(For the tables, the column ‘n’ refers to the number of participants and the percentage is next to this.)
Below are some of the tags that Qualtrics put on certain participants for us to check. We can see here that a total of 2747 people accessed the survey. For the manuscript we will report 2344 (explained below).
2046 did not get assigned any tag. 400 did not consent, 155 who responded either that they will not provide their best answers or could not promise to, 16 were under the age of 18, 130 were white (this actually is for when we asked them to get us 200 more white participants. They used this to filter out 130 participants who did not indicate that they were white. I won’t include this in the manuscript as is technically a quota filter implemented by Qualtrics. We do mention the quota filters in the methods section).
| term | n | percent |
|---|---|---|
| 2046 | 74.5% | |
| No_consent | 400 | 14.6% |
| not_best_answers | 155 | 5.6% |
| underage | 16 | 0.6% |
| white | 130 | 4.7% |
Qualtrics also included a variable “gc” for us to filter participants:
I will double check on “speeders” (anyone who finished in less than 6 minutes) as it appears did we not have any.
| gc | n |
|---|---|
| 343 | |
| 1 | 1703 |
| 2 | 546 |
| 4 | 155 |
We will filter out all except the good completes so our final sample is 1703.
#df %>% filter(gc == "4") %>% group_by(gc, term) %>% tally() %>% dplyr::mutate(percent = scales::percent(n/sum(n), accuracy = 0.1)) %>% arrange(desc(n)) %>% print(n = Inf)
df <- df %>%filter(gc == "1")
Median completion timing for the study is 15 minutes and 1 second.
## [1] "15M 1S"
Mean completion timing for current study is 20 minutes and 15 seconds
## [1] "20M 15.4680000000001S"
Summary results of total time taken on the CDC message:
## vars n mean sd median trimmed mad min max range skew
## X1 1 546 57.69 137.5 20.36 35.27 23.62 1.91 2349.12 2347.21 10.74
## kurtosis se
## X1 155.57 5.88
Written in time format as the mean,
## [1] "57.69S"
standard deviation,
## [1] "2M 17.5S"
and median
## [1] "20.36S"
Summary results of total time taken on the tailored message
## vars n mean sd median trimmed mad min max range skew kurtosis
## X1 1 575 76.01 96.78 51.45 58.44 48.7 4.58 979.64 975.06 4.67 30.69
## se
## X1 4.04
Written in time format as the mean,
## [1] "1M 16.01S"
standard deviation,
## [1] "1M 36.78S"
and median
## [1] "51.45S"
Study groups assignment to the three groups (control;CDC;KS) looks good with around 33% in each.
| Group | n | percent |
|---|---|---|
| Control | 582 | 34.2% |
| CDC | 546 | 32.1% |
| KS | 575 | 33.8% |
Framing groups assignment to the two question framings (out of 100…how many will die vs how many will recover) again looks good as exactly 50/50.
| Frame | n | percent |
|---|---|---|
| How many die framing | 852 | 50.0% |
| How many recover framing | 851 | 50.0% |
Age quota looks good. We asked for 30.5%, 34.4%, and 35.2%.
| Age_group | n | percent |
|---|---|---|
| 18 to 34 | 511 | 30.0% |
| 35 to 54 | 571 | 33.5% |
| 55 and older | 593 | 34.8% |
| NA | 28 | 1.6% |
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1675 45.12 17.09 42 44.61 20.76 18 93 75 0.23 -1 0.42
Gender quota looks fine too. Close enough to 50/50.
| GenderCHR | n | percent |
|---|---|---|
| Female | 820 | 48.2% |
| Male or Other Gender | 883 | 51.8% |
Full breakdown here.
## # A tibble: 7 x 3
## Gender n percent
## <chr> <int> <chr>
## 1 Female 820 48.2%
## 2 Male 841 49.4%
## 3 Non-binary / Third gender 14 0.8%
## 4 Prefer not to say 6 0.4%
## 5 Prefer to self-describe 10 0.6%
## 6 Transgender man / Transman 9 0.5%
## 7 Transgender woman / Transwoman 3 0.2%
Income quota looks good and close to the 40%, 33% and 27% that we asked for.
| Income_group | n | percent |
|---|---|---|
| $0 - $49k | 861 | 50.6% |
| $50K to $99K | 569 | 33.4% |
| $100K and more | 271 | 15.9% |
| NA | 2 | 0.1% |
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1701 5.96 3.71 5 5.91 4.45 1 12 11 0.11 -1.46 0.09
Race/Ethnicity quota it is a bit hard to tell right now. I have spoken to Qualtrics to try and get more information.
We asked for:
Here are the full results from the Race question that we put in (this was a multiple choice question and participants could mark as many as they wished) combined with our question about whether they are Hispanic or Non-Hispanic. This is what I used to work out the figures that are in the manuscript.
| HispCHR | RaceCHR | n | percent |
|---|---|---|---|
| Non-hispanic | 2 | 0.1% | |
| Non-hispanic | American Indian or Alaskan Native | 28 | 1.9% |
| Non-hispanic | American Indian or Alaskan Native & Asian or Asian American | 1 | 0.1% |
| Non-hispanic | American Indian or Alaskan Native & Asian or Asian American & Black or African American | 1 | 0.1% |
| Non-hispanic | American Indian or Alaskan Native & Asian or Asian American & White or European American | 2 | 0.1% |
| Non-hispanic | American Indian or Alaskan Native & Black or African American | 7 | 0.5% |
| Non-hispanic | American Indian or Alaskan Native & Black or African American & White or European American | 1 | 0.1% |
| Non-hispanic | American Indian or Alaskan Native & Other | 1 | 0.1% |
| Non-hispanic | American Indian or Alaskan Native & White or European American | 10 | 0.7% |
| Non-hispanic | Asian or Asian American | 59 | 4.1% |
| Non-hispanic | Asian or Asian American & Black or African American | 2 | 0.1% |
| Non-hispanic | Asian or Asian American & Native Hawaiian or other Pacific Islander | 1 | 0.1% |
| Non-hispanic | Asian or Asian American & White or European American | 3 | 0.2% |
| Non-hispanic | Black or African American | 314 | 21.8% |
| Non-hispanic | Black or African American & Other | 2 | 0.1% |
| Non-hispanic | Black or African American & White or European American | 5 | 0.3% |
| Non-hispanic | Native Hawaiian or other Pacific Islander | 4 | 0.3% |
| Non-hispanic | Other | 37 | 2.6% |
| Non-hispanic | White or European American | 959 | 66.6% |
| Non-hispanic | White or European American & Other | 2 | 0.1% |
| Hispanic | 2 | 0.8% | |
| Hispanic | American Indian or Alaskan Native | 10 | 3.9% |
| Hispanic | American Indian or Alaskan Native & Black or African American | 1 | 0.4% |
| Hispanic | American Indian or Alaskan Native & Other | 1 | 0.4% |
| Hispanic | American Indian or Alaskan Native & White or European American | 3 | 1.2% |
| Hispanic | Asian or Asian American | 17 | 6.7% |
| Hispanic | Asian or Asian American & White or European American | 1 | 0.4% |
| Hispanic | Black or African American | 39 | 15.3% |
| Hispanic | Black or African American & Native Hawaiian or other Pacific Islander | 1 | 0.4% |
| Hispanic | Black or African American & White or European American | 2 | 0.8% |
| Hispanic | Native Hawaiian or other Pacific Islander | 3 | 1.2% |
| Hispanic | Other | 73 | 28.6% |
| Hispanic | White or European American | 101 | 39.6% |
| Hispanic | White or European American & Other | 1 | 0.4% |
| American Indian or Alaskan Native | 1 | 14.3% | |
| American Indian or Alaskan Native & Black or African American | 1 | 14.3% | |
| Asian or Asian American | 1 | 14.3% | |
| Black or African American | 2 | 28.6% | |
| White or European American | 2 | 28.6% |
| HispCHR | RaceCHR | count | freq |
|---|---|---|---|
| Non-hispanic | 2 | 2 (0.1%) | |
| Non-hispanic | American Indian or Alaskan Native | 28 | 28 (1.6%) |
| Non-hispanic | American Indian or Alaskan Native & Asian or Asian American | 1 | 1 (0.1%) |
| Non-hispanic | American Indian or Alaskan Native & Asian or Asian American & Black or African American | 1 | 1 (0.1%) |
| Non-hispanic | American Indian or Alaskan Native & Asian or Asian American & White or European American | 2 | 2 (0.1%) |
| Non-hispanic | American Indian or Alaskan Native & Black or African American | 7 | 7 (0.4%) |
| Non-hispanic | American Indian or Alaskan Native & Black or African American & White or European American | 1 | 1 (0.1%) |
| Non-hispanic | American Indian or Alaskan Native & Other | 1 | 1 (0.1%) |
| Non-hispanic | American Indian or Alaskan Native & White or European American | 10 | 10 (0.6%) |
| Non-hispanic | Asian or Asian American | 59 | 59 (3.5%) |
| Non-hispanic | Asian or Asian American & Black or African American | 2 | 2 (0.1%) |
| Non-hispanic | Asian or Asian American & Native Hawaiian or other Pacific Islander | 1 | 1 (0.1%) |
| Non-hispanic | Asian or Asian American & White or European American | 3 | 3 (0.2%) |
| Non-hispanic | Black or African American | 314 | 314 (18.4%) |
| Non-hispanic | Black or African American & Other | 2 | 2 (0.1%) |
| Non-hispanic | Black or African American & White or European American | 5 | 5 (0.3%) |
| Non-hispanic | Native Hawaiian or other Pacific Islander | 4 | 4 (0.2%) |
| Non-hispanic | Other | 37 | 37 (2.2%) |
| Non-hispanic | White or European American | 959 | 959 (56.3%) |
| Non-hispanic | White or European American & Other | 2 | 2 (0.1%) |
| Hispanic | 2 | 2 (0.1%) | |
| Hispanic | American Indian or Alaskan Native | 10 | 10 (0.6%) |
| Hispanic | American Indian or Alaskan Native & Black or African American | 1 | 1 (0.1%) |
| Hispanic | American Indian or Alaskan Native & Other | 1 | 1 (0.1%) |
| Hispanic | American Indian or Alaskan Native & White or European American | 3 | 3 (0.2%) |
| Hispanic | Asian or Asian American | 17 | 17 (1.0%) |
| Hispanic | Asian or Asian American & White or European American | 1 | 1 (0.1%) |
| Hispanic | Black or African American | 39 | 39 (2.3%) |
| Hispanic | Black or African American & Native Hawaiian or other Pacific Islander | 1 | 1 (0.1%) |
| Hispanic | Black or African American & White or European American | 2 | 2 (0.1%) |
| Hispanic | Native Hawaiian or other Pacific Islander | 3 | 3 (0.2%) |
| Hispanic | Other | 73 | 73 (4.3%) |
| Hispanic | White or European American | 101 | 101 (5.9%) |
| Hispanic | White or European American & Other | 1 | 1 (0.1%) |
| American Indian or Alaskan Native | 1 | 1 (0.1%) | |
| American Indian or Alaskan Native & Black or African American | 1 | 1 (0.1%) | |
| Asian or Asian American | 1 | 1 (0.1%) | |
| Black or African American | 2 | 2 (0.1%) | |
| White or European American | 2 | 2 (0.1%) |
Q1. What state do you live in?
