

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 4.904 0.048 1696 4.810 4.997
CDC 5.018 0.049 1696 4.921 5.114
KS 4.968 0.048 1696 4.874 5.063
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 582  4.9 1.15   5.33    5.08 0.99   1   6     5 -1.15     0.73 0.05
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 546 5.02 1.11   5.33     5.2 0.99   1   6     5 -1.29     1.18 0.05
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 571 4.97 1.18   5.33    5.17 0.99   1   6     5 -1.34     1.26 0.05


Exploratory: Age moderation

## 
## Call:
## lm(formula = BehavIntPrtct_Avg ~ Group * AgeR, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.2958 -0.5875  0.3140  0.8249  1.4557 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         4.9754887  0.0273265 182.076   <2e-16 ***
## GroupCvsCD_KS       0.0306301  0.0191989   1.595    0.111    
## GroupCDCvsKS       -0.0321408  0.0336812  -0.954    0.340    
## AgeR                0.0143961  0.0016032   8.979   <2e-16 ***
## GroupCvsCD_KS:AgeR  0.0001172  0.0011167   0.105    0.916    
## GroupCDCvsKS:AgeR  -0.0010377  0.0019925  -0.521    0.603    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.116 on 1665 degrees of freedom
##   (32 observations deleted due to missingness)
## Multiple R-squared:  0.04824,    Adjusted R-squared:  0.04538 
## F-statistic: 16.88 on 5 and 1665 DF,  p-value: 2.653e-16
##                           2.5 %      97.5 %
## (Intercept)         4.921890832 5.029086656
## GroupCvsCD_KS      -0.007026323 0.068286612
## GroupCDCvsKS       -0.098202752 0.033921127
## AgeR                0.011251503 0.017540631
## GroupCvsCD_KS:AgeR -0.002073096 0.002307504
## GroupCDCvsKS:AgeR  -0.004945753 0.002870283


5.4.3 Pro-social



Omnibus ANOVA test: Prosocial behaviors

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 8.006 4.003 1.872 0.154
Residuals 1647 3522.804 2.139

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 8.006 4.003 1.872 0.154 0.002 0.002 0.001 0.001 0.001 0.048 0.392
…2 Residuals 1647 3522.804 2.139

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.438 0.036 150.977 0.000
GroupCvsCD_KS 0.049 0.025 1.922 0.055
GroupCDCvsKS 0.008 0.044 0.188 0.851
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1650 1.463 0.002 0.001

Planned contrast effect sizes

  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c1 Group.c1 7.93 7.930 1 3.71 0.054 0.002 0.002 0.002 0.002 0.002 0.047 0.487
…2 Residuals 3522.88 2.138 1648
  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c2 Group.c2 0.076 0.076 1 0.037 0.847 0 0 -0.001 -0.001 -0.001 0.006 0.054
…2 Residuals 2222.831 2.041 1089


lsmeans contrast (adjusted)


##  contrast              estimate     SE   df lower.CL upper.CL t.ratio p.value
##  Control vs CDC and KS   0.2925 0.1522 1647  -0.0489    0.634 1.922   0.1096 
##  CDC vs KS               0.0167 0.0886 1647  -0.1821    0.215 0.188   0.8508 
## 
## Confidence level used: 0.95 
## Conf-level adjustment: bonferroni method for 2 estimates 
## P value adjustment: holm method for 2 tests

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 5.340 0.062 1647 5.219 5.462
CDC 5.478 0.064 1647 5.354 5.603
KS 5.495 0.062 1647 5.374 5.616
## 
##  Descriptive statistics by group 
## group: Control
##             vars   n mean   sd median trimmed  mad min max range  skew kurtosis
## ProSocial_1    1 497 5.18 1.98      6    5.45 1.48   1   7     6 -0.81    -0.58
## ProSocial_2    2 510 5.10 1.86      5    5.33 2.97   1   7     6 -0.73    -0.51
## ProSocial_3    3 479 5.28 1.83      6    5.54 1.48   1   7     6 -0.84    -0.34
## ProSocial_4    4 504 5.41 1.86      6    5.72 1.48   1   7     6 -1.06     0.04
## ProSocial_5    5 504 5.38 1.81      6    5.66 1.48   1   7     6 -0.98    -0.09
## ProSocial_6    6 495 5.29 1.80      6    5.55 1.48   1   7     6 -0.93    -0.12
##               se
## ProSocial_1 0.09
## ProSocial_2 0.08
## ProSocial_3 0.08
## ProSocial_4 0.08
## ProSocial_5 0.08
## ProSocial_6 0.08
## ------------------------------------------------------------ 
## group: CDC
##             vars   n mean   sd median trimmed  mad min max range  skew kurtosis
## ProSocial_1    1 471 5.17 2.00      6    5.46 1.48   1   7     6 -0.85    -0.51
## ProSocial_2    2 493 5.24 1.77      5    5.48 2.97   1   7     6 -0.80    -0.27
## ProSocial_3    3 456 5.44 1.74      6    5.71 1.48   1   7     6 -1.04     0.17
## ProSocial_4    4 478 5.54 1.74      6    5.85 1.48   1   7     6 -1.20     0.57
## ProSocial_5    5 468 5.47 1.75      6    5.77 1.48   1   7     6 -1.09     0.29
## ProSocial_6    6 473 5.55 1.68      6    5.83 1.48   1   7     6 -1.13     0.49
##               se
## ProSocial_1 0.09
## ProSocial_2 0.08
## ProSocial_3 0.08
## ProSocial_4 0.08
## ProSocial_5 0.08
## ProSocial_6 0.08
## ------------------------------------------------------------ 
## group: KS
##             vars   n mean   sd median trimmed  mad min max range  skew kurtosis
## ProSocial_1    1 498 5.23 1.94      6    5.50 1.48   1   7     6 -0.87    -0.42
## ProSocial_2    2 509 5.19 1.79      6    5.43 1.48   1   7     6 -0.82    -0.27
## ProSocial_3    3 484 5.46 1.75      6    5.74 1.48   1   7     6 -1.02     0.03
## ProSocial_4    4 510 5.63 1.71      6    5.95 1.48   1   7     6 -1.31     0.88
## ProSocial_5    5 510 5.53 1.74      6    5.82 1.48   1   7     6 -1.10     0.22
## ProSocial_6    6 502 5.55 1.67      6    5.82 1.48   1   7     6 -1.11     0.41
##               se
## ProSocial_1 0.09
## ProSocial_2 0.08
## ProSocial_3 0.08
## ProSocial_4 0.08
## ProSocial_5 0.08
## ProSocial_6 0.07
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 559 5.34 1.53   5.67    5.54 1.58   1   7     6 -0.91     0.11 0.06
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 529 5.48 1.42   5.83    5.67 1.24   1   7     6 -1.14     1.01 0.06
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 562 5.49 1.44   5.92    5.69 1.36   1   7     6 -1.05     0.56 0.06


Exploratory: Age moderation. Plots shown following significant interaction

## 
## Call:
## lm(formula = Prosocial_Avg ~ Group * AgeR, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.9880 -0.8018  0.3299  1.1608  2.0031 
## 
## Coefficients:
##                     Estimate Std. Error t value   Pr(>|t|)    
## (Intercept)         5.443113   0.035911 151.570    < 2e-16 ***
## GroupCvsCD_KS       0.051493   0.025292   2.036    0.04192 *  
## GroupCDCvsKS       -0.009240   0.044157  -0.209    0.83427    
## AgeR                0.009711   0.002089   4.648 0.00000362 ***
## GroupCvsCD_KS:AgeR  0.001889   0.001456   1.297    0.19481    
## GroupCDCvsKS:AgeR   0.007099   0.002595   2.736    0.00629 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.445 on 1617 degrees of freedom
##   (80 observations deleted due to missingness)
## Multiple R-squared:  0.02174,    Adjusted R-squared:  0.01872 
## F-statistic: 7.187 on 5 and 1617 DF,  p-value: 0.000001155
##                            2.5 %      97.5 %
## (Intercept)         5.3726748925 5.513550794
## GroupCvsCD_KS       0.0018839856 0.101101717
## GroupCDCvsKS       -0.0958507379 0.077370462
## AgeR                0.0056135599 0.013809398
## GroupCvsCD_KS:AgeR -0.0009674414 0.004744545
## GroupCDCvsKS:AgeR   0.0020093163 0.012189439



5.5 Risk perceptions



Omnibus ANOVA test: Individual susceptibility and likelihood of getting CV19


(higher score correspond to more risk)

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 0.151 0.076 0.04 0.961
Residuals 1390 2623.983 1.888

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 0.151 0.076 0.04 0.961 0 0 -0.001 -0.001 -0.001 0.008 0.056
…2 Residuals 1390 2623.983 1.888

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.147 0.037 112.635 0.000
GroupCvsCD_KS -0.007 0.026 -0.277 0.782
GroupCDCvsKS -0.003 0.045 -0.057 0.954
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1393 1.374 0 -0.001
##                               Df Sum Sq Mean Sq F value Pr(>F)
## Group                          2    0.2  0.0757   0.040  0.961
##   Group: Control vs. CDC_KS    1    0.1  0.1452   0.077  0.782
##   Group: CDC vs KS             1    0.0  0.0062   0.003  0.954
## Residuals                   1390 2624.0  1.8878               
## 310 observations deleted due to missingness

Planned contrast effect sizes

  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c1 Group.c1 0.145 0.145 1 0.077 0.781 0 0 -0.001 -0.001 -0.001 0.007 0.059
…2 Residuals 2623.989 1.886 1391
  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c2 Group.c2 0.006 0.006 1 0.003 0.955 0 0 -0.001 -0.001 -0.001 0.002 0.05
…2 Residuals 1748.207 1.894 923