Response scale: List of all states (re-coded by region)
We did not set a quota for regions, but it is interesting to see how much these differ based on census data. I have worked out some rough estimates of how off we are below (seems mainly over-represented in NE and under-represented in MW).
| region | n | percent |
|---|---|---|
| south | 593 | 34.8% |
| northeast | 432 | 25.4% |
| west | 396 | 23.3% |
| midwest | 258 | 15.1% |
| 24 | 1.4% |
| RuralSub | n | percent |
|---|---|---|
| Suburban near large city | 574 | 33.7% |
| large city more than 1million | 355 | 20.8% |
| Rural | 305 | 17.9% |
| Small (less than 100,000) | 232 | 13.6% |
| Mid sized city (100,000 to 1million) | 221 | 13.0% |
| Other | 13 | 0.8% |
| 3 | 0.2% |
| HadCov1 | n | percent |
|---|---|---|
| No, I Haven’t had COVID-19 | 1393 | 81.8% |
| Yes, I currently have COVID-19 | 176 | 10.3% |
| Yes, I had COVID-19 and I recovered | 134 | 7.9% |
| CoVatRisk | n | percent |
|---|---|---|
| Yes | 817 | 48.0% |
| No | 786 | 46.2% |
| Unsure | 99 | 5.8% |
| 1 | 0.1% |
| KnowCov1 | n | percent |
|---|---|---|
| No | 803 | 47.2% |
| Yes immediate family | 232 | 13.6% |
| yes, friend | 217 | 12.7% |
| yes other family | 184 | 10.8% |
| yes, co-worker | 39 | 2.3% |
| yes, other family & friend | 39 | 2.3% |
| No & yes, friend | 29 | 1.7% |
| No & yes, other family | 25 | 1.5% |
| yes, friend & co-worker | 24 | 1.4% |
| Yes, immediate family & friend | 23 | 1.4% |
| Yes, immediate family & other family | 12 | 0.7% |
| Yes, immediate family & other family & friend | 12 | 0.7% |
| yes, other family & friend & co-worker | 11 | 0.6% |
| No & yes, co-worker | 9 | 0.5% |
| Yes, immediate family & friend & co-worker | 9 | 0.5% |
| Yes, immediate family & other family & friend & co-worker | 8 | 0.5% |
| No & Yes, immediate family | 7 | 0.4% |
| yes, other family & co-worker | 7 | 0.4% |
| Yes, immediate family & other family & co-worker | 3 | 0.2% |
| No & yes, friend & co-worker | 2 | 0.1% |
| Yes, immediate family & co-worker | 2 | 0.1% |
| 1 | 0.1% | |
| No & Yes immediate family & co-worker | 1 | 0.1% |
| No & Yes immediate family & other family | 1 | 0.1% |
| No & Yes immediate family & other family & friend & co-worker | 1 | 0.1% |
| No & yes other family & co-worker | 1 | 0.1% |
| No & yes other family & friend | 1 | 0.1% |
| KnowCov2 | n | percent |
|---|---|---|
| Yes | 1206 | 70.8% |
| No | 312 | 18.3% |
| Don’t know | 185 | 10.9% |
| MedWork | n | percent |
|---|---|---|
| No | 1545 | 90.7% |
| Yes | 136 | 8.0% |
| 22 | 1.3% |
For those who said they work in a medical field (n=129) we asked them to specify their area of work. Only 68 gave written answer. The responses are below in a table with each row and each column representing a different response.
| Home health care | Healthy |
| Hospitality | Adverting and marketing research |
| Good | Doctors |
| Home health care | yes |
| Nurse | Foi o que |
| Doctor | No |
| Home healthcare | Call cenrer |
| Dentist | Modesto |
| Cardiology | Pharmacy |
| Y | Clinical tech |
| Nursing | Healthcare |
| Clinical lab | CPR |
| RN | LPN |
| Administration | Cna |
| nurse | Nurse |
| Pediatrics | Retired LPN |
| Sleep apnea | coloda |
| Nursing home | Audiologist |
| Youth care worker just got laid off | Nurse |
| Home health | Care giver of elderly |
| 1 | ok |
| doctors | like it |
| good | urban |
| Good. | Critical care and Rapid Response Team |
| bvhvhvh | Endocrine |
| Alsome | mental health |
| Medical | xdcgb |
| good | gftrf |
| it departmant | pharmacy |
| I don’t but my mom does, she’s a nurse for premature babies | Social Work in a Nursing Home |
| Nursing | Customer service |
| Hospital in the ER | Business office manager of skilled nursing facility |
| Emergency medical services | 200 |
| 2 | Medical assistant |
| Pharmacy | 1 |
| CNA | Cna |
| Healthcare | Retired RN |
| Med surg | Home health care |
| PolParty | n | percent |
|---|---|---|
| 3 | 0.2% | |
| Conservative third party | 15 | 0.9% |
| Democrat | 832 | 48.9% |
| Independent | 308 | 18.1% |
| Liberal third party | 27 | 1.6% |
| No political affiliation | 112 | 6.6% |
| Republican | 406 | 23.8% |
We asked: “Indicate whether you approve or disapprove of each individual or group’s handling of the COVID-19 pandemic. There are no right or wrong answers. Please answer in a way that reflects your own personal beliefs.”
Response scale: Strongly disapprove(1), Disapprove(2), Neither approve nor disapprove(3), Approve(4), Strongly approve(5).
Below are the descriptive responses for these items overall.
## vars n mean sd median trimmed mad min max range skew
## PolApproval_1 1 1696 2.66 1.61 2 2.58 1.48 1 5 4 0.28
## PolApproval_2 2 1700 3.52 1.18 4 3.61 1.48 1 5 4 -0.53
## PolApproval_3 3 1699 2.98 1.29 3 2.98 1.48 1 5 4 -0.04
## PolApproval_4 4 1700 3.09 1.26 3 3.11 1.48 1 5 4 -0.15
## PolApproval_5 5 1698 3.33 1.37 4 3.41 1.48 1 5 4 -0.42
## kurtosis se
## PolApproval_1 -1.55 0.04
## PolApproval_2 -0.58 0.03
## PolApproval_3 -1.01 0.03
## PolApproval_4 -0.97 0.03
## PolApproval_5 -1.05 0.03
Response scale (slider): Not enough (0) ——Just right (50) —— Too much (100).
Below are the descriptive responses for this item overall and then split by group.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1506 56.14 28.45 55 56.6 35.58 1 100 99 -0.1 -1.06 0.73
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 512 56.89 28.56 56 57.48 35.58 1 100 99 -0.11 -1.07 1.26
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 480 56.54 28.13 54 56.85 35.58 1 100 99 -0.07 -1.12 1.28
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 514 55.01 28.67 54 55.43 34.1 1 100 99 -0.12 -1.02 1.26
Currently, I’m just looking at overall alignments, but we can also use these to subset.
Response scale (slider): Very liberal(1), Liberal(2), Slightly liberal(3), Moderate(4), Slightly conservative(5), Conservative(6), Very conservative(7).
Below are the descriptive responses for these items overall.
## vars n mean sd median trimmed mad min max range skew kurtosis
## PolEcon 1 1694 4.17 1.93 4 4.21 2.97 1 7 6 -0.11 -1.00
## PolSoc 2 1698 4.10 1.86 4 4.13 2.97 1 7 6 -0.05 -0.96
## se
## PolEcon 0.05
## PolSoc 0.05
Response scale: Not at all religious(1), — (2), — (3), — (4), — (5), — (6), Very religious(7)
Descriptive statistics for this item overall shown below.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1703 4.78 2.08 5 4.97 2.97 1 7 6 -0.58 -0.94 0.05
Response scale: Very traditional(1), — (2), — (3), — (4), — (5), — (6), Very Progressive(7), Not at all religious (8)
Around 12% of respondents said that they were not religious at all.
| Relig2 | n | percent |
|---|---|---|
| 1 | 216 | 12.7% |
| 2 | 130 | 7.6% |
| 3 | 156 | 9.2% |
| 4 | 217 | 12.7% |
| 5 | 211 | 12.4% |
| 6 | 171 | 10.0% |
| 7 | 385 | 22.6% |
| 8 | 217 | 12.7% |
Descriptive statistics for this item overall shown below. For this I excluded those who said they are not religious at all.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1486 4.43 2.12 5 4.54 2.97 1 7 6 -0.27 -1.25 0.06
Response scale (slider): Never(1), Rarely(2), Sometimes(3), Often(4), Always(5).
Below are the descriptive statistics for the health literacy item overall and then split by group assignment.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1701 2.44 1.46 2 2.3 1.48 1 5 4 0.54 -1.09 0.04
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 580 2.47 1.47 2 2.33 1.48 1 5 4 0.49 -1.16 0.06
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 546 2.43 1.48 2 2.29 1.48 1 5 4 0.55 -1.12 0.06
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 575 2.41 1.44 2 2.27 1.48 1 5 4 0.57 -1.01 0.06
Response scale (slider): Not at all good(1), — (2), — (3), — (4), — (5) Extremely good(6).
Response scale (slider): Never(1), — (2), — (3), — (4), — (5) Very often (6).