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 4.161 0.064 1390 4.037 4.286
CDC 4.142 0.064 1390 4.016 4.269
KS 4.137 0.063 1390 4.013 4.261
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 468 4.16 1.37   4.11    4.17 1.32   1   7     6 -0.04     -0.3 0.06
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 455 4.14 1.39   4.22    4.16 1.32   1   7     6 -0.13    -0.46 0.07
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 470 4.14 1.36   4.11    4.16 1.32   1   7     6 -0.14    -0.27 0.06


Exploratory: Age moderation

## 
## Call:
## lm(formula = IndivRisk_Avg ~ Group * AgeR, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2192 -0.9320  0.0047  0.9337  2.9546 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         4.1458147  0.0371954 111.461   <2e-16 ***
## GroupCvsCD_KS      -0.0100602  0.0262305  -0.384    0.701    
## GroupCDCvsKS       -0.0134342  0.0456768  -0.294    0.769    
## AgeR                0.0001202  0.0021349   0.056    0.955    
## GroupCvsCD_KS:AgeR  0.0018224  0.0014935   1.220    0.223    
## GroupCDCvsKS:AgeR   0.0008935  0.0026423   0.338    0.735    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.374 on 1372 degrees of freedom
##   (325 observations deleted due to missingness)
## Multiple R-squared:  0.001276,   Adjusted R-squared:  -0.002363 
## F-statistic: 0.3507 on 5 and 1372 DF,  p-value: 0.882
##                           2.5 %      97.5 %
## (Intercept)         4.072848764 4.218780666
## GroupCvsCD_KS      -0.061516402 0.041395976
## GroupCDCvsKS       -0.103038180 0.076169764
## AgeR               -0.004067922 0.004308236
## GroupCvsCD_KS:AgeR -0.001107504 0.004752207
## GroupCDCvsKS:AgeR  -0.004289916 0.006076927

Here are the posthoc Tukey multiple comparisons of means (95% family-wise confidence level) with a plot to show.



5.6 Older Adults



5.6.1 CV19-OAS



Omnibus ANOVA test: CV19-OAS by group

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 0.865 0.433 1.038 0.354
Residuals 1700 708.252 0.417

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 0.865 0.433 1.038 0.354 0.001 0.001 0 0 0 0.035 0.233
…2 Residuals 1700 708.252 0.417

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.197 0.016 140.411 0.000
GroupCvsCD_KS -0.004 0.011 -0.391 0.696
GroupCDCvsKS 0.027 0.019 1.393 0.164
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1703 0.645 0.001 0

Planned contrast effect sizes

  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c1 Group.c1 0.057 0.057 1 0.136 0.712 0 0 -0.001 -0.001 -0.001 0.009 0.066
…2 Residuals 709.061 0.417 1701
  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c2 Group.c2 0.808 0.808 1 1.914 0.167 0.002 0.002 0.001 0.001 0.001 0.041 0.283
…2 Residuals 472.668 0.422 1119

Contrast v2

##                               Df Sum Sq Mean Sq F value Pr(>F)
## Group                          2    0.9  0.4326   1.038  0.354
##   Group: Control vs. CDC_KS    1    0.1  0.0569   0.137  0.712
##   Group: CDC vs KS             1    0.8  0.8083   1.940  0.164
## Residuals                   1700  708.3  0.4166

lsmeans contrast (unadjusted)


contrast estimate SE df lower.CL upper.CL t.ratio p.value
Control vs CDC and KS -0.026 0.066 1700 -0.155 0.104 -0.391 0.696
CDC vs KS 0.054 0.039 1700 -0.022 0.129 1.393 0.164

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 2.206 0.027 1700 2.153 2.258
CDC 2.166 0.028 1700 2.112 2.220
KS 2.220 0.027 1700 2.167 2.272

Show standard means and sds by group

## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 582 2.21 0.64    2.2    2.18 0.89   1 3.6   2.6 0.28    -0.77 0.03
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 546 2.17 0.66      2    2.14 0.59   1 3.6   2.6 0.36    -0.89 0.03
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 575 2.22 0.64    2.2    2.19 0.89   1   4     3 0.29    -0.78 0.03


Exploratory: Age moderation

## 
## Call:
## lm(formula = AgeismMyth_Avg ~ Group * AgeR, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.44651 -0.48166 -0.08682  0.44685  1.95660 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         2.1938184  0.0152943 143.440   <2e-16 ***
## GroupCvsCD_KS      -0.0028177  0.0107516  -0.262   0.7933    
## GroupCDCvsKS        0.0325963  0.0188403   1.730   0.0838 .  
## AgeR               -0.0094017  0.0008961 -10.491   <2e-16 ***
## GroupCvsCD_KS:AgeR -0.0001934  0.0006249  -0.309   0.7570    
## GroupCDCvsKS:AgeR  -0.0004827  0.0011124  -0.434   0.6644    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6253 on 1669 degrees of freedom
##   (28 observations deleted due to missingness)
## Multiple R-squared:  0.06338,    Adjusted R-squared:  0.06058 
## F-statistic: 22.59 on 5 and 1669 DF,  p-value: < 2.2e-16
##                           2.5 %       97.5 %
## (Intercept)         2.163820281  2.223816489
## GroupCvsCD_KS      -0.023905816  0.018270347
## GroupCDCvsKS       -0.004356858  0.069549493
## AgeR               -0.011159347 -0.007644006
## GroupCvsCD_KS:AgeR -0.001419139  0.001032373
## GroupCDCvsKS:AgeR  -0.002664630  0.001699213


5.6.2 Fraboni Ageism



Omnibus ANOVA test: CV19 priority preference (get to work even if means more older people will die)

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 0.48 0.240 0.646 0.524
Residuals 1700 631.60 0.372

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 0.48 0.240 0.646 0.524 0.001 0.001 0 0 0 0.028 0.159
…2 Residuals 1700 631.60 0.372

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.212 0.015 149.73 0.000
GroupCvsCD_KS -0.009 0.010 -0.86 0.390
GroupCDCvsKS -0.013 0.018 -0.73 0.465
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1703 0.61 0.001 0

Planned contrast effect sizes

  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c1 Group.c1 0.282 0.282 1 0.759 0.384 0 0 0 0 0 0.021 0.14
…2 Residuals 631.795 0.371 1701
  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c2 Group.c2 0.198 0.198 1 0.52 0.471 0 0 0 0 0 0.022 0.111
…2 Residuals 426.267 0.381 1119

Contrast v2

##                               Df Sum Sq Mean Sq F value Pr(>F)
## Group                          2    0.5  0.2400   0.646  0.524
##   Group: Control vs. CDC_KS    1    0.3  0.2819   0.759  0.384
##   Group: CDC vs KS             1    0.2  0.1982   0.533  0.465
## Residuals                   1700  631.6  0.3715

lsmeans contrast (unadjusted)


contrast estimate SE df lower.CL upper.CL t.ratio p.value
Control vs CDC and KS -0.054 0.062 1700 -0.176 0.069 -0.86 0.390
CDC vs KS -0.027 0.036 1700 -0.098 0.045 -0.73 0.465

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 2.230 0.025 1700 2.181 2.280
CDC 2.217 0.026 1700 2.166 2.268
KS 2.190 0.025 1700 2.140 2.240
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min  max range skew kurtosis   se
## X1    1 582 2.23 0.59   2.17    2.22 0.64   1 3.39  2.39 0.08    -0.91 0.02
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean  sd median trimmed  mad min  max range skew kurtosis   se
## X1    1 546 2.22 0.6   2.17    2.21 0.64   1 3.35  2.35 0.03    -0.82 0.03
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min  max range skew kurtosis   se
## X1    1 575 2.19 0.63   2.13    2.18 0.71   1 3.57  2.57 0.08    -0.95 0.03


Exploratory: Age moderation

## 
## Call:
## lm(formula = AgeismFraboni_Avg ~ Group * AgeR, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.45247 -0.38124 -0.01317  0.39308  1.37556 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         2.2093980  0.0139605 158.260   <2e-16 ***
## GroupCvsCD_KS      -0.0066457  0.0098140  -0.677    0.498    
## GroupCDCvsKS       -0.0078410  0.0171973  -0.456    0.648    
## AgeR               -0.0125092  0.0008180 -15.293   <2e-16 ***
## GroupCvsCD_KS:AgeR -0.0005269  0.0005704  -0.924    0.356    
## GroupCDCvsKS:AgeR  -0.0019263  0.0010154  -1.897    0.058 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5708 on 1669 degrees of freedom
##   (28 observations deleted due to missingness)
## Multiple R-squared:  0.1265, Adjusted R-squared:  0.1239 
## F-statistic: 48.35 on 5 and 1669 DF,  p-value: < 2.2e-16
##                           2.5 %         97.5 %
## (Intercept)         2.182015998  2.23677992934
## GroupCvsCD_KS      -0.025894705  0.01260326925
## GroupCDCvsKS       -0.041571495  0.02588947399
## AgeR               -0.014113568 -0.01090480083
## GroupCvsCD_KS:AgeR -0.001645770  0.00059194449
## GroupCDCvsKS:AgeR  -0.003917919  0.00006535293


5.6.3 Ageism Fact



Omnibus ANOVA test: CV19 priority preference (get to work even if means more older people will die)

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 0.009 0.005 0.15 0.86
Residuals 1700 51.737 0.030

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 0.009 0.005 0.15 0.86 0 0 -0.001 -0.001 -0.001 0.013 0.073
…2 Residuals 1700 51.737 0.030

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.386 0.004 91.245 0.000
GroupCvsCD_KS -0.002 0.003 -0.540 0.589
GroupCDCvsKS 0.000 0.005 -0.085 0.932
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1703 0.174 0 -0.001

Planned contrast effect sizes

  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c1 Group.c1 0.009 0.009 1 0.294 0.588 0 0 0 0 0 0.013 0.084
…2 Residuals 51.738 0.030 1701
  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c2 Group.c2 0.00 0.000 1 0.007 0.933 0 0 -0.001 -0.001 -0.001 0.003 0.051
…2 Residuals 34.95 0.031 1119

Contrast v2

##                               Df Sum Sq  Mean Sq F value Pr(>F)
## Group                          2   0.01 0.004576   0.150  0.860
##   Group: Control vs. CDC_KS    1   0.01 0.008931   0.293  0.588
##   Group: CDC vs KS             1   0.00 0.000221   0.007  0.932
## Residuals                   1700  51.74 0.030434

lsmeans contrast (unadjusted)


contrast estimate SE df lower.CL upper.CL t.ratio p.value
Control vs CDC and KS -0.010 0.018 1700 -0.045 0.025 -0.540 0.589
CDC vs KS -0.001 0.010 1700 -0.021 0.020 -0.085 0.932

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 0.389 0.007 1700 0.375 0.403
CDC 0.385 0.007 1700 0.370 0.399
KS 0.384 0.007 1700 0.370 0.398
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min  max range skew kurtosis   se
## X1    1 582 0.39 0.17   0.42    0.39 0.25   0 0.92  0.92 0.09    -0.54 0.01
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min  max range skew kurtosis   se
## X1    1 546 0.38 0.17   0.39    0.38 0.21   0 0.92  0.92 0.19    -0.57 0.01
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min  max range skew kurtosis   se
## X1    1 575 0.38 0.18   0.42    0.38 0.25   0 0.92  0.92 0.19    -0.43 0.01


Exploratory: Age moderation

## 
## Call:
## lm(formula = AgeismFact_Avg ~ Group * AgeR, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.42152 -0.11179 -0.00056  0.10671  0.55727 
## 
## Coefficients:
##                       Estimate  Std. Error t value Pr(>|t|)    
## (Intercept)         0.38410138  0.00387432  99.140   <2e-16 ***
## GroupCvsCD_KS      -0.00069544  0.00272357  -0.255    0.798    
## GroupCDCvsKS        0.00321718  0.00477258   0.674    0.500    
## AgeR               -0.00421834  0.00022701 -18.582   <2e-16 ***
## GroupCvsCD_KS:AgeR -0.00006077  0.00015831  -0.384    0.701    
## GroupCDCvsKS:AgeR  -0.00001896  0.00028180  -0.067    0.946    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1584 on 1669 degrees of freedom
##   (28 observations deleted due to missingness)
## Multiple R-squared:  0.1718, Adjusted R-squared:  0.1694 
## F-statistic: 69.26 on 5 and 1669 DF,  p-value: < 2.2e-16
##                            2.5 %        97.5 %
## (Intercept)         0.3765023484  0.3917004083
## GroupCvsCD_KS      -0.0060374098  0.0046465296
## GroupCDCvsKS       -0.0061436893  0.0125780465
## AgeR               -0.0046635833 -0.0037730878
## GroupCvsCD_KS:AgeR -0.0003712753  0.0002497343
## GroupCDCvsKS:AgeR  -0.0005716756  0.0005337600


5.7 Death/Aging anxiety



5.7.1 Death anxiety scale



Omnibus ANOVA test: death anxiety scale

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 0.041 0.021 0.06 0.942
Residuals 1700 584.366 0.344

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 0.041 0.021 0.06 0.942 0 0 -0.001 -0.001 -0.001 0.008 0.059
…2 Residuals 1700 584.366 0.344

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.050 0.014 214.604 0.000
GroupCvsCD_KS -0.003 0.010 -0.326 0.744
GroupCDCvsKS -0.002 0.018 -0.110 0.913
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1703 0.586 0 -0.001

Planned contrast effect sizes

  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c1 Group.c1 0.037 0.037 1 0.108 0.743 0 0 -0.001 -0.001 -0.001 0.008 0.062
…2 Residuals 584.370 0.344 1701
  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c2 Group.c2 0.004 0.004 1 0.012 0.914 0 0 -0.001 -0.001 -0.001 0.003 0.051
…2 Residuals 399.197 0.357 1119

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 3.057 0.024 1700 3.009 3.104
CDC 3.049 0.025 1700 3.000 3.098
KS 3.045 0.024 1700 2.997 3.093
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad  min max range  skew kurtosis   se
## X1    1 582 3.06 0.56   3.11    3.09 0.49 1.11   5  3.89 -0.49     0.64 0.02
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min  max range  skew kurtosis   se
## X1    1 546 3.05 0.58   3.11    3.08 0.49   1 4.56  3.56 -0.42     0.17 0.02
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 575 3.04 0.61   3.11    3.08 0.49   1   5     4 -0.45     0.45 0.03


Exploratory: Age moderation

## 
## Call:
## lm(formula = DeathAnxty_Avg ~ Group * AgeR, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.10064 -0.34485  0.05506  0.38800  2.05563 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         3.0472683  0.0138863 219.444   <2e-16 ***
## GroupCvsCD_KS      -0.0002433  0.0097618  -0.025    0.980    
## GroupCDCvsKS        0.0022274  0.0171058   0.130    0.896    
## AgeR               -0.0090451  0.0008136 -11.117   <2e-16 ***
## GroupCvsCD_KS:AgeR -0.0008155  0.0005674  -1.437    0.151    
## GroupCDCvsKS:AgeR  -0.0007545  0.0010100  -0.747    0.455    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5678 on 1669 degrees of freedom
##   (28 observations deleted due to missingness)
## Multiple R-squared:  0.0702, Adjusted R-squared:  0.06742 
## F-statistic:  25.2 on 5 and 1669 DF,  p-value: < 2.2e-16
##                           2.5 %       97.5 %
## (Intercept)         3.020031919  3.074504718
## GroupCvsCD_KS      -0.019389974  0.018903340
## GroupCDCvsKS       -0.031323819  0.035778519
## AgeR               -0.010640950 -0.007449242
## GroupCvsCD_KS:AgeR -0.001928425  0.000297394
## GroupCDCvsKS:AgeR  -0.002735512  0.001226584

Here are the posthoc Tukey multiple comparisons of means (95% family-wise confidence level) with a plot to show.

  • Group:

      diff lwr upr p adj
    CDC-Control -0.008 -0.090 0.074 0.973
    KS-Control -0.012 -0.093 0.069 0.938
    KS-CDC -0.004 -0.086 0.078 0.993


5.7.2 Death worry single item



Omnibus ANOVA test: Death worry single item

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 3.481 1.741 0.871 0.419
Residuals 1698 3393.913 1.999

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 3.481 1.741 0.871 0.419 0.001 0.001 0 0 0 0.032 0.201
…2 Residuals 1698 3393.913 1.999

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.063 0.034 89.321 0.000
GroupCvsCD_KS -0.007 0.024 -0.296 0.767
GroupCDCvsKS -0.054 0.042 -1.281 0.200
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1701 1.414 0.001 0

Planned contrast effect sizes

  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c1 Group.c1 0.199 0.199 1 0.1 0.752 0 0 -0.001 -0.001 -0.001 0.008 0.061
…2 Residuals 3397.195 2.000 1699
  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c2 Group.c2 3.282 3.282 1 1.635 0.201 0.001 0.001 0.001 0.001 0.001 0.038 0.248
…2 Residuals 2242.393 2.008 1117

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 3.077 0.059 1698 2.962 3.192
CDC 3.110 0.061 1698 2.991 3.229
KS 3.002 0.059 1698 2.886 3.117
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 582 3.08 1.41      3     3.1 1.48   1   5     4 -0.09    -1.24 0.06
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 545 3.11 1.41      3    3.14 1.48   1   5     4 -0.12    -1.25 0.06
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 574    3 1.42      3       3 1.48   1   5     4 -0.1    -1.28 0.06


Exploratory: Age moderation

## 
## Call:
## lm(formula = D_Worry ~ Group * AgeR, data = df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.66377 -1.15388  0.08944  1.09087  2.66792 
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         3.0611724  0.0337534  90.692   <2e-16 ***
## GroupCvsCD_KS      -0.0031167  0.0237205  -0.131    0.895    
## GroupCDCvsKS       -0.0525942  0.0415919  -1.265    0.206    
## AgeR               -0.0183459  0.0019770  -9.280   <2e-16 ***
## GroupCvsCD_KS:AgeR -0.0012357  0.0013785  -0.896    0.370    
## GroupCDCvsKS:AgeR   0.0008143  0.0024545   0.332    0.740    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.379 on 1667 degrees of freedom
##   (30 observations deleted due to missingness)
## Multiple R-squared:  0.05062,    Adjusted R-squared:  0.04777 
## F-statistic: 17.78 on 5 and 1667 DF,  p-value: < 2.2e-16
##                           2.5 %       97.5 %
## (Intercept)         2.994968955  3.127375873
## GroupCvsCD_KS      -0.049641867  0.043408369
## GroupCDCvsKS       -0.134172010  0.028983550
## AgeR               -0.022223518 -0.014468269
## GroupCvsCD_KS:AgeR -0.003939459  0.001468147
## GroupCDCvsKS:AgeR  -0.003999832  0.005628513

Here are the posthoc Tukey multiple comparisons of means (95% family-wise confidence level) with a plot to show.