Below are the descriptive statistics for the SNS items overall and then split by group assignment.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## Num1 1 1702 4.10 1.59 4 4.23 1.48 1 6 5 -0.46 -0.85 0.04
## Num2 2 1702 4.52 1.48 5 4.71 1.48 1 6 5 -0.78 -0.36 0.04
## Num3 3 1703 4.47 1.38 5 4.62 1.48 1 6 5 -0.64 -0.37 0.03
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## Num1 1 582 4.09 1.57 4 4.22 1.48 1 6 5 -0.43 -0.90 0.07
## Num2 2 582 4.49 1.49 5 4.67 1.48 1 6 5 -0.72 -0.49 0.06
## Num3 3 582 4.50 1.34 5 4.62 1.48 1 6 5 -0.54 -0.61 0.06
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## Num1 1 546 4.08 1.60 4 4.23 1.48 1 6 5 -0.47 -0.86 0.07
## Num2 2 545 4.46 1.50 5 4.65 1.48 1 6 5 -0.76 -0.41 0.06
## Num3 3 546 4.45 1.38 5 4.61 1.48 1 6 5 -0.67 -0.31 0.06
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## Num1 1 574 4.11 1.59 4 4.25 1.48 1 6 5 -0.47 -0.79 0.07
## Num2 2 575 4.61 1.45 5 4.82 1.48 1 6 5 -0.86 -0.17 0.06
## Num3 3 575 4.46 1.41 5 4.63 1.48 1 6 5 -0.71 -0.26 0.06
The reliability looks good. Cronbach’s alpha is .84.
##
## Reliability analysis
## Call: psych::alpha(x = df[140:142])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.84 0.85 0.79 0.65 5.5 0.0065 4.4 1.3 0.65
##
## lower alpha upper 95% confidence boundaries
## 0.83 0.84 0.86
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## Num1 0.78 0.79 0.65 0.65 3.7 0.010 NA 0.65
## Num2 0.78 0.78 0.64 0.64 3.6 0.011 NA 0.64
## Num3 0.79 0.79 0.66 0.66 3.8 0.010 NA 0.66
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## Num1 1702 0.88 0.87 0.78 0.71 4.1 1.6
## Num2 1702 0.88 0.88 0.78 0.72 4.5 1.5
## Num3 1703 0.86 0.87 0.77 0.71 4.5 1.4
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 miss
## Num1 0.09 0.08 0.17 0.20 0.21 0.25 0
## Num2 0.05 0.06 0.13 0.18 0.23 0.35 0
## Num3 0.03 0.06 0.15 0.23 0.24 0.30 0
Below are the descriptive statistics for the SNS overall and then split by group assignment.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1703 4.36 1.3 4.67 4.47 1.48 1 6 5 -0.54 -0.55 0.03
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 582 4.36 1.28 4.33 4.45 1.48 1 6 5 -0.39 -0.8 0.05
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 546 4.33 1.3 4.67 4.44 1.48 1 6 5 -0.6 -0.43 0.06
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 575 4.39 1.31 4.67 4.52 1.48 1 6 5 -0.62 -0.44 0.05
Below are the descriptive statistics for the MinMax facts scale overall and then split by group assignment.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1703 3.92 1.61 4 4.03 1.48 1 6 5 -0.34 -0.95 0.04
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 582 3.88 1.61 4 3.97 1.48 1 6 5 -0.32 -1 0.07
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 546 3.94 1.6 4 4.05 1.48 1 6 5 -0.35 -0.92 0.07
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 575 3.95 1.61 4 4.07 1.48 1 6 5 -0.35 -0.95 0.07
Items for the COVID-19 and older adults scale (CV19-OAS)
Response scale: Strongly disagree (1), Disagree(2), Agree(3), Strongly agree(4)
Descriptive statistics for these items shown below.
## vars n mean sd median trimmed mad min max range skew
## Ageism_CVBelief_1 1 1702 2.17 1.15 2 2.09 1.48 1 4 3 0.44
## Ageism_CVBelief_2 2 1701 3.04 0.90 3 3.15 1.48 1 4 3 -0.72
## Ageism_CVBelief_3 3 1703 1.50 0.75 1 1.36 0.00 1 4 3 1.62
## Ageism_CVBelief_4 4 1702 2.02 1.15 2 1.90 1.48 1 4 3 0.61
## Ageism_CVBelief_5 5 1701 2.25 1.08 2 2.19 1.48 1 4 3 0.30
## kurtosis se
## Ageism_CVBelief_1 -1.27 0.03
## Ageism_CVBelief_2 -0.21 0.02
## Ageism_CVBelief_3 2.43 0.02
## Ageism_CVBelief_4 -1.15 0.03
## Ageism_CVBelief_5 -1.21 0.03
The reliability of these items is not ideal, but okay I think. Cronbach’s Alpha is .63. The highest it can get is .71 by dropping the item “People of all ages can be infected by COVID-19”.
##
## Reliability analysis
## Call: psych::alpha(x = df[, c(14:18)])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.63 0.57 0.61 0.21 1.3 0.012 2.2 0.65 0.17
##
## lower alpha upper 95% confidence boundaries
## 0.6 0.63 0.65
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## Ageism_CVBelief_1 0.44 0.37 0.43 0.13 0.58 0.019 0.072
## Ageism_CVBelief_2 0.67 0.63 0.62 0.30 1.73 0.012 0.060
## Ageism_CVBelief_3 0.71 0.69 0.66 0.36 2.27 0.011 0.033
## Ageism_CVBelief_4 0.43 0.36 0.41 0.12 0.55 0.020 0.066
## Ageism_CVBelief_5 0.49 0.41 0.48 0.15 0.69 0.018 0.080
## med.r
## Ageism_CVBelief_1 0.15
## Ageism_CVBelief_2 0.30
## Ageism_CVBelief_3 0.36
## Ageism_CVBelief_4 0.13
## Ageism_CVBelief_5 0.15
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## Ageism_CVBelief_1 1702 0.80 0.78 0.730 0.5976 2.2 1.15
## Ageism_CVBelief_2 1701 0.42 0.43 0.202 0.1552 3.0 0.90
## Ageism_CVBelief_3 1703 0.24 0.31 0.032 0.0046 1.5 0.75
## Ageism_CVBelief_4 1702 0.81 0.79 0.763 0.6171 2.0 1.15
## Ageism_CVBelief_5 1701 0.75 0.74 0.655 0.5382 2.2 1.08
##
## Non missing response frequency for each item
## 1 2 3 4 miss
## Ageism_CVBelief_1 0.39 0.24 0.17 0.20 0
## Ageism_CVBelief_2 0.08 0.15 0.43 0.35 0
## Ageism_CVBelief_3 0.61 0.30 0.05 0.04 0
## Ageism_CVBelief_4 0.48 0.18 0.17 0.17 0
## Ageism_CVBelief_5 0.32 0.28 0.23 0.17 0
Below are the descriptive statistics for the CV19-OAS scale overall.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1703 2.2 0.65 2.2 2.17 0.89 1 4 3 0.31 -0.82 0.02
Q6a. If 100 people between 50-64 years old got COVID-19, how many of them do you think would die from it?
Q7a. If 100 people between 65 years or older got COVID-19, how many of them do you think would die from it?
Q6b. If 100 people between 50-64 years old got COVID-19, how many of them do you think would recover from it? (R)
Q7b. If 100 people between 65 years or older got COVID-19, how many of them do you think would recover from it? (R)
Response scale: Slider from 0 to 100.
I believe this is essentially a proxy for what people think the age-related CFR is. Below are the initial descriptive results for each questions.
## vars n mean sd median trimmed mad min max range
## Ageism_CVBelief6a_1 1 839 44.71 31.46 44 43.24 41.51 1 100 99
## Ageism_CVBelief7a_1 2 843 53.83 30.70 55 54.10 40.03 1 100 99
## Ageism_CVBelief6b_1 3 848 65.04 25.05 67 66.37 29.65 3 100 97
## Ageism_CVBelief7b_1 4 844 57.61 28.35 59 58.33 35.58 1 100 99
## skew kurtosis se
## Ageism_CVBelief6a_1 0.24 -1.19 1.09
## Ageism_CVBelief7a_1 -0.07 -1.29 1.06
## Ageism_CVBelief6b_1 -0.33 -0.92 0.86
## Ageism_CVBelief7b_1 -0.16 -1.13 0.98
I reversed the scale for the 6b and 7b questions so they represent number expected to die instead of recover. Now it is a bit easier for us to interpret the overall means.
## vars n mean sd median trimmed mad min max range
## Ageism_CVBelief6a_1 1 839 44.71 31.46 44 43.24 41.51 1 100 99
## Ageism_CVBelief7a_1 2 843 53.83 30.70 55 54.10 40.03 1 100 99
## Ageism_CVBelief6b_1 3 848 34.96 25.05 33 33.63 29.65 0 97 97
## Ageism_CVBelief7b_1 4 844 42.39 28.35 41 41.67 35.58 0 99 99
## skew kurtosis se
## Ageism_CVBelief6a_1 0.24 -1.19 1.09
## Ageism_CVBelief7a_1 -0.07 -1.29 1.06
## Ageism_CVBelief6b_1 0.33 -0.92 0.86
## Ageism_CVBelief7b_1 0.16 -1.13 0.98
Response scale: Strongly disagree(1), Disagree (2), Somewhat disagree(3), Somewhat agree(4), Agree(5), Strongly agree(6).
Below is the mean response for this preference item overall.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1673 3.16 1.83 3 3.08 2.97 1 6 5 0.23 -1.39 0.04
Response scale: Prefer to protect those at higher risk from COVID-19 (e.g., older adults) (1), — (2), — (3), — (4), — (5), Prefer to keep the economy going(6).
Below is the mean response for this preference overall.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1684 2.9 1.76 3 2.76 2.97 1 6 5 0.45 -1.1 0.04
Response scale: Prefer to protect those at higher risk from COVID-19 (e.g., older adults) (1), — (2), — (3), — (4), — (5), Prefer to get life ‘back to normal’(6).
Below is the mean response for this preference overall.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1668 2.88 1.71 3 2.73 2.97 1 6 5 0.45 -1.03 0.04
Response scale: Strongly disagree (1), Disagree(2), Somewhat disagree(3), Somewhat agree (4), Agree (5), Strongly agree (6)
Below is the mean response for this preference overall.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1702 4.79 1.41 5 5.04 1.48 1 6 5 -1.22 0.73 0.03
Response scale: Very unwilling (1), — (2), — (3), — (4), Very willing (5)
Below is the mean response for this preference overall.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1651 4.23 1.17 5 4.47 0 1 5 4 -1.41 0.92 0.03
We asked: How frequently, if at all, do you plan to do the following things in the next month?