  • Group:

      diff lwr upr p adj
    CDC-Control 0.033 -0.165 0.23 0.920
    KS-Control -0.076 -0.271 0.12 0.635
    KS-CDC -0.108 -0.307 0.09 0.406


5.7.3 Worry about getting older single item check



Omnibus ANOVA test: worry about getting older

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 4.455 2.228 1.108 0.33
Residuals 1700 3417.904 2.011

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 4.455 2.228 1.108 0.33 0.001 0.001 0 0 0 0.036 0.246
…2 Residuals 1700 3417.904 2.011

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.125 0.034 90.926 0.000
GroupCvsCD_KS -0.022 0.024 -0.890 0.373
GroupCDCvsKS -0.050 0.042 -1.179 0.238
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1703 1.418 0.001 0

Planned contrast effect sizes

  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c1 Group.c1 1.659 1.659 1 0.825 0.364 0 0 0 0 0 0.022 0.149
…2 Residuals 3420.701 2.011 1701
  term sumsq meansq df statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group.c2 Group.c2 2.797 2.797 1 1.353 0.245 0.001 0.001 0 0 0 0.035 0.214
…2 Residuals 2312.406 2.066 1119

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 3.168 0.059 1700 3.053 3.284
CDC 3.154 0.061 1700 3.035 3.273
KS 3.054 0.059 1700 2.938 3.170
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 582 3.17 1.38      3    3.21 1.48   1   5     4 -0.21    -1.15 0.06
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 546 3.15 1.43      3    3.19 1.48   1   5     4 -0.2    -1.25 0.06
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 575 3.05 1.45      3    3.07 1.48   1   5     4 -0.08    -1.29 0.06


Exploratory: Age moderation

## 
## Call:
## lm(formula = O_Worry ~ Group * AgeR, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.6579 -1.2079  0.1157  1.1709  2.6031 
## 
## Coefficients:
##                        Estimate   Std. Error t value Pr(>|t|)    
## (Intercept)         3.120551521  0.033956850  91.898   <2e-16 ***
## GroupCvsCD_KS      -0.020251561  0.023871002  -0.848    0.396    
## GroupCDCvsKS       -0.045895994  0.041829758  -1.097    0.273    
## AgeR               -0.017309321  0.001989624  -8.700   <2e-16 ***
## GroupCvsCD_KS:AgeR -0.001550339  0.001387514  -1.117    0.264    
## GroupCDCvsKS:AgeR   0.000008015  0.002469862   0.003    0.997    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.388 on 1669 degrees of freedom
##   (28 observations deleted due to missingness)
## Multiple R-squared:  0.04536,    Adjusted R-squared:  0.0425 
## F-statistic: 15.86 on 5 and 1669 DF,  p-value: 2.729e-15
##                           2.5 %       97.5 %
## (Intercept)         3.053949018  3.187154023
## GroupCvsCD_KS      -0.067071820  0.026568698
## GroupCDCvsKS       -0.127940311  0.036148324
## AgeR               -0.021211742 -0.013406900
## GroupCvsCD_KS:AgeR -0.004271791  0.001171112
## GroupCDCvsKS:AgeR  -0.004836338  0.004852369

Here are the posthoc Tukey multiple comparisons of means (95% family-wise confidence level) with a plot to show.

  • Group:

      diff lwr upr p adj
    CDC-Control -0.015 -0.213 0.184 0.984
    KS-Control -0.114 -0.310 0.081 0.355
    KS-CDC -0.100 -0.299 0.099 0.466


5.8 Follow-up tests


First row is Control vs CDC. Second row is Control vs Kitchen Sink.

Var M_C sd_C M_XI sd_XI Diff_est CI_low CI_high t_statistic test_dfs p_value p_value_Holm p_value_Bonf Effect_D
Ageism_CVPriority2_1 3.082 1.779 2.851 1.764 0.231 0.023 0.439 2.178 1113 0.030 0.119 0.356 0.130
Ageism_CVPriority2_1 3.082 1.779 2.776 1.722 0.306 0.103 0.509 2.951 1137 0.003 0.032 0.039 0.175
Ageism_CVPriority2_2 3.075 1.747 2.762 1.692 0.313 0.111 0.516 3.033 1105 0.002 0.030 0.030 0.182
Ageism_CVPriority2_2 3.075 1.747 2.800 1.668 0.275 0.076 0.475 2.711 1127 0.007 0.054 0.082 0.161
Adhere_willing 4.648 1.475 4.832 1.425 -0.184 -0.353 -0.014 -2.127 1125 0.034 0.119 0.403 0.127
Adhere_willing 4.648 1.475 4.894 1.325 -0.246 -0.408 -0.084 -2.983 1144 0.003 0.032 0.035 0.175
AdhereAttitude3_1 4.677 1.460 4.890 1.307 -0.213 -0.375 -0.051 -2.582 1123 0.010 0.060 0.119 0.154
AdhereAttitude3_1 4.677 1.460 4.789 1.398 -0.112 -0.277 0.053 -1.335 1153 0.182 0.182 1.000 0.079
AdhereAttitude3_3 4.721 1.351 4.866 1.248 -0.145 -0.297 0.007 -1.874 1125 0.061 0.122 0.734 0.112
AdhereAttitude3_3 4.721 1.351 4.902 1.285 -0.181 -0.333 -0.029 -2.330 1150 0.020 0.100 0.240 0.137
BehavIntRisk_Avg 3.002 1.516 2.767 1.485 0.235 0.060 0.411 2.635 1124 0.009 0.060 0.102 0.157
BehavIntRisk_Avg 3.002 1.516 2.748 1.490 0.254 0.081 0.428 2.875 1154 0.004 0.037 0.049 0.169

6 Research Q3


Does the framing of the question (how many would die vs. how many would recover) influence how people think COVID-19 would impact older adults?



6.1 Framing effects



6.1.1 50-64


I ran a Welch’s independent samples t-test to test whether participants estimates of number of adults aged 50-64 (out of 100 who got COVID) who would die differed depending on how the question was framed (recover vs. die).

We found that asking how many adults will die (46 out of 100) results in higher estimates than asking how many recover (36 out of 100). On average, both groups overestimate how many will die compared to current CFR (1.3) for this age group which is corresponding to 1 out of 100 (according to CDC data).

## Warning in independentSamplesTTest(formula = fiftytosixtyfour_die ~ Frame, : 16
## case(s) removed due to missingness
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   fiftytosixtyfour_die 
## Grouping variable:  Frame 
## 
## Descriptive statistics: 
##             How many die framing How many recover framing
##    mean                   44.708                   34.959
##    std dev.               31.461                   25.054
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  7.036 
##    degrees of freedom:  1597.34 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [7.031, 12.467] 
##    estimated effect size (Cohen's d):  0.343


6.1.2 65 and older


I then ran the same test for the questions asking about adults over 65 years old.

Again, asking how many will die results in higher estimates (55 out of 100) than asking how many will recover (42 out of 100). Again, both groups on average overestimate how many will die compared to current CFR (9.9) for this age group which is corresponding to 10 out of 100.

## Warning in independentSamplesTTest(formula = sixtyfiveorolder_die ~ Frame, : 16
## case(s) removed due to missingness
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   sixtyfiveorolder_die 
## Grouping variable:  Frame 
## 
## Descriptive statistics: 
##             How many die framing How many recover framing
##    mean                   53.827                   42.392
##    std dev.               30.699                   28.346
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  7.948 
##    degrees of freedom:  1674.082 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [8.613, 14.257] 
##    estimated effect size (Cohen's d):  0.387

Check whether estimates differ based on the group for fifty to sixty four years old. Combined, in the die framing, and in the recover framing.


Check whether estimates differ based on the group for sixty or older. Combined, in the die framing, and in the recover framing.


6.1.3 Tragic death


We asked if teenage suicide is more tragic than suicide among the old (M=2.48, SD=1.04) and if a teenager dying from COVID-19 is more tragic than an older person dying from COVID-19 (M=2.25, SD=1.08).

There was a significant difference - on average the death of a teenager was seen as more tragic than the death of an older person when it is a result of suicide rather than when it is caused by COVID-19.

## Warning in pairedSamplesTTest(formula = ~Ageism_CVBelief_5 +
## Ageism_Fabroni2_4, : 5 case(s) removed due to missingness
## 
##    Paired samples t-test 
## 
## Variables:  Ageism_CVBelief_5 , Ageism_Fabroni2_4 
## 
## Descriptive statistics: 
##             Ageism_CVBelief_5 Ageism_Fabroni2_4 difference
##    mean                 2.249             2.475     -0.226
##    std dev.             1.084             1.037      1.052
## 
## Hypotheses: 
##    null:        population means equal for both measurements
##    alternative: different population means for each measurement
## 
## Test results: 
##    t-statistic:  -8.839 
##    degrees of freedom:  1697 
##    p-value:  <.001 
## 
## Other information: 
##    two-sided 95% confidence interval:  [-0.276, -0.176] 
##    estimated effect size (Cohen's d):  0.214

7 Debrief


In the debrief we said:

*If you have any final comments for us about the survey, please leave them in the textbox below

Below are the responses…

Table continues below
very interesting!!!
no thanks
None
Easy to understand very straight forward
6
H
students have the option to click “mark as done” (see the … Last edited 4/30/20
I appreciate the survey and your time.
thank you!
None
Idk
y
No
no.thanx
noone
I like it very well
I cummed
It is a good survey
Very good
No
Thanks
Nahhhh
4
Nice
Good
Increase in text size
Udkd
Nothing
Increase in text size
None
No
Nothing
No thanks
Fantastic
Gghhg
Yes
Good
I’d be very interested in seeing the poll results of this survey
I never been asked about my views on death before it made me think
None
None
No thanks
No
Good
Love it
This a pretty well formed survey
I don’t have
None
n/a
Nome
No
No
Good thoughts better option for me
Its find
Awesome
Great Survey
This survey was repetitive and dumb
Nope
None
None
No comments
Love it
None thx
Nothing
Nome
‘Cjfdgh
none
hmn
Great survey
The survey was so cool
I really liked it make more
Stay safe America and international
No questions
ask more about god and with out god in peoples lives. Why the mill. generation wants thing for free instead earning them
Interesting survey
None
Good luck.
Bad
It’s long
Jrnr
this survey helps alot
Idk
Nothing at all I can just get it to the.
Wear a man
None
Great
No
Okivfg hfynk
none
Excellent
Uuuiikk
Nothing in particular.
The questions were saddening in regards to various opinions in regards to the elderly.
Thank you!
A little worries
Thanks
great work
NA
I really enjoyed taking this survey. Thank you.
good
God be praised
The scale with the dots was very confusing
yes
Through this entire pandemic I have worked being cautious. It has been very taxing but I believe we will get through it.
new retirement age 55
Good survey
No
this survey is really good.
other than severe diseases, Geriatrics is a sad place to work, death is anticipated more frequently than the Middle age groups, due to the Life Expectancy. the other end is the neonates, they too die, and while this is heart breaking, EVERYLIFE is important no matter the issues experienced, I was Licensed in 1977, 4-1977 Thank you, for allowing me to participate:)
good survey
I am 74 and pretty much knew where this survey was going. I am in the high risk group myself, but still say I don’t want the rest of the population, which is younger than 74, to give up their life, liberty, and way to make a living for me. I say NO LOCKDOWN AGAIN…I’ll take my chances. Live YOUR life.
None
a good survey. I enjoy it
I enjoyed this survey very much. Thank you!
interesting survey, would like to know results
The format was tedious but thank you.
Great survey. I’m 68 years old and love heavy metal. Go to concerts as often as I can. Don’t listen to people who think I’m too old to like this type of music,
very good survey
Great thought provoking survey. Well written.
I think it was a good survey. I’m glad that I took it.
no comments
No
well formulated TYVM
hjgfghjk
none just wear your mask
none
very interesting survey enjoyed it
Interesting survey!
None
Survey hit home. I am classified as elderly and some of the questions tended to make me a bit angry. In the society that we live in, especially in this country, very often the elderly are disrespected and not valued.
Good survey,there were questions for everyone to answer.
None, thanks
good questions
Very thought provoking
none
Good questions
None
Very interesting
This survey was way too long
Thanks
GOOD SURVEY THANKS
I wonder what good this survey will do
No comment I’m very well pleased 🎱
No
I am so glad that there were continuously repetitive same type of Likert questions. Short and sweet.
It was interesting
Very interesting
A very interesting survey
No win
Great survey
abc
it’s better and unique
ok
too many time
very good
i love it so much
Stay home
I like this servey
very interesr
No no
thank you
yes
very ricbits this moment my life, covid 19.
As soon as the virus is gone, let everyone be well. and one more thing is ,survey was good.
too much very well
This is one of the best survey i have done
i have nothing yo say
no
the survey was very good
good survey
yes
this survey was very good and this
it usefull
very nice
LIKE
good
Thanks for the great survey. I really enjoyed it
i prefer not to say
No i have no final comments.
ok vai
it is informatibe fo me
no comment
nc
survey
I like to get to be there for the meeting on Monday
Nothing, it’s all simple and easy to understand
Good vibes
yes
GOOD
Thanks for asking me this question and It’s a good survey.
it was a good survey
All Is Good in This Surveys
none for now
I need financial support for the sick ones in my neighborhood
I enjoy this survey very much.
Alsome
kije
good
Nothing much
great i will more enjoy
yes
Thanks
well
good
It is good
This was good survey indeed.
Good
well
my final comment is please use mask .and maintain social distence because its too much important in this time
no
best site
I’m glad to see your comments.
Nothing specifically for the moment
No
i like it
Thanks
it was good
it’s great for us
The feeling is that you are cutting jobs to save money so everyone is nervous that they are not going to have a job. It’s especially hard when there’s no outline of duties that will stay in the dept.
Nothing at all
It was my great pleasure participating in the survey.
Covid 19 An epidemic size virus. I have been asked more questions about this for so long. This disease is more common in the elderly. But everyone, big or small, has to be careful.
The survey was conducted excellently thanks.
Nothing
None
No comments thank you
Good
i really enjoy this survey
thank you it was a nice experience with your survey and informative also. i get to know many things from it.
N/A
thank you for. your work
THE SURVEY WAS GREAT
this needs to be more convenient and relevant
none
ok
BEAUTIFUL
no comment
good
good
very nice
it better
fcghbncfbxhn
yes
Thank you for taking the time to complete this survey. We truly value the information you have provided.
good
iuytreoiuytpoikjhkjhjh
jnkm.m,
you have questions
good
it is very good
well survey
its great
study was about COVID-19
12
good
good
this study is very knowledgable
yes
Best survey
no
This is very like it.good survey.
1
yes i aggere with you
Thanks
I don’t
Since I am. 70, many questions were asked that actually applied to me as “older” person!
I take the survey because I got knowledge about the corona virus
Nope
None
no
good
No
Too long
Covid is real but so is the flu and it kills many people too. We can’t stay locked up any longer. People need to live but be mindful of others and be careful
Way too long
Na
Jji
this was very nice
good
Thank you!
1
good
N/A
easy to complete and understand
good
Great interesting survey
Good
no final comments
Some of those statements were downright rude and insulting.
good survey
Nice survey which asks very simple practical question.
Interesting survey thank you
The survey was much longer than it was advertised
Nothing comes to mind
None
None
really
Easy survey
cool
I enjoy this survey
Thanks
none
Perfect
None
Thank you for your invitation
The study was really good, hope i will get more study like this.This helps me a lot. Thank you so much.
Nothing
good luck - hope I helped - it was thought provoking
too long
I don’t know
I thought this was a very good survey and very fully informated
Nothing but…..thank you!
Very interesting survey.
Na
Survey is longer than advertised
g
I’m fine with that you are
Good smattering of questions.
none
None
yes
Quality healthy
From a very small point to find out how many of these people were born and get
1
1
nope
No just give me my money
Old people arnt villians or boring spend more time volunteering
Good one
Better than expected
I love it
Best
it was great survey
Bbvddghbbb
idk
☺️
nice
u can come to my house and I will be there for the next few days and will be in touch
no
like
good sruvey
NA
19 will kill you
Simple and clear
No comments
None
Yh M cv
No
I thought this survey was excellent
None
Hdrtdu5rjtf6fjyfyfjxngrjy
Not at all
Vou ver se
No comment
It was interesting
This survey is awesome and appealing
Nothing
N/A
No I don’t
dnxnxgsysujfkr shehe heir ahshehehs aj shehe sidhbr sdf g
The covid-19 virus really affected us as a whole
Jaoenejosksn sza kLa
It’s sooo long
no other comments
No
Ioi
None
None
None
none
No
1
I like this survey
I like this survey
None
It was a good survey .Peace and thanks!!!
none
Not really
Usissn snsosks zhsokss bajd
Nothing much
358
leo
Nothing to say
Car
Hh
The survey works well nothing
Good
Interesting and informative
Enjoyed
Very complete.
Really good but took too long
nice survey
No
N/A
None
D
it’s good site
This was a great survey to take
good survey
No comments
none
none
continuing junction
Dk
The topic will remain through out history for now on end
Nothing
Don’t know
Needs a progress meter and its too long.
None
None
1
Great work. We do need our voices heard more.
Ok I just wanna talk about the stuff that I’m doing right now
BS she
No
Cool suvey
none
i can not say any thing
this is very good service and this is very nice
Not applicable
VERY FRANK QUESTIONS THAT WE ALL NEED TO LISTEN TO
its very good
I love this survey.
none
I am 70andI don’t feel old. Your questions about “old” people should be revised to “older”.
Too long
very nice
its very consersative
no
none
An interesting survey it is. Very thought provoking.
Good
very nice
i prefer not to say
Thank you so much gfor this survey
great survey
Good survey. A few of the questions needed a few more words to narrow down the choices. I did the best I could and maybe overthink something more than necessary.
one of the best i’ve taken.
30
thamk you quite interesting
I have no further comments.
too long
This survey was very interesting.
As long as people, places, cities and states do not comply with COVID precautions, we’re in big trouible!
Thank You
I have been tested for covid-19 . came back neg. also I have copd
The survey was interesting and informative.I am happy to share my opinion.Thanks
a enjoyable survey
Interesting survey
It appears you are looking out for the elderly . Thank you I am one of them and still care about everyone regardless of age or race ! Thanks again
You don’t have a question on why the cdc doesn’t have a clue
Very interesting metrics; I would be interested in seeing the results, if you can achieve a large enough sample set
no comments
None
Too long and no indication of the completion.
I’m a senior I didn’t like the questions about old people
Very unique and interesting survey, enjoyed providing feedback
I think this was a very interesting survey. Enjoyed it alot.
Informative survey!
I feel that the world doesn’t know how deal with elderly.
none
No Comment
none
very interesting
none
COVID-19 can affect everyone regardless of age.
None
None
no comment
1
good this was
good
This was good
amazing
1
yes
like it
Nice Survey Thank u for select me for this survey.
very good
well
yes
no more today it is good
LIKE
great concept
Nice
yes
yes i want this
the university is so good
no
none
Good.
nothing more
no thanks
1
very good
yes
i like it. it very helpfull
why vienna vairus a deadly disease
this survey is Very good
good
good
love
This will place one textbox for additional comments below each row in the question. Validation. You can choose from the following validation options to requir
Nice survey
gcvghfghfgh
very good
Am happy to participate in this type of survey
BJBHKMBVHJBJK,
very good
i like servey
very good
no,it’ ok
yhhchncbnv
nhjfgcxjchgj hjghjkgkghkg bjmhkhgk bvjnhgjm
very good
1
not
Booooool
yes
Thank you for your invitation
I was awesome
i love this survey
None
1
I like it so much
lik it
Nothing much
very goog
Thanks for the survey
yes. its good
Extremely very good, i like this survey.
good
it was awesome time.
This survey is very good and discuss good information.
I dont have anything to say for now
I would like to say that this survey was really good and comfortable answering
Nothing at all
Nothing to say
I like this survey very much beacuse it is different from other
Good
The survey was conducted appropriately.
This servey is very helpful
yes
very good survey.
Thank you
Thank you
yes
Best survey
Thank you it was so good
I don’t have any comment
This survey is great and appealing. Thanks for your time and consideration
I love the surveys
1
very good
yes
better
It’s very good survey
good
interesting
no
Nothing
good
very good
No,Thanks
cvbhjkjhg
important survey for present positon
cxzczdx
as soon as
this survey is very helpful with us
i like this survey
good
none
VERT GOOD
very good
very good survey
no ,good survey,thanks
There are several means by which you can gather customer information: comments, social media, live sessions, emails, in-product …
the food is alright but, food was alright and i.
none
It was OK
I pray this ends soon
None for now
no
It good
No but thanks for the opportunity and God Bless
Weird questions
Ejejeje
No
survey was good
Thanks
None
The survey was great
I have some learn about these any questions
Nope
This survey really awesome
It’s a helpful survey
good
Thank you
none
Nothing
Young shit-ass punk brats under 30 should LEARN and appreciate the elderly.
None
1
I may be mistaken, but I thought you asked for age (72) before giving survey. Awkward answering questions about “old people”!
this is very exccelent survey
good
WELL-DESIGNED and interesting
no,thank you
Good survey about important issue
Yes
good
yes
leave
fun fun
Thanks for this nice survey
It’s amazing
none
none
well also
awsdxfc
none
very good
good
The survey was so easy and understand
COVID-19 affects different people in different ways. Infected people have had a wide range of symptoms reported – from mild symptoms to severe illness.
Great survey
Nice survey
None
thought-provoking
no one knows what they are doing when it comes to COVID-19
none
Thank you for taking the time to make this survey .
Nick
Well put together enjoyed taking your survey
Na