Below are the descriptive statistics for these items.
## vars n mean sd median trimmed mad min max range skew
## AdhereIntent_1 1 1702 2.66 1.73 2 2.45 1.48 1 6 5 0.69
## AdhereIntent_2 2 1700 3.23 1.57 3 3.17 1.48 1 6 5 0.10
## AdhereIntent_3 3 1697 2.60 1.73 2 2.38 1.48 1 6 5 0.69
## AdhereIntent_4 4 1697 2.87 1.66 3 2.73 1.48 1 6 5 0.44
## AdhereIntent_5 5 1699 2.84 1.74 2 2.68 1.48 1 6 5 0.48
## kurtosis se
## AdhereIntent_1 -0.83 0.04
## AdhereIntent_2 -1.07 0.04
## AdhereIntent_3 -0.88 0.04
## AdhereIntent_4 -1.05 0.04
## AdhereIntent_5 -1.11 0.04
The reliability of these items is good. Cronbach’s Alpha is .83.
##
## Reliability analysis
## Call: psych::alpha(x = df[, c(27:31)])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.93 0.93 0.92 0.74 14 0.0025 2.8 1.5 0.75
##
## lower alpha upper 95% confidence boundaries
## 0.93 0.93 0.94
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## AdhereIntent_1 0.92 0.92 0.89 0.73 11 0.0033 0.00205 0.73
## AdhereIntent_2 0.93 0.93 0.91 0.77 13 0.0028 0.00031 0.76
## AdhereIntent_3 0.91 0.91 0.89 0.73 11 0.0034 0.00120 0.73
## AdhereIntent_4 0.92 0.92 0.89 0.73 11 0.0033 0.00177 0.74
## AdhereIntent_5 0.92 0.92 0.90 0.74 12 0.0031 0.00152 0.73
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## AdhereIntent_1 1702 0.90 0.90 0.87 0.84 2.7 1.7
## AdhereIntent_2 1700 0.85 0.85 0.80 0.77 3.2 1.6
## AdhereIntent_3 1697 0.91 0.91 0.88 0.85 2.6 1.7
## AdhereIntent_4 1697 0.90 0.90 0.87 0.84 2.9 1.7
## AdhereIntent_5 1699 0.89 0.89 0.85 0.82 2.8 1.7
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 miss
## AdhereIntent_1 0.39 0.15 0.17 0.11 0.07 0.11 0
## AdhereIntent_2 0.18 0.18 0.18 0.23 0.14 0.09 0
## AdhereIntent_3 0.42 0.15 0.13 0.13 0.08 0.10 0
## AdhereIntent_4 0.29 0.21 0.15 0.16 0.11 0.09 0
## AdhereIntent_5 0.34 0.16 0.14 0.14 0.10 0.11 0
Below are the descriptive statistics for the risky behavioral intentions scale overall.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1702 2.84 1.5 2.6 2.71 1.78 1 6 5 0.57 -0.81 0.04
We asked: How frequently, if at all, do you plan to do the following things in the next month?
Response scale: Never (1), Very rarely (2), Rarely (3), Occasionally (4), Frequently (5), Very frequently (6)
Below are the descriptive statistics for these items.
## vars n mean sd median trimmed mad min max range skew
## AdhereIntent_6 1 1697 5.05 1.34 6 5.32 0.00 1 6 5 -1.46
## AdhereIntent_7 2 1697 5.17 1.31 6 5.46 0.00 1 6 5 -1.64
## AdhereIntent_8 3 1699 4.67 1.50 5 4.91 1.48 1 6 5 -0.99
## kurtosis se
## AdhereIntent_6 1.25 0.03
## AdhereIntent_7 1.81 0.03
## AdhereIntent_8 -0.03 0.04
The reliability of these items is good. Cronbach’s Alpha is .77.
##
## Reliability analysis
## Call: psych::alpha(x = df[, c(32:34)])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.77 0.78 0.72 0.54 3.5 0.0099 5 1.1 0.53
##
## lower alpha upper 95% confidence boundaries
## 0.75 0.77 0.79
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## AdhereIntent_6 0.69 0.69 0.53 0.53 2.3 0.0148 NA 0.53
## AdhereIntent_7 0.57 0.58 0.40 0.40 1.4 0.0205 NA 0.40
## AdhereIntent_8 0.80 0.80 0.67 0.67 4.1 0.0096 NA 0.67
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## AdhereIntent_6 1697 0.82 0.83 0.72 0.60 5.0 1.3
## AdhereIntent_7 1697 0.88 0.88 0.82 0.71 5.2 1.3
## AdhereIntent_8 1699 0.80 0.78 0.58 0.51 4.7 1.5
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 miss
## AdhereIntent_6 0.03 0.05 0.06 0.10 0.23 0.53 0
## AdhereIntent_7 0.03 0.04 0.06 0.10 0.16 0.62 0
## AdhereIntent_8 0.06 0.05 0.09 0.17 0.21 0.42 0
Below are the descriptive statistics for the protective behavioral intentions scale overall.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1699 4.96 1.15 5.33 5.15 0.99 1 6 5 -1.26 1.07 0.03
Response scale: Too restrictive(1), — (2), — (3), the right balance(4), — (5), —(6), Not restrictive enough(7)
Below are the descriptive statistics for this measure overall.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1690 4.21 1.78 4 4.26 1.48 1 7 6 -0.12 -0.47 0.04
Response scale: Strongly disagree(1), Disagree(2), Somewhat disagree(3), Somewhat agree(4), Agree(5), Strongly agree(6)
Below are the descriptive statistics for this measure overall.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1701 4.78 1.39 5 5.01 1.48 1 6 5 -1.12 0.48 0.03
Response scale: Strongly disagree(1), Disagree(2), Somewhat disagree(3), Somewhat agree(4), Agree(5), Strongly agree(6)
Below are the descriptive statistics for this measure overall.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1700 4.77 1.28 5 4.96 1.48 1 6 5 -1.07 0.6 0.03
Response scale: Strongly disagree(1), Disagree(2), Somewhat disagree(3), Somewhat agree(4), Agree(5), Strongly agree(6)
Below are the descriptive statistics for this measure overall.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1699 4.83 1.3 5 5.04 1.48 1 6 5 -1.15 0.8 0.03
(noted by Aaron that this may not be an accurate heading for these questions and we might describe it differently in any write ups)
Response scale: Very unwilling(1), — (2), — (3), — (4), Very willing(5)
Response scale: Strongly disagree(1), Disagree (2), Somewhat disagree(3), Somewhat agree(4), Agree(5), Strongly agree(6).
Response scale: Slider from 0 to 100.
Below are the descriptive statistics for these items overall.
## vars n mean sd median trimmed mad min max range skew
## Coll_Trust1_1 1 1679 3.48 1.21 3 3.55 1.48 1 5 4 -0.26
## Coll_Trust2 2 1702 4.14 1.34 4 4.23 1.48 1 6 5 -0.47
## Coll_Trust3 3 1701 4.75 1.29 5 4.93 1.48 1 6 5 -1.04
## Coll_Trust4_1 4 1669 62.27 24.02 63 63.22 25.20 1 100 99 -0.31
## kurtosis se
## Coll_Trust1_1 -0.88 0.03
## Coll_Trust2 -0.39 0.03
## Coll_Trust3 0.57 0.03
## Coll_Trust4_1 -0.51 0.59
Response scale: Not a serious threat at all(1), — (2), — (3), — (4), — (5), — (6), A very serious threat(7).
Below are the descriptive statistics for this item overall.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1702 5.88 1.54 7 6.19 0 1 7 6 -1.37 1 0.04
Response scale: Much worse(1), — (2), — (3), — (4), — (5), — (6), Much better(7).
Below are the descriptive statistics for this item overall.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1700 4.61 1.83 5 4.76 1.48 1 7 6 -0.44 -0.69 0.04
Response scale: Very unlikely/Not certain at all/Not sick at all/Not worried at all(1), — (2), — (3), — (4), — (5), — (6), Very likely/ Very certain/ Very sick/Very worried(7).
Below are the descriptive statistics for these items overall.
## vars n mean sd median trimmed mad min max range skew kurtosis
## IndivRisk1 1 1392 3.15 1.91 3 2.96 2.97 1 7 6 0.55 -0.77
## IndivRisk2 2 1391 3.75 1.99 4 3.69 2.97 1 7 6 0.12 -1.16
## IndivRisk3 3 1388 4.00 2.10 4 4.00 2.97 1 7 6 0.02 -1.30
## IndivRisk4 4 1392 4.70 1.84 5 4.84 1.48 1 7 6 -0.41 -0.82
## IndivRisk5 5 1393 4.52 1.91 5 4.64 1.48 1 7 6 -0.32 -0.96
## IndivRisk6 6 1391 4.66 1.97 5 4.82 2.97 1 7 6 -0.42 -0.99
## IndivRisk7 7 1390 3.86 2.00 4 3.82 2.97 1 7 6 0.02 -1.19
## IndivRisk8 8 1391 4.01 1.87 4 4.02 1.48 1 7 6 -0.06 -0.98
## IndivRisk9 9 1392 4.66 1.98 5 4.83 2.97 1 7 6 -0.43 -0.98
## se
## IndivRisk1 0.05
## IndivRisk2 0.05
## IndivRisk3 0.06
## IndivRisk4 0.05
## IndivRisk5 0.05
## IndivRisk6 0.05
## IndivRisk7 0.05
## IndivRisk8 0.05
## IndivRisk9 0.05
The reliability of these items is ideal for a scale. Cronbach’s Alpha is .86.
##
## Reliability analysis
## Call: psych::alpha(x = df[, c(56:64)])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.87 0.87 0.89 0.43 6.8 0.0047 4.1 1.4 0.42
##
## lower alpha upper 95% confidence boundaries
## 0.86 0.87 0.88
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## IndivRisk1 0.86 0.86 0.87 0.43 6.1 0.0051 0.036 0.46
## IndivRisk2 0.87 0.87 0.89 0.46 6.8 0.0046 0.032 0.48
## IndivRisk3 0.85 0.85 0.87 0.42 5.7 0.0055 0.036 0.36
## IndivRisk4 0.85 0.85 0.87 0.42 5.8 0.0054 0.025 0.38
## IndivRisk5 0.85 0.85 0.86 0.41 5.5 0.0056 0.023 0.36
## IndivRisk6 0.85 0.85 0.86 0.41 5.5 0.0056 0.023 0.38
## IndivRisk7 0.85 0.85 0.87 0.41 5.5 0.0057 0.030 0.36
## IndivRisk8 0.88 0.88 0.89 0.48 7.4 0.0044 0.025 0.48
## IndivRisk9 0.86 0.86 0.88 0.43 6.1 0.0052 0.036 0.38
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## IndivRisk1 1392 0.68 0.68 0.63 0.59 3.2 1.9
## IndivRisk2 1391 0.56 0.56 0.48 0.44 3.7 2.0
## IndivRisk3 1388 0.76 0.76 0.72 0.68 4.0 2.1
## IndivRisk4 1392 0.74 0.75 0.73 0.66 4.7 1.8
## IndivRisk5 1393 0.80 0.81 0.81 0.74 4.5 1.9
## IndivRisk6 1391 0.80 0.80 0.80 0.73 4.7 2.0
## IndivRisk7 1390 0.80 0.80 0.78 0.73 3.9 2.0
## IndivRisk8 1391 0.48 0.48 0.38 0.35 4.0 1.9
## IndivRisk9 1392 0.69 0.69 0.63 0.59 4.7 2.0
##
## Non missing response frequency for each item
## 1 2 3 4 5 6 7 miss
## IndivRisk1 0.27 0.17 0.14 0.19 0.09 0.05 0.09 0.18
## IndivRisk2 0.19 0.13 0.12 0.20 0.13 0.10 0.12 0.18
## IndivRisk3 0.17 0.13 0.12 0.16 0.12 0.11 0.19 0.18
## IndivRisk4 0.07 0.08 0.10 0.19 0.18 0.15 0.23 0.18
## IndivRisk5 0.09 0.09 0.11 0.18 0.18 0.14 0.21 0.18
## IndivRisk6 0.10 0.08 0.11 0.15 0.16 0.16 0.25 0.18
## IndivRisk7 0.18 0.11 0.13 0.18 0.15 0.12 0.13 0.18
## IndivRisk8 0.14 0.10 0.12 0.24 0.16 0.12 0.12 0.18
## IndivRisk9 0.10 0.08 0.10 0.16 0.16 0.16 0.25 0.18
Below are the descriptive statistics for the individual risk scale overall.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1393 4.15 1.37 4.11 4.16 1.32 1 7 6 -0.1 -0.34 0.04
Q1. How confident are you that the CDC has been providing accurate information to the public about COVID-19? Q2. How confident are you that the CDC is responding effectively to protect the health of the public against COVID-19? *Q3. In general, how much do you trust the CDC?
Response scale: Not at all confident/Not at all(1), — (2), — (3), — (4), Very confident/Completely(5).
Below are the descriptive statistics for these items overall.
## vars n mean sd median trimmed mad min max range skew kurtosis
## CDCTrust1 1 1701 3.64 1.26 4 3.79 1.48 1 5 4 -0.66 -0.52
## CDCTrust2 2 1701 3.63 1.19 4 3.76 1.48 1 5 4 -0.66 -0.35
## CDCTrust3 3 1701 3.61 1.23 4 3.74 1.48 1 5 4 -0.62 -0.53
## se
## CDCTrust1 0.03
## CDCTrust2 0.03
## CDCTrust3 0.03
The reliability of these items is ideal. Cronbach’s Alpha is .91.
##
## Reliability analysis
## Call: psych::alpha(x = df[, c(65:67)])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.92 0.92 0.88 0.79 11 0.0034 3.6 1.1 0.79
##
## lower alpha upper 95% confidence boundaries
## 0.91 0.92 0.92
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CDCTrust1 0.88 0.88 0.78 0.78 7.1 0.0060 NA 0.78
## CDCTrust2 0.89 0.89 0.80 0.80 7.9 0.0054 NA 0.80
## CDCTrust3 0.88 0.88 0.79 0.79 7.5 0.0057 NA 0.79
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## CDCTrust1 1701 0.93 0.93 0.88 0.84 3.6 1.3
## CDCTrust2 1701 0.92 0.92 0.86 0.83 3.6 1.2
## CDCTrust3 1701 0.93 0.93 0.87 0.83 3.6 1.2
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## CDCTrust1 0.09 0.08 0.23 0.28 0.32 0
## CDCTrust2 0.08 0.08 0.25 0.32 0.28 0
## CDCTrust3 0.08 0.10 0.24 0.30 0.29 0
Below are the descriptive statistics for the trust in CDC scale overall.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1702 3.63 1.14 4 3.75 1.48 1 5 4 -0.68 -0.3 0.03
Response scale: False(1), True (2).
I re-coded these variables to be 0 for incorrect and 1 for correct. So a mean of 1 for an item would indicate that everyone got the item correct.
Descriptive statistics for these items shown below.
## vars n mean sd median trimmed mad min max range skew
## Ageism_Facts1_1 1 1700 0.68 0.47 1 0.72 0 0 1 1 -0.76
## Ageism_Facts1_2 2 1699 0.76 0.43 1 0.83 0 0 1 1 -1.22
## Ageism_Facts1_3 3 1700 0.67 0.47 1 0.71 0 0 1 1 -0.71
## Ageism_Facts1_4 4 1698 0.82 0.39 1 0.89 0 0 1 1 -1.63
## Ageism_Facts1_5 5 1702 0.34 0.48 0 0.31 0 0 1 1 0.65
## Ageism_Facts1_6 6 1700 0.74 0.44 1 0.80 0 0 1 1 -1.09
## Ageism_Facts2_1 7 1695 0.51 0.50 1 0.52 0 0 1 1 -0.05
## Ageism_Facts2_2 8 1696 0.54 0.50 1 0.55 0 0 1 1 -0.16
## Ageism_Facts2_3 9 1694 0.53 0.50 1 0.54 0 0 1 1 -0.13
## Ageism_Facts2_4 10 1695 0.68 0.47 1 0.72 0 0 1 1 -0.76
## Ageism_Facts2_5 11 1694 0.52 0.50 1 0.53 0 0 1 1 -0.09
## Ageism_Facts2_6 12 1694 0.58 0.49 1 0.60 0 0 1 1 -0.33
## kurtosis se
## Ageism_Facts1_1 -1.42 0.01
## Ageism_Facts1_2 -0.51 0.01
## Ageism_Facts1_3 -1.50 0.01
## Ageism_Facts1_4 0.66 0.01
## Ageism_Facts1_5 -1.58 0.01
## Ageism_Facts1_6 -0.81 0.01
## Ageism_Facts2_1 -2.00 0.01
## Ageism_Facts2_2 -1.98 0.01
## Ageism_Facts2_3 -1.98 0.01
## Ageism_Facts2_4 -1.42 0.01
## Ageism_Facts2_5 -1.99 0.01
## Ageism_Facts2_6 -1.89 0.01
The reliability of these items is awful. Cronbach’s Alpha is .18. The highest it can get is .26 by dropping the item “Over three-fourths of the aged are healthy enough to carry out their normal activities without help.”.
## Warning in psych::alpha(df[, c(77:88)]): Some items were negatively correlated with the total scale and probably
## should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( Ageism_Facts1_2 Ageism_Facts1_4 Ageism_Facts2_2 Ageism_Facts2_4 ) were negatively correlated with the total scale and
## probably should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
##
## Reliability analysis
## Call: psych::alpha(x = df[, c(77:88)])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.43 0.43 0.51 0.059 0.75 0.02 0.61 0.17 0.061
##
## lower alpha upper 95% confidence boundaries
## 0.39 0.43 0.47
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## Ageism_Facts1_1 0.31 0.32 0.41 0.040 0.46 0.024 0.032 0.036
## Ageism_Facts1_2 0.44 0.43 0.51 0.065 0.76 0.019 0.039 0.078
## Ageism_Facts1_3 0.31 0.32 0.41 0.040 0.46 0.024 0.032 0.020
## Ageism_Facts1_4 0.42 0.41 0.50 0.060 0.71 0.020 0.039 0.071
## Ageism_Facts1_5 0.45 0.45 0.53 0.070 0.83 0.019 0.038 0.062
## Ageism_Facts1_6 0.40 0.40 0.49 0.057 0.66 0.021 0.041 0.036
## Ageism_Facts2_1 0.36 0.37 0.46 0.051 0.59 0.022 0.032 0.036
## Ageism_Facts2_2 0.55 0.54 0.58 0.097 1.18 0.016 0.026 0.090
## Ageism_Facts2_3 0.35 0.35 0.45 0.048 0.55 0.023 0.033 0.036
## Ageism_Facts2_4 0.47 0.47 0.54 0.074 0.88 0.018 0.036 0.078
## Ageism_Facts2_5 0.39 0.40 0.49 0.056 0.66 0.021 0.036 0.062
## Ageism_Facts2_6 0.33 0.34 0.43 0.044 0.51 0.024 0.032 0.020
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## Ageism_Facts1_1 1700 0.61 0.60 0.625 0.434 0.68 0.47
## Ageism_Facts1_2 1699 0.26 0.29 0.130 0.053 0.76 0.43
## Ageism_Facts1_3 1700 0.60 0.59 0.616 0.426 0.67 0.47
## Ageism_Facts1_4 1698 0.30 0.35 0.213 0.116 0.82 0.39
## Ageism_Facts1_5 1702 0.24 0.23 0.031 0.015 0.34 0.48
## Ageism_Facts1_6 1700 0.37 0.39 0.258 0.169 0.74 0.44
## Ageism_Facts2_1 1695 0.49 0.47 0.417 0.277 0.51 0.50
## Ageism_Facts2_2 1696 -0.10 -0.10 -0.383 -0.325 0.54 0.50
## Ageism_Facts2_3 1694 0.53 0.51 0.469 0.321 0.53 0.50
## Ageism_Facts2_4 1695 0.16 0.17 -0.024 -0.064 0.68 0.47
## Ageism_Facts2_5 1694 0.42 0.40 0.284 0.196 0.52 0.50
## Ageism_Facts2_6 1694 0.56 0.55 0.534 0.368 0.58 0.49
##
## Non missing response frequency for each item
## 0 1 miss
## Ageism_Facts1_1 0.32 0.68 0.00
## Ageism_Facts1_2 0.24 0.76 0.00
## Ageism_Facts1_3 0.33 0.67 0.00
## Ageism_Facts1_4 0.18 0.82 0.00
## Ageism_Facts1_5 0.66 0.34 0.00
## Ageism_Facts1_6 0.26 0.74 0.00
## Ageism_Facts2_1 0.49 0.51 0.00
## Ageism_Facts2_2 0.46 0.54 0.00
## Ageism_Facts2_3 0.47 0.53 0.01
## Ageism_Facts2_4 0.32 0.68 0.00
## Ageism_Facts2_5 0.48 0.52 0.01
## Ageism_Facts2_6 0.42 0.58 0.01
Below are the descriptive statistics for the ageism facts scale overall.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1703 0.61 0.17 0.58 0.62 0.25 0.08 1 0.92 -0.16 -0.5 0
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1703 0.39 0.17 0.42 0.38 0.25 0 0.92 0.92 0.16 -0.5 0
Response scale: Strongly disagree(1), Disagree(2). Agree(3), Strongly agree(4).