8 Plots



8.1 Regression


First plot…


Same plot but showing density distributions


9 Exploratory Qs



9.1 Age as predictor (C)



Here checking to see if age predicts the outcomes measures.


  Age
Predictors Beta (95% CI) Statistic p value
(Intercept) -0.00
(-0.09 – 0.09)
6.75 <0.001
Priority: Back to work 0.02
(-0.11 – 0.15)
0.30 0.764
Priority: Economy 0.04
(-0.09 – 0.16)
0.58 0.563
Priority: Normal 0.07
(-0.06 – 0.19)
1.03 0.301
Guidelines restrictive -0.03
(-0.14 – 0.07)
-0.61 0.542
Guidelines effective prevent getting CV19 -0.23
(-0.39 – -0.08)
-2.90 0.004
Guidelines effective save lives 0.08
(-0.06 – 0.22)
1.11 0.267
Guidelines effective slow spread 0.12
(-0.05 – 0.29)
1.38 0.169
Willingness to stay home again -0.04
(-0.17 – 0.08)
-0.65 0.518
Willingness to follow guidelines 0.08
(-0.04 – 0.20)
1.36 0.176
Risky Behavioral intent scale -0.36
(-0.48 – -0.25)
-6.32 <0.001
Protective Behavioral intent scale 0.18
(0.07 – 0.29)
3.10 0.002
Prosocial scale 0.04
(-0.06 – 0.14)
0.77 0.441
Individual risk 0.02
(-0.08 – 0.13)
0.45 0.654
Observations 424
R2 / R2 adjusted 0.176 / 0.149

9.2 Risk mediator of intentions



9.2.1 Risk mediator (all)


From Laura: “you might find that the CDC intervention reduces intentions to social distance among younger adults, but the mediator is perceived risk not attitudes toward older adults. For my peace of mind let’s make sure to test this alternative mediator”


Risk perceptions predicted behavioral intentions for the risky behaviors

## 
## Call:
## lm(formula = BehavIntRisk_Avg ~ IndivRisk_Avg, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1463 -1.1355 -0.2791  1.0173  4.0318 
## 
## Coefficients:
##               Estimate Std. Error t value          Pr(>|t|)    
## (Intercept)    1.77190    0.11641  15.222           < 2e-16 ***
## IndivRisk_Avg  0.19634    0.02666   7.364 0.000000000000306 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.364 on 1390 degrees of freedom
##   (311 observations deleted due to missingness)
## Multiple R-squared:  0.03754,    Adjusted R-squared:  0.03685 
## F-statistic: 54.22 on 1 and 1390 DF,  p-value: 0.0000000000003056

However, risk perception was not predicted by group. I think theoretically we are not justified to run the mediation.


Just to be sure, running the mediation model anyway.

## 
## Call:
## lm(formula = BehavIntRisk_Avg ~ Group + IndivRisk_Avg, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.1776 -1.1312 -0.2800  0.9824  4.0718 
## 
## Coefficients:
##               Estimate Std. Error t value          Pr(>|t|)    
## (Intercept)    1.77493    0.11603  15.297           < 2e-16 ***
## GroupCvsCD_KS -0.08214    0.02571  -3.195           0.00143 ** 
## GroupCDCvsKS  -0.03989    0.04472  -0.892           0.37265    
## IndivRisk_Avg  0.19554    0.02658   7.357 0.000000000000321 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.359 on 1388 degrees of freedom
##   (311 observations deleted due to missingness)
## Multiple R-squared:  0.04515,    Adjusted R-squared:  0.04308 
## F-statistic: 21.88 on 3 and 1388 DF,  p-value: 0.00000000000007635
## $`Mod1: Y~X`
##                 Estimate Std. Error   t value    Pr(>|t|)
## (Intercept)   2.58539432 0.03712839 69.633897 0.000000000
## predCvsCD_KS -0.08374515 0.02619633 -3.196827 0.001420779
## predCDCvsKS  -0.04098819 0.04557201 -0.899416 0.368587041
## 
## $`Mod2: Y~X+M`
##                 Estimate Std. Error    t value     Pr(>|t|)
## (Intercept)   1.77492976 0.11603311 15.2967528 6.222939e-49
## predCvsCD_KS -0.08214012 0.02571023 -3.1948425 1.430535e-03
## predCDCvsKS  -0.03988637 0.04472500 -0.8918137 3.726474e-01
## med           0.19553817 0.02657874  7.3569398 3.207467e-13
## 
## $`Mod3: M~X`
##                  Estimate Std. Error     t value  Pr(>|t|)
## (Intercept)   4.144789551 0.03678497 112.6761804 0.0000000
## predCvsCD_KS -0.008208263 0.02595403  -0.3162616 0.7518515
## predCDCvsKS  -0.005634830 0.04515049  -0.1248011 0.9006991
## 
## $Indirect.Effect
## [1] 0.0003273978
## 
## $SE
## [1] 0.001098379
## 
## $z.value
## [1] 0.2980736
## 
## $N
## [1] 1392
## [1] 1.234353
##  Control      CDC       KS 
## 3.002320 2.766850 2.748171
##  Control      CDC       KS 
## 4.161206 4.142216 4.137051

Omnibus ANOVA test: Risky behaviors by group controlling for individual risk perception


(e.g., going to gatherings of 10 or more people)

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 21.26 10.629 5.752 0.003
IndivRisk_Avg 1 100.01 100.014 54.125 0.000
Residuals 1388 2564.82 1.848

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 21.26 10.629 5.752 0.003 0.008 0.008 0.007 0.007 0.007 0.091 0.869
IndivRisk_Avg IndivRisk_Avg 1 100.01 100.014 54.125 0.000 0.037 0.038 0.037 0.037 0.037 0.197 1.000
…3 Residuals 1388 2564.82 1.848

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.775 0.116 15.297 0.000
GroupCvsCD_KS -0.082 0.026 -3.195 0.001
GroupCDCvsKS -0.040 0.045 -0.892 0.373
IndivRisk_Avg 0.196 0.027 7.357 0.000
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1392 1.359 0.045 0.043

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 2.750 0.063 1388 2.626 2.873
CDC 2.543 0.064 1388 2.418 2.668
KS 2.463 0.063 1388 2.340 2.587


9.2.2 Risky mediator (young)


Running the same tests but with participants under the age of 34.


Omnibus ANOVA test: Risky behaviors by group (young participants)


(higher score correspond to more risk)

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 1.534 0.767 0.432 0.65
Residuals 390 692.905 1.777

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 1.534 0.767 0.432 0.65 0.002 0.002 -0.003 -0.003 -0.003 0.047 0.121
…2 Residuals 390 692.905 1.777

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.997 0.067 59.415 0.000
GroupCvsCD_KS -0.043 0.047 -0.920 0.358
GroupCDCvsKS 0.009 0.083 0.112 0.911
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
393 1.333 0.002 -0.003
##                              Df Sum Sq Mean Sq F value Pr(>F)
## Group                         2    1.5  0.7668   0.432  0.650
##   Group: Control vs. CDC_KS   1    1.5  1.5112   0.851  0.357
##   Group: CDC vs KS            1    0.0  0.0224   0.013  0.911
## Residuals                   390  692.9  1.7767               
## 118 observations deleted due to missingness

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 4.084 0.115 390 3.858 4.309
CDC 3.944 0.116 390 3.717 4.172
KS 3.963 0.119 390 3.729 4.197
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 135 4.08 1.24      4    4.08 1.15   1   7     6 0.01     0.08 0.11
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean  sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 133 3.94 1.3   4.11    3.97 1.15   1   7     6 -0.16    -0.02 0.11
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 125 3.96 1.46   3.89    3.97 1.32   1   7     6 -0.05    -0.45 0.13
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 582    3 1.52    2.8     2.9 1.78   1   6     5 0.45    -0.93 0.06
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 546 2.77 1.48    2.4    2.63 1.48   1   6     5 0.62    -0.74 0.06
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 574 2.75 1.49    2.4     2.6 1.48   1   6     5 0.66    -0.73 0.06
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis  se
## X1    1 178 3.15 1.29    3.1     3.1 1.33   1   6     5 0.27    -0.65 0.1
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis  se
## X1    1 168 2.89 1.29      3    2.82 1.48   1   6     5 0.35     -0.7 0.1
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range skew kurtosis   se
## X1    1 165 2.98 1.37    2.8    2.91 1.48   1   6     5  0.4    -0.83 0.11

Here are the posthoc Tukey multiple comparisons of means (95% family-wise confidence level) with a plot to show.