Descriptive statistics for these items shown below.
## vars n mean sd median trimmed mad min max range skew
## Ageism_Fabroni1_1 1 1703 2.38 0.97 2 2.35 1.48 1 4 3 0.17
## Ageism_Fabroni1_2 2 1702 2.51 0.93 3 2.52 1.48 1 4 3 -0.04
## Ageism_Fabroni1_3 3 1701 2.44 0.95 2 2.43 1.48 1 4 3 0.12
## Ageism_Fabroni1_4 4 1702 2.28 0.99 2 2.23 1.48 1 4 3 0.28
## Ageism_Fabroni1_5 5 1703 2.70 0.86 3 2.73 1.48 1 4 3 -0.13
## Ageism_Fabroni1_6 6 1701 2.27 1.00 2 2.22 1.48 1 4 3 0.30
## Ageism_Fabroni2_1 7 1702 2.43 0.95 2 2.41 1.48 1 4 3 0.10
## Ageism_Fabroni2_2 8 1698 2.45 0.94 2 2.44 1.48 1 4 3 0.10
## Ageism_Fabroni2_3 9 1697 2.43 0.94 2 2.42 1.48 1 4 3 0.12
## Ageism_Fabroni2_4 10 1700 2.47 1.04 2 2.47 1.48 1 4 3 0.02
## Ageism_Fabroni2_5 11 1700 2.12 1.04 2 2.03 1.48 1 4 3 0.48
## Ageism_Fabroni2_6 12 1700 2.09 1.05 2 1.98 1.48 1 4 3 0.57
## Ageism_Fabroni3_1 13 1701 2.19 1.04 2 2.11 1.48 1 4 3 0.37
## Ageism_Fabroni3_2 14 1697 2.27 0.97 2 2.21 1.48 1 4 3 0.32
## Ageism_Fabroni3_3 15 1695 2.29 0.99 2 2.24 1.48 1 4 3 0.28
## Ageism_Fabroni3_4 16 1701 1.89 0.83 2 1.78 1.48 1 4 3 0.84
## Ageism_Fabroni3_5 17 1700 2.22 1.00 2 2.15 1.48 1 4 3 0.38
## Ageism_Fabroni3_6 18 1701 2.09 1.05 2 1.98 1.48 1 4 3 0.53
## Ageism_Fabroni4_1 19 1703 1.78 0.74 2 1.68 0.00 1 4 3 0.90
## Ageism_Fabroni4_2 20 1701 1.86 0.77 2 1.78 1.48 1 4 3 0.70
## Ageism_Fabroni4_3 21 1703 1.81 0.75 2 1.72 1.48 1 4 3 0.75
## Ageism_Fabroni4_4 22 1702 1.75 0.77 2 1.64 1.48 1 4 3 0.96
## Ageism_Fabroni4_5 23 1699 2.14 1.08 2 2.05 1.48 1 4 3 0.48
## kurtosis se
## Ageism_Fabroni1_1 -0.95 0.02
## Ageism_Fabroni1_2 -0.85 0.02
## Ageism_Fabroni1_3 -0.90 0.02
## Ageism_Fabroni1_4 -0.97 0.02
## Ageism_Fabroni1_5 -0.69 0.02
## Ageism_Fabroni1_6 -0.98 0.02
## Ageism_Fabroni2_1 -0.91 0.02
## Ageism_Fabroni2_2 -0.88 0.02
## Ageism_Fabroni2_3 -0.89 0.02
## Ageism_Fabroni2_4 -1.16 0.03
## Ageism_Fabroni2_5 -0.98 0.03
## Ageism_Fabroni2_6 -0.91 0.03
## Ageism_Fabroni3_1 -1.07 0.03
## Ageism_Fabroni3_2 -0.85 0.02
## Ageism_Fabroni3_3 -0.96 0.02
## Ageism_Fabroni3_4 0.31 0.02
## Ageism_Fabroni3_5 -0.92 0.02
## Ageism_Fabroni3_6 -0.96 0.03
## Ageism_Fabroni4_1 0.94 0.02
## Ageism_Fabroni4_2 0.22 0.02
## Ageism_Fabroni4_3 0.43 0.02
## Ageism_Fabroni4_4 0.78 0.02
## Ageism_Fabroni4_5 -1.05 0.03
The reliability of these items is ideal Cronbach’s Alpha is .94.
## Warning in psych::alpha(df[, c(89:111)]): Some items were negatively correlated with the total scale and probably
## should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( Ageism_Fabroni3_4 Ageism_Fabroni4_1 Ageism_Fabroni4_2 Ageism_Fabroni4_3 ) were negatively correlated with the total scale and
## probably should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
##
## Reliability analysis
## Call: psych::alpha(x = df[, c(89:111)])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.94 0.93 0.95 0.36 13 0.002 2.2 0.61 0.5
##
## lower alpha upper 95% confidence boundaries
## 0.93 0.94 0.94
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## Ageism_Fabroni1_1 0.93 0.92 0.95 0.35 12 0.0021 0.089
## Ageism_Fabroni1_2 0.93 0.92 0.95 0.36 12 0.0021 0.091
## Ageism_Fabroni1_3 0.93 0.92 0.95 0.35 12 0.0021 0.089
## Ageism_Fabroni1_4 0.93 0.92 0.95 0.35 12 0.0021 0.089
## Ageism_Fabroni1_5 0.93 0.93 0.95 0.36 12 0.0020 0.091
## Ageism_Fabroni1_6 0.93 0.92 0.95 0.35 12 0.0022 0.088
## Ageism_Fabroni2_1 0.93 0.92 0.95 0.35 12 0.0021 0.088
## Ageism_Fabroni2_2 0.93 0.92 0.95 0.35 12 0.0021 0.089
## Ageism_Fabroni2_3 0.93 0.92 0.95 0.35 12 0.0021 0.090
## Ageism_Fabroni2_4 0.93 0.92 0.95 0.36 12 0.0021 0.092
## Ageism_Fabroni2_5 0.93 0.92 0.94 0.35 12 0.0022 0.088
## Ageism_Fabroni2_6 0.93 0.92 0.94 0.35 12 0.0022 0.089
## Ageism_Fabroni3_1 0.93 0.92 0.94 0.35 12 0.0022 0.088
## Ageism_Fabroni3_2 0.93 0.92 0.95 0.35 12 0.0022 0.088
## Ageism_Fabroni3_3 0.93 0.92 0.95 0.35 12 0.0021 0.089
## Ageism_Fabroni3_4 0.94 0.93 0.95 0.39 14 0.0018 0.081
## Ageism_Fabroni3_5 0.93 0.92 0.95 0.35 12 0.0022 0.089
## Ageism_Fabroni3_6 0.93 0.92 0.94 0.35 12 0.0022 0.088
## Ageism_Fabroni4_1 0.94 0.93 0.95 0.39 14 0.0018 0.083
## Ageism_Fabroni4_2 0.94 0.93 0.95 0.39 14 0.0018 0.083
## Ageism_Fabroni4_3 0.94 0.93 0.95 0.39 14 0.0019 0.085
## Ageism_Fabroni4_4 0.94 0.93 0.95 0.38 14 0.0019 0.087
## Ageism_Fabroni4_5 0.93 0.92 0.95 0.35 12 0.0021 0.090
## med.r
## Ageism_Fabroni1_1 0.49
## Ageism_Fabroni1_2 0.51
## Ageism_Fabroni1_3 0.49
## Ageism_Fabroni1_4 0.49
## Ageism_Fabroni1_5 0.52
## Ageism_Fabroni1_6 0.49
## Ageism_Fabroni2_1 0.49
## Ageism_Fabroni2_2 0.49
## Ageism_Fabroni2_3 0.50
## Ageism_Fabroni2_4 0.50
## Ageism_Fabroni2_5 0.49
## Ageism_Fabroni2_6 0.49
## Ageism_Fabroni3_1 0.49
## Ageism_Fabroni3_2 0.49
## Ageism_Fabroni3_3 0.49
## Ageism_Fabroni3_4 0.52
## Ageism_Fabroni3_5 0.49
## Ageism_Fabroni3_6 0.49
## Ageism_Fabroni4_1 0.52
## Ageism_Fabroni4_2 0.52
## Ageism_Fabroni4_3 0.52
## Ageism_Fabroni4_4 0.52
## Ageism_Fabroni4_5 0.49
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## Ageism_Fabroni1_1 1703 0.737 0.727 0.717 0.703 2.4 0.97
## Ageism_Fabroni1_2 1702 0.645 0.636 0.616 0.604 2.5 0.93
## Ageism_Fabroni1_3 1701 0.743 0.735 0.726 0.710 2.4 0.95
## Ageism_Fabroni1_4 1702 0.773 0.764 0.756 0.742 2.3 0.99
## Ageism_Fabroni1_5 1703 0.603 0.596 0.570 0.561 2.7 0.86
## Ageism_Fabroni1_6 1701 0.821 0.811 0.809 0.795 2.3 1.00
## Ageism_Fabroni2_1 1702 0.759 0.749 0.742 0.728 2.4 0.95
## Ageism_Fabroni2_2 1698 0.746 0.738 0.727 0.714 2.5 0.94
## Ageism_Fabroni2_3 1697 0.698 0.689 0.671 0.661 2.4 0.94
## Ageism_Fabroni2_4 1700 0.662 0.652 0.627 0.617 2.5 1.04
## Ageism_Fabroni2_5 1700 0.827 0.817 0.818 0.801 2.1 1.04
## Ageism_Fabroni2_6 1700 0.819 0.810 0.810 0.793 2.1 1.05
## Ageism_Fabroni3_1 1701 0.820 0.810 0.808 0.793 2.2 1.04
## Ageism_Fabroni3_2 1697 0.820 0.812 0.811 0.796 2.3 0.97
## Ageism_Fabroni3_3 1695 0.791 0.783 0.776 0.763 2.3 0.99
## Ageism_Fabroni3_4 1701 0.044 0.076 0.025 -0.016 1.9 0.83
## Ageism_Fabroni3_5 1700 0.802 0.794 0.789 0.775 2.2 1.00
## Ageism_Fabroni3_6 1701 0.844 0.835 0.837 0.821 2.1 1.05
## Ageism_Fabroni4_1 1703 0.093 0.134 0.095 0.041 1.8 0.74
## Ageism_Fabroni4_2 1701 0.094 0.131 0.086 0.039 1.9 0.77
## Ageism_Fabroni4_3 1703 0.146 0.187 0.148 0.094 1.8 0.75
## Ageism_Fabroni4_4 1702 0.203 0.242 0.206 0.150 1.8 0.77
## Ageism_Fabroni4_5 1699 0.787 0.777 0.771 0.756 2.1 1.08
##
## Non missing response frequency for each item
## 1 2 3 4 miss
## Ageism_Fabroni1_1 0.20 0.36 0.28 0.15 0
## Ageism_Fabroni1_2 0.15 0.33 0.36 0.15 0
## Ageism_Fabroni1_3 0.17 0.38 0.30 0.16 0
## Ageism_Fabroni1_4 0.25 0.36 0.25 0.14 0
## Ageism_Fabroni1_5 0.08 0.33 0.40 0.19 0
## Ageism_Fabroni1_6 0.26 0.36 0.24 0.15 0
## Ageism_Fabroni2_1 0.18 0.36 0.31 0.15 0
## Ageism_Fabroni2_2 0.16 0.37 0.31 0.15 0
## Ageism_Fabroni2_3 0.17 0.37 0.30 0.15 0
## Ageism_Fabroni2_4 0.22 0.29 0.30 0.20 0
## Ageism_Fabroni2_5 0.35 0.31 0.20 0.14 0
## Ageism_Fabroni2_6 0.37 0.32 0.17 0.14 0
## Ageism_Fabroni3_1 0.32 0.31 0.23 0.14 0
## Ageism_Fabroni3_2 0.23 0.39 0.24 0.13 0
## Ageism_Fabroni3_3 0.24 0.37 0.25 0.15 0
## Ageism_Fabroni3_4 0.35 0.47 0.12 0.06 0
## Ageism_Fabroni3_5 0.28 0.37 0.22 0.14 0
## Ageism_Fabroni3_6 0.38 0.30 0.19 0.13 0
## Ageism_Fabroni4_1 0.37 0.51 0.08 0.04 0
## Ageism_Fabroni4_2 0.34 0.49 0.13 0.04 0
## Ageism_Fabroni4_3 0.36 0.50 0.11 0.03 0
## Ageism_Fabroni4_4 0.41 0.46 0.09 0.04 0
## Ageism_Fabroni4_5 0.36 0.30 0.18 0.16 0
Below are the descriptive statistics for the ageism Fraboni scale overall.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1703 2.21 0.61 2.17 2.21 0.71 1 3.57 2.57 0.06 -0.89 0.01
Response scale: Not important at all(1), A little important(2), Somewhat important(3), Quite important(4), Extremely important(5).
Below are the descriptive statistics for these items overall.
## vars n mean sd median trimmed mad min max range skew
## Self_Values_1 1 1703 3.19 1.32 3 3.24 1.48 1 5 4 -0.14
## Self_Values_2 2 1702 2.99 1.40 3 2.99 1.48 1 5 4 -0.03
## kurtosis se
## Self_Values_1 -1.09 0.03
## Self_Values_2 -1.26 0.03
##
## Reliability analysis
## Call: psych::alpha(x = df[, c(115:116)])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.77 0.77 0.63 0.63 3.4 0.011 3.1 1.2 0.63
##
## lower alpha upper 95% confidence boundaries
## 0.75 0.77 0.79
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## Self_Values_1 0.60 0.63 0.4 0.63 1.7 NA 0 0.63
## Self_Values_2 0.66 0.63 0.4 0.63 1.7 NA 0 0.63
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## Self_Values_1 1703 0.90 0.9 0.72 0.63 3.2 1.3
## Self_Values_2 1702 0.91 0.9 0.72 0.63 3.0 1.4
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## Self_Values_1 0.14 0.18 0.27 0.20 0.22 0
## Self_Values_2 0.21 0.18 0.22 0.21 0.18 0
Below are the descriptive statistics for the self values scale overall.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1703 3.09 1.23 3 3.11 1.48 1 5 4 -0.05 -1.02 0.03
Response scale (slider): Strongly disagree(1), Disagree(2), Uncertain or Not applicable(3), Agree(4), Strongly agree(5).
Below are the descriptive statistics for these items overall.
## vars n mean sd median trimmed mad min max range skew
## D_Anxiety_1 1 1703 2.83 1.29 3 2.79 1.48 1 5 4 0.17
## D_Anxiety_2 2 1701 3.14 1.29 3 3.17 1.48 1 5 4 -0.20
## D_Anxiety_3 3 1702 3.41 1.21 4 3.50 1.48 1 5 4 -0.47
## D_Anxiety_4 4 1701 2.97 1.33 3 2.96 1.48 1 5 4 -0.01
## D_Anxiety_5 5 1698 3.62 1.14 4 3.74 1.48 1 5 4 -0.75
## D_Anxiety_6 6 1700 2.75 1.25 3 2.69 1.48 1 5 4 0.27
## D_Anxiety_7 7 1698 3.42 1.26 4 3.52 1.48 1 5 4 -0.47
## D_Anxiety_8 8 1699 2.95 1.32 3 2.94 1.48 1 5 4 0.03
## D_Anxiety_9 9 1700 2.36 1.16 2 2.24 1.48 1 5 4 0.62
## kurtosis se
## D_Anxiety_1 -1.11 0.03
## D_Anxiety_2 -1.09 0.03
## D_Anxiety_3 -0.73 0.03
## D_Anxiety_4 -1.16 0.03
## D_Anxiety_5 -0.17 0.03
## D_Anxiety_6 -0.93 0.03
## D_Anxiety_7 -0.80 0.03
## D_Anxiety_8 -1.17 0.03
## D_Anxiety_9 -0.31 0.03
The reliability of these items is ideal. Cronbach’s Alpha is .84.
## Warning in psych::alpha(df[, c(128:136)]): Some items were negatively correlated with the total scale and probably
## should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( D_Anxiety_1 D_Anxiety_6 D_Anxiety_9 ) were negatively correlated with the total scale and
## probably should be reversed.
## To do this, run the function again with the 'check.keys=TRUE' option
##
## Reliability analysis
## Call: psych::alpha(x = df[, c(128:136)])
##
## raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
## 0.56 0.55 0.69 0.12 1.2 0.015 3.1 0.59 0.095
##
## lower alpha upper 95% confidence boundaries
## 0.53 0.56 0.59
##
## Reliability if an item is dropped:
## raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## D_Anxiety_1 0.65 0.64 0.74 0.182 1.78 0.011 0.15 0.38
## D_Anxiety_2 0.42 0.42 0.59 0.082 0.71 0.021 0.13 -0.13
## D_Anxiety_3 0.44 0.43 0.61 0.085 0.75 0.020 0.14 -0.11
## D_Anxiety_4 0.42 0.41 0.58 0.080 0.70 0.021 0.13 -0.13
## D_Anxiety_5 0.49 0.48 0.64 0.103 0.91 0.018 0.15 -0.11
## D_Anxiety_6 0.67 0.66 0.75 0.194 1.92 0.011 0.14 0.38
## D_Anxiety_7 0.44 0.43 0.61 0.085 0.74 0.020 0.14 -0.11
## D_Anxiety_8 0.44 0.43 0.60 0.087 0.76 0.020 0.13 -0.11
## D_Anxiety_9 0.62 0.62 0.72 0.168 1.62 0.013 0.16 0.38
##
## Item statistics
## n raw.r std.r r.cor r.drop mean sd
## D_Anxiety_1 1703 0.034 0.039 -0.18 -0.21 2.8 1.3
## D_Anxiety_2 1701 0.720 0.710 0.72 0.56 3.1 1.3
## D_Anxiety_3 1702 0.685 0.687 0.67 0.53 3.4 1.2
## D_Anxiety_4 1701 0.731 0.720 0.74 0.57 3.0 1.3
## D_Anxiety_5 1698 0.561 0.572 0.51 0.39 3.6 1.1
## D_Anxiety_6 1700 -0.046 -0.039 -0.27 -0.27 2.8 1.2
## D_Anxiety_7 1698 0.692 0.688 0.66 0.53 3.4 1.3
## D_Anxiety_8 1699 0.689 0.677 0.68 0.52 3.0 1.3
## D_Anxiety_9 1700 0.119 0.133 -0.07 -0.10 2.4 1.2
##
## Non missing response frequency for each item
## 1 2 3 4 5 miss
## D_Anxiety_1 0.17 0.29 0.20 0.22 0.12 0
## D_Anxiety_2 0.14 0.20 0.21 0.29 0.16 0
## D_Anxiety_3 0.09 0.15 0.21 0.35 0.19 0
## D_Anxiety_4 0.18 0.21 0.23 0.23 0.15 0
## D_Anxiety_5 0.07 0.11 0.19 0.42 0.22 0
## D_Anxiety_6 0.18 0.29 0.25 0.18 0.11 0
## D_Anxiety_7 0.10 0.14 0.22 0.32 0.22 0
## D_Anxiety_8 0.17 0.23 0.22 0.23 0.15 0
## D_Anxiety_9 0.27 0.31 0.27 0.08 0.07 0
Below are the descriptive statistics for the death anxiety scale overall.
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 1703 3.05 0.59 3.11 3.08 0.49 1 5 4 -0.46 0.45 0.01
Response scale (slider): Not worried at all(1), — (2), — (3), — (4), Very worried(5).
Below are the descriptive statistics for these items overall.