  • Group:

      diff lwr upr p adj
    CDC-Control -0.140 -0.523 0.244 0.668
    KS-Control -0.121 -0.510 0.268 0.745
    KS-CDC 0.019 -0.372 0.409 0.993



Risk is associated with the risky behavioral intentions.

## 
## Call:
## lm(formula = BehavIntRisk_Avg ~ IndivRisk_Avg, data = df_Young)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.2946 -1.0430 -0.0783  0.8665  3.4828 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    2.15432    0.20250  10.638  < 2e-16 ***
## IndivRisk_Avg  0.16289    0.04806   3.389 0.000772 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.267 on 391 degrees of freedom
##   (118 observations deleted due to missingness)
## Multiple R-squared:  0.02854,    Adjusted R-squared:  0.02606 
## F-statistic: 11.49 on 1 and 391 DF,  p-value: 0.0007721

Again, because risk is not predicted by group I don’t think we are justified to run this. But for robustness sake, here is the mediation model.

## 
## Call:
## lm(formula = BehavIntRisk_Avg ~ Group + IndivRisk_Avg, data = df_Young)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.2134 -1.0679 -0.1081  0.8865  3.5213 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    2.16738    0.20249  10.704  < 2e-16 ***
## GroupCvsCD_KS -0.07197    0.04486  -1.604  0.10946    
## GroupCDCvsKS   0.02409    0.07882   0.306  0.76003    
## IndivRisk_Avg  0.15920    0.04807   3.312  0.00101 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.265 on 389 degrees of freedom
##   (118 observations deleted due to missingness)
## Multiple R-squared:  0.0352, Adjusted R-squared:  0.02776 
## F-statistic: 4.731 on 3 and 389 DF,  p-value: 0.002963
## $`Mod1: Y~X`
##                 Estimate Std. Error    t value      Pr(>|t|)
## (Intercept)   2.80370987 0.06467840 43.3484754 3.261012e-151
## predCvsCD_KS -0.07888581 0.04538209 -1.7382586  8.295449e-02
## predCDCvsKS   0.02557594 0.07982032  0.3204189  7.488224e-01
## 
## $`Mod2: Y~X+M`
##                 Estimate Std. Error    t value     Pr(>|t|)
## (Intercept)   2.16737875 0.20248681 10.7038021 1.314652e-23
## predCvsCD_KS -0.07197172 0.04486169 -1.6043026 1.094589e-01
## predCDCvsKS   0.02409239 0.07882078  0.3056603 7.600268e-01
## med           0.15919862 0.04807263  3.3116268 1.014307e-03
## 
## $`Mod3: M~X`
##                  Estimate Std. Error    t value      Pr(>|t|)
## (Intercept)   3.997089471 0.06727432 59.4147870 1.559738e-197
## predCvsCD_KS -0.043430573 0.04720354 -0.9200703  3.581048e-01
## predCDCvsKS   0.009318881 0.08302398  0.1122432  9.106883e-01
## 
## $Indirect.Effect
## [1] -0.001046346
## 
## $SE
## [1] 0.003607193
## 
## $z.value
## [1] -0.2900721
## 
## $N
## [1] 393
## [1] 0.7717611
##  Control      CDC       KS 
## 3.148315 2.886905 2.981818
##  Control      CDC       KS 
## 4.083951 3.944340 3.962978

Omnibus ANOVA test: Risky behaviors by group controlling for individual risk perception (young participants)


(e.g., going to gatherings of 10 or more people)

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 5.166 2.583 1.613 0.201
IndivRisk_Avg 1 17.561 17.561 10.967 0.001
Residuals 389 622.901 1.601

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 5.166 2.583 1.613 0.201 0.008 0.008 0.003 0.003 0.003 0.091 0.343
IndivRisk_Avg IndivRisk_Avg 1 17.561 17.561 10.967 0.001 0.027 0.027 0.025 0.025 0.025 0.168 0.912
…3 Residuals 389 622.901 1.601

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.167 0.202 10.704 0.000
GroupCvsCD_KS -0.072 0.045 -1.604 0.109
GroupCDCvsKS 0.024 0.079 0.306 0.760
IndivRisk_Avg 0.159 0.048 3.312 0.001
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
393 1.265 0.035 0.028

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 2.948 0.109 389 2.734 3.162
CDC 2.708 0.110 389 2.492 2.924
KS 2.756 0.113 389 2.533 2.979


9.3 Social risk perceptions



Omnibus ANOVA test: How serious of a threat do you think COVID-19 is to the U.S.?


(higher score correspond to more risk)

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 7.873 3.937 1.658 0.191
Residuals 1699 4033.860 2.374

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 7.873 3.937 1.658 0.191 0.002 0.002 0.001 0.001 0.001 0.044 0.352
…2 Residuals 1699 4033.860 2.374

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.885 0.037 157.496 0.000
GroupCvsCD_KS 0.046 0.026 1.767 0.077
GroupCDCvsKS -0.021 0.046 -0.465 0.642
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1702 1.541 0.002 0.001
##                               Df Sum Sq Mean Sq F value Pr(>F)  
## Group                          2      8   3.937   1.658 0.1908  
##   Group: Control vs. CDC_KS    1      7   7.360   3.100 0.0785 .
##   Group: CDC vs KS             1      1   0.513   0.216 0.6420  
## Residuals                   1699   4034   2.374                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 5.792 0.064 1699 5.666 5.917
CDC 5.952 0.066 1699 5.823 6.082
KS 5.910 0.064 1699 5.784 6.036
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed mad min max range  skew kurtosis   se
## X1    1 581 5.79 1.63      7     6.1   0   1   7     6 -1.28     0.63 0.07
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed mad min max range  skew kurtosis   se
## X1    1 546 5.95 1.48      7    6.25   0   1   7     6 -1.43     1.26 0.06
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed mad min max range  skew kurtosis   se
## X1    1 575 5.91 1.51      7     6.2   0   1   7     6 -1.37      1.1 0.06

Here are the posthoc Tukey multiple comparisons of means (95% family-wise confidence level) with a plot to show.

  • Group:

      diff lwr upr p adj
    CDC-Control 0.161 -0.055 0.376 0.187
    KS-Control 0.118 -0.095 0.330 0.395
    KS-CDC -0.043 -0.259 0.173 0.888



Omnibus ANOVA test: Compared to now, do you think the COVID-19 pandemic in the U.S. will be better or worse in six months?


(higher score correspond to more optimistic)

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 17.82 8.908 2.668 0.07
Residuals 1697 5665.50 3.339

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 17.82 8.908 2.668 0.07 0.003 0.003 0.002 0.002 0.002 0.056 0.532
…2 Residuals 1697 5665.50 3.339

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.611 0.044 104.018 0.000
GroupCvsCD_KS -0.072 0.031 -2.310 0.021
GroupCDCvsKS 0.003 0.055 0.047 0.962
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1700 1.827 0.003 0.002
##                               Df Sum Sq Mean Sq F value Pr(>F)  
## Group                          2     18   8.908   2.668 0.0697 .
##   Group: Control vs. CDC_KS    1     18  17.809   5.334 0.0210 *
##   Group: CDC vs KS             1      0   0.008   0.002 0.9622  
## Residuals                   1697   5665   3.339                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 3 observations deleted due to missingness

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 4.755 0.076 1697 4.606 4.904
CDC 4.537 0.078 1697 4.383 4.690
KS 4.542 0.076 1697 4.392 4.691
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 580 4.76 1.82      5    4.91 1.48   1   7     6 -0.46    -0.67 0.08
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 546 4.54 1.81      5    4.66 1.48   1   7     6 -0.42    -0.67 0.08
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 574 4.54 1.85      5    4.68 1.48   1   7     6 -0.44    -0.74 0.08

Here are the posthoc Tukey multiple comparisons of means (95% family-wise confidence level) with a plot to show.

  • Group:

      diff lwr upr p adj
    CDC-Control -0.219 -0.474 0.037 0.111
    KS-Control -0.213 -0.466 0.039 0.117
    KS-CDC 0.005 -0.251 0.261 0.999

## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   SocietalRisk2 
## Grouping variable:  Group 
## 
## Descriptive statistics: 
##             Control   CDC
##    mean       4.755 4.537
##    std dev.   1.821 1.809
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  2.02 
##    degrees of freedom:  1120.716 
##    p-value:  0.044 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.006, 0.431] 
##    estimated effect size (Cohen's d):  0.12
## 
##    Welch's independent samples t-test 
## 
## Outcome variable:   SocietalRisk2 
## Grouping variable:  Group 
## 
## Descriptive statistics: 
##             Control    KS
##    mean       4.755 4.542
##    std dev.   1.821 1.851
## 
## Hypotheses: 
##    null:        population means equal for both groups
##    alternative: different population means in each group
## 
## Test results: 
##    t-statistic:  1.974 
##    degrees of freedom:  1151.176 
##    p-value:  0.049 
## 
## Other information: 
##    two-sided 95% confidence interval:  [0.001, 0.425] 
##    estimated effect size (Cohen's d):  0.116


9.4 Extra regressions



9.4.1 Behavior intent (all items)


  Ageism Myth Avg Ageism Fraboni Avg Ageism Fact Avg
Predictors Beta (95% CI) Statistic p value Beta (95% CI) Statistic p value Beta (95% CI) Statistic p value
(Intercept) -0.00
(-0.08 – 0.08)
7.83 <0.001 0.00
(-0.07 – 0.07)
11.02 <0.001 0.00
(-0.08 – 0.08)
9.27 <0.001
Priority: Back to work 0.27
(0.16 – 0.39)
4.75 <0.001 0.27
(0.17 – 0.38)
5.33 <0.001 0.05
(-0.07 – 0.16)
0.84 0.401
Priority: Economy 0.09
(-0.02 – 0.20)
1.57 0.117 0.03
(-0.07 – 0.13)
0.58 0.564 -0.03
(-0.14 – 0.09)
-0.46 0.646
Priority: Normal -0.01
(-0.12 – 0.10)
-0.25 0.800 0.00
(-0.10 – 0.10)
0.03 0.973 -0.01
(-0.12 – 0.10)
-0.20 0.844
Willingness to stay home again 0.18
(0.07 – 0.30)
3.23 0.001 0.14
(0.04 – 0.24)
2.67 0.008 0.07
(-0.04 – 0.18)
1.21 0.228
Willingness to follow guidelines -0.05
(-0.16 – 0.05)
-1.02 0.308 0.06
(-0.04 – 0.15)
1.19 0.236 -0.03
(-0.14 – 0.07)
-0.62 0.532
Guidelines restrictive 0.00
(-0.09 – 0.10)
0.09 0.925 -0.00
(-0.09 – 0.08)
-0.09 0.929 -0.03
(-0.13 – 0.07)
-0.63 0.532
Guidelines effective slow spread 0.03
(-0.12 – 0.19)
0.42 0.674 -0.11
(-0.25 – 0.03)
-1.55 0.122 0.01
(-0.15 – 0.17)
0.10 0.920
Guidelines effective prevent getting CV19 -0.06
(-0.20 – 0.09)
-0.78 0.436 0.04
(-0.09 – 0.17)
0.56 0.573 -0.02
(-0.17 – 0.12)
-0.29 0.774
Guidelines effective save lives 0.10
(-0.03 – 0.23)
1.54 0.124 0.06
(-0.05 – 0.17)
1.04 0.297 -0.00
(-0.13 – 0.13)
-0.05 0.962
Intent: 10 more 0.17
(0.03 – 0.32)
2.44 0.015 0.15
(0.02 – 0.28)
2.35 0.020 0.08
(-0.06 – 0.23)
1.14 0.255
Intent: opt shops 0.04
(-0.08 – 0.15)
0.65 0.517 -0.04
(-0.15 – 0.06)
-0.79 0.428 -0.02
(-0.14 – 0.10)
-0.37 0.714
Intent: opt travel 0.10
(-0.05 – 0.26)
1.33 0.186 0.20
(0.06 – 0.33)
2.81 0.005 0.28
(0.12 – 0.43)
3.53 <0.001
Intent: opt social 0.00
(-0.14 – 0.15)
0.05 0.958 0.04
(-0.09 – 0.17)
0.65 0.517 -0.09
(-0.23 – 0.06)
-1.15 0.252
Intent: eat in restaurants 0.05
(-0.08 – 0.18)
0.79 0.432 0.07
(-0.05 – 0.18)
1.13 0.259 0.10
(-0.03 – 0.23)
1.46 0.146
Intent: good hygeine (R) -0.08
(-0.19 – 0.02)
-1.52 0.129 -0.23
(-0.33 – -0.14)
-4.86 <0.001 -0.27
(-0.38 – -0.17)
-5.03 <0.001
Intent: mask in public (R) -0.09
(-0.22 – 0.04)
-1.43 0.153 -0.03
(-0.14 – 0.09)
-0.48 0.629 -0.14
(-0.27 – -0.01)
-2.05 0.041
Intent: mask outdoors (R) 0.03
(-0.08 – 0.14)
0.55 0.585 0.08
(-0.01 – 0.18)
1.72 0.086 0.19
(0.08 – 0.29)
3.39 0.001
Prosocial scale -0.04
(-0.13 – 0.04)
-0.99 0.324 -0.07
(-0.15 – 0.01)
-1.75 0.081 -0.08
(-0.17 – 0.01)
-1.77 0.078
Individual risk 0.03
(-0.07 – 0.12)
0.55 0.586 0.11
(0.02 – 0.19)
2.50 0.013 0.10
(0.00 – 0.20)
2.06 0.040
Observations 428 428 428
R2 / R2 adjusted 0.356 / 0.326 0.482 / 0.458 0.342 / 0.311

VIF scores are less than 5 for all models

##   Ageism_CVPriority1 Ageism_CVPriority2_1 Ageism_CVPriority2_2 
##             2.042947             1.973152             1.966206 
##      AdhereAttitude2    AdhereAttitude3_2    AdhereAttitude3_3 
##             1.489788             3.256179             2.572886 
##    AdhereAttitude3_1       Adhere_willing    AdhereAttitude1_1 
##             3.823082             1.973162             1.768511 
##     BehavIntRisk_Avg    BehavIntPrtct_Avg        Prosocial_Avg 
##             1.664469             1.649452             1.224190 
##        IndivRisk_Avg 
##             1.439253


9.5 CDC Trust by group



Omnibus ANOVA test: Trust in CDC

Analysis of Variance Model
  Df Sum Sq Mean Sq F value Pr(>F)
Group 2 2.258 1.129 0.873 0.418
Residuals 1699 2197.541 1.293

Effect sizes:

  term df sumsq meansq statistic p.value etasq partial.etasq omegasq partial.omegasq epsilonsq cohens.f power
Group Group 2 2.258 1.129 0.873 0.418 0.001 0.001 0 0 0 0.032 0.201
…2 Residuals 1699 2197.541 1.293

Contrasts:

  Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.626 0.028 131.484 0.000
GroupCvsCD_KS 0.015 0.019 0.754 0.451
GroupCDCvsKS 0.037 0.034 1.074 0.283
Observations Residual Std. Error \(R^2\) Adjusted \(R^2\)
1702 1.137 0.001 0


lsmeans contrast (unadjusted)

Table continues below
contrast estimate SE df lower.CL upper.CL
Control vs CDC and KS 0.088 0.116 1699 -0.14 0.316
CDC vs KS 0.073 0.068 1699 -0.06 0.206
t.ratio p.value
0.754 0.451
1.074 0.283

lsmeans contrast (adjusted)


##  contrast              estimate    SE   df lower.CL upper.CL t.ratio p.value
##  Control vs CDC and KS   0.0876 0.116 1699  -0.1731    0.348 0.754   0.5658 
##  CDC vs KS               0.0730 0.068 1699  -0.0795    0.226 1.074   0.5658 
## 
## Confidence level used: 0.95 
## Conf-level adjustment: bonferroni method for 2 estimates 
## P value adjustment: holm method for 2 tests

Show least squares means and CIs around means

Group lsmean SE df lower.CL upper.CL
Control 3.597 0.047 1699 3.504 3.689
CDC 3.604 0.049 1699 3.509 3.700
KS 3.677 0.047 1699 3.584 3.770
## 
##  Descriptive statistics by group 
## group: Control
##           vars   n mean   sd median trimmed  mad min max range  skew kurtosis
## CDCTrust1    1 581 3.60 1.28      4    3.74 1.48   1   5     4 -0.61    -0.64
## CDCTrust2    2 581 3.62 1.19      4    3.75 1.48   1   5     4 -0.64    -0.39
## CDCTrust3    3 582 3.57 1.27      4    3.71 1.48   1   5     4 -0.61    -0.62
##             se
## CDCTrust1 0.05
## CDCTrust2 0.05
## CDCTrust3 0.05
## ------------------------------------------------------------ 
## group: CDC
##           vars   n mean   sd median trimmed  mad min max range  skew kurtosis
## CDCTrust1    1 546 3.63 1.26      4    3.78 1.48   1   5     4 -0.65    -0.55
## CDCTrust2    2 546 3.60 1.22      4    3.73 1.48   1   5     4 -0.64    -0.42
## CDCTrust3    3 545 3.58 1.23      4    3.70 1.48   1   5     4 -0.56    -0.62
##             se
## CDCTrust1 0.05
## CDCTrust2 0.05
## CDCTrust3 0.05
## ------------------------------------------------------------ 
## group: KS
##           vars   n mean   sd median trimmed  mad min max range  skew kurtosis
## CDCTrust1    1 574 3.69 1.24      4    3.85 1.48   1   5     4 -0.72    -0.38
## CDCTrust2    2 574 3.66 1.18      4    3.79 1.48   1   5     4 -0.69    -0.25
## CDCTrust3    3 574 3.68 1.19      4    3.81 1.48   1   5     4 -0.68    -0.36
##             se
## CDCTrust1 0.05
## CDCTrust2 0.05
## CDCTrust3 0.05
## 
##  Descriptive statistics by group 
## group: Control
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 582  3.6 1.16      4    3.72 1.48   1   5     4 -0.65    -0.39 0.05
## ------------------------------------------------------------ 
## group: CDC
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 546  3.6 1.14   3.83    3.72 1.24   1   5     4 -0.66    -0.35 0.05
## ------------------------------------------------------------ 
## group: KS
##    vars   n mean   sd median trimmed  mad min max range  skew kurtosis   se
## X1    1 574 3.68 1.12      4     3.8 1.48   1   5     4 -0.73    -0.15 0.05

Here are the posthoc Tukey multiple comparisons of means (95% family-wise confidence level) with a plot to show.

  • Group:

      diff lwr upr p adj
    CDC-Control 0.007 -0.152 0.166 0.994
    KS-Control 0.080 -0.077 0.237 0.453
    KS-CDC 0.073 -0.086 0.233 0.530


9.6 Preferences by group


Endorsement of age-related perceptions with agreement with protect people vs keep economy

## # A tibble: 3 x 2
##   Group       r
##   <fct>   <dbl>
## 1 Control 0.307
## 2 CDC     0.309
## 3 KS      0.264

Endorsement of age-related perceptions with agreement with protect people vs back to normal

## # A tibble: 3 x 2
##   Group       r
##   <fct>   <dbl>
## 1 Control 0.285
## 2 CDC     0.321
## 3 KS      0.246

Endorsement of age-related perceptions with agreement we should all get back to work, even if it means that more older people will die from COVID-19

## # A tibble: 3 x 2
##   Group       r
##   <fct>   <dbl>
## 1 Control 0.515
## 2 CDC     0.559
## 3 KS      0.551