## vars n mean sd median trimmed mad min max range skew kurtosis
## O_Worry 1 1703 3.13 1.42 3 3.16 1.48 1 5 4 -0.16 -1.23
## D_Worry 2 1701 3.06 1.41 3 3.08 1.48 1 5 4 -0.10 -1.25
## se
## O_Worry 0.03
## D_Worry 0.03
Is there a relationship between attitudes towards/knowledge about older people and willingness/intentions/attitudes regarding COVID-19 health guidelines and behaviors?
To answer this question, we analyzed results from respondents in the control condition. This was to ensure that we could estimate the relationships of interest as they were naturally distributed in the sample without concern about whether responses were influenced by the public health messages. The sample size for the control group (n=582) was sensitive enough to detect a conventionally small effect (f2=.02), for a linear multiple regression analysis (fixed model, single regression coefficient, 13 predictors), assuming α=.05 and 1-β=.95, two-tailed.
Outcome measures
CV19-OAS
Fraboni ageism
Facts of aging
and our measures related to willingness to follow guidelines, intentions to engage in COVID relevant behaviors, and attitudes towards guidelines (listed below).
Ageism_CVPriority1
Ageism_CVPriority2_1
Ageism_CVPriority2_1
Adhere_willing
AdhereAttitude1_1
AdhereAttitude2
AdhereAttitude3_1
AdhereAttitude3_2
AdhereAttitude3_2
BehavIntRisk_Avg
BehavIntPrtct_Avg
Prosocial_Avg
IndivRisk_Avg
For a pure test we look at the results just in the control group alone. The three dependent variables are the CV19-OAS (attitudes and misconceptions towards older adults in the context of COVID-19), FSA (Fraboni Scale of Ageism), and FAQ (Facts on Aging quiz). Bonferroni correction applied to all correlations
| CV19-OAS: correlation estimate (r) | CV19-OAS: Bonferroni adjusted p | FSA: correlation estimate (r) | FSA: Bonferroni adjusted p | FAQ: correlation estimate (r) | FAQ: Bonferroni adjusted p | |
|---|---|---|---|---|---|---|
| Ageism_CVPriority1 | 0.51 | 0.00 | 0.54 | 0.00 | 0.32 | 0.00 |
| Ageism_CVPriority2_1 | 0.31 | 0.00 | 0.27 | 0.00 | 0.12 | 0.11 |
| Ageism_CVPriority2_2 | 0.29 | 0.00 | 0.28 | 0.00 | 0.13 | 0.03 |
| Adhere_willing | 0.10 | 0.29 | 0.10 | 0.26 | 0.02 | 1.00 |
| AdhereAttitude1_1 | -0.08 | 1.00 | -0.04 | 1.00 | -0.16 | 0.00 |
| AdhereAttitude2 | -0.28 | 0.00 | -0.27 | 0.00 | -0.22 | 0.00 |
| AdhereAttitude3_1 | 0.00 | 1.00 | -0.03 | 1.00 | -0.14 | 0.01 |
| AdhereAttitude3_2 | 0.05 | 1.00 | 0.09 | 0.79 | -0.05 | 1.00 |
| AdhereAttitude3_3 | 0.06 | 1.00 | 0.08 | 0.99 | -0.04 | 1.00 |
| BehavIntRisk_Avg | 0.58 | 0.00 | 0.60 | 0.00 | 0.42 | 0.00 |
| BehavIntPrtct_Avg | -0.09 | 0.68 | -0.12 | 0.09 | -0.22 | 0.00 |
| Prosocial_Avg | 0.11 | 0.22 | 0.07 | 1.00 | -0.05 | 1.00 |
| IndivRisk_Avg | 0.26 | 0.00 | 0.35 | 0.00 | 0.23 | 0.00 |
Again we look at the results just in the control group alone. The CV19-OAS (attitudes and misconceptions towards older adults in the context of COVID-19), FSA (Fraboni Scale of Ageism), and FAQ (Facts on Aging quiz), were each regressed on attitudes and intentions regarding infection control guidelines and COVID-19 risk perceptions.
| CV19-OAS | FSA | FAQ | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Predictors | Beta (95% CI) | Statistic | p value | Beta (95% CI) | Statistic | p value | Beta (95% CI) | Statistic | p value |
| (Intercept) |
0.00 (-0.08 – 0.08) |
7.50 | <0.001 |
0.00 (-0.07 – 0.07) |
9.60 | <0.001 |
-0.00 (-0.08 – 0.08) |
7.36 | <0.001 |
| Priority: Back to work |
0.28 (0.17 – 0.39) |
4.94 | <0.001 |
0.29 (0.19 – 0.39) |
5.52 | <0.001 |
0.07 (-0.05 – 0.19) |
1.21 | 0.227 |
| Priority: Economy |
0.09 (-0.02 – 0.20) |
1.61 | 0.109 |
0.01 (-0.09 – 0.11) |
0.16 | 0.871 |
-0.06 (-0.17 – 0.06) |
-0.95 | 0.342 |
| Priority: Normal |
-0.02 (-0.13 – 0.09) |
-0.38 | 0.703 |
0.00 (-0.10 – 0.10) |
0.01 | 0.992 |
-0.01 (-0.13 – 0.11) |
-0.17 | 0.863 |
| Guidelines restrictive |
0.01 (-0.08 – 0.11) |
0.30 | 0.765 |
0.02 (-0.07 – 0.11) |
0.46 | 0.642 |
0.00 (-0.10 – 0.10) |
0.04 | 0.964 |
| Guidelines effective prevent getting CV19 |
-0.02 (-0.16 – 0.12) |
-0.26 | 0.792 |
0.12 (-0.02 – 0.25) |
1.73 | 0.083 |
0.08 (-0.07 – 0.23) |
1.05 | 0.296 |
| Guidelines effective save lives |
0.11 (-0.02 – 0.23) |
1.65 | 0.100 |
0.06 (-0.06 – 0.17) |
0.95 | 0.342 |
0.02 (-0.11 – 0.15) |
0.29 | 0.773 |
| Guidelines effective slow spread |
0.00 (-0.15 – 0.15) |
0.01 | 0.992 |
-0.16 (-0.30 – -0.02) |
-2.27 | 0.024 |
-0.10 (-0.26 – 0.07) |
-1.18 | 0.239 |
| Willingness to stay home again |
0.21 (0.10 – 0.32) |
3.73 | <0.001 |
0.20 (0.10 – 0.30) |
3.85 | <0.001 |
0.16 (0.04 – 0.28) |
2.65 | 0.008 |
| Willingness to follow guidelines |
-0.07 (-0.17 – 0.04) |
-1.30 | 0.194 |
0.05 (-0.04 – 0.15) |
1.05 | 0.294 |
-0.06 (-0.17 – 0.06) |
-0.98 | 0.328 |
| Risky Behavioral intent scale |
0.34 (0.23 – 0.44) |
6.55 | <0.001 |
0.39 (0.30 – 0.49) |
8.29 | <0.001 |
0.34 (0.24 – 0.45) |
6.29 | <0.001 |
| Protective Behavioral intent scale |
-0.14 (-0.24 – -0.04) |
-2.70 | 0.007 |
-0.19 (-0.29 – -0.10) |
-4.12 | <0.001 |
-0.24 (-0.35 – -0.13) |
-4.42 | <0.001 |
| Prosocial scale |
-0.05 (-0.14 – 0.04) |
-1.14 | 0.253 |
-0.09 (-0.17 – -0.01) |
-2.13 | 0.034 |
-0.10 (-0.19 – -0.01) |
-2.15 | 0.032 |
| Individual risk |
0.04 (-0.06 – 0.13) |
0.78 | 0.433 |
0.12 (0.03 – 0.21) |
2.75 | 0.006 |
0.12 (0.02 – 0.22) |
2.41 | 0.016 |
| Observations | 429 | 429 | 429 | ||||||
| R2 / R2 adjusted | 0.346 / 0.326 | 0.439 / 0.421 | 0.253 / 0.230 | ||||||
VIF scores are less than 3.8 for all models
## Ageism_CVPriority1 Ageism_CVPriority2_1 Ageism_CVPriority2_2
## 2.042947 1.973152 1.966206
## AdhereAttitude2 AdhereAttitude3_2 AdhereAttitude3_3
## 1.489788 3.256179 2.572886
## AdhereAttitude3_1 Adhere_willing AdhereAttitude1_1
## 3.823082 1.973162 1.768511
## BehavIntRisk_Avg BehavIntPrtct_Avg Prosocial_Avg
## 1.664469 1.649452 1.224190
## IndivRisk_Avg
## 1.439253
What I have done here is run the same model, but added age (mean centered) and then also added all the interaction terms of the outcome measures with age.
| CV19-OAS | FSA | FAQ | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Predictors | Beta (95% CI) | Statistic | std. Statistic | p | std. p | Beta (95% CI) | Statistic | std. Statistic | p | std. p | Beta (95% CI) | Statistic | std. Statistic | p | std. p |
| (Intercept) |
-0.03 (-0.12 – 0.05) |
78.81 | -0.79 | <0.001 | 0.430 |
-0.03 (-0.11 – 0.05) |
95.17 | -0.71 | <0.001 | 0.481 |
-0.00 (-0.09 – 0.09) |
49.63 | -0.03 | <0.001 | 0.978 |
| Priority: Back to work |
0.31 (0.19 – 0.42) |
5.21 | 5.27 | <0.001 | <0.001 |
0.28 (0.18 – 0.39) |
5.30 | 5.23 | <0.001 | <0.001 |
0.09 (-0.03 – 0.21) |
1.52 | 1.53 | 0.130 | 0.127 |
| Priority: Economy |
0.10 (-0.01 – 0.21) |
1.76 | 1.74 | 0.079 | 0.083 |
0.04 (-0.07 – 0.14) |
0.55 | 0.66 | 0.581 | 0.508 |
-0.04 (-0.15 – 0.08) |
-0.69 | -0.65 | 0.492 | 0.517 |
| Priority: Normal |
-0.01 (-0.12 – 0.10) |
-0.10 | -0.17 | 0.922 | 0.869 |
-0.01 (-0.11 – 0.10) |
-0.05 | -0.10 | 0.960 | 0.917 |
-0.00 (-0.12 – 0.12) |
0.09 | -0.02 | 0.929 | 0.982 |
| Guidelines restrictive |
-0.01 (-0.11 – 0.08) |
-0.39 | -0.29 | 0.695 | 0.771 |
0.00 (-0.09 – 0.09) |
0.08 | 0.01 | 0.939 | 0.995 |
-0.01 (-0.11 – 0.10) |
-0.12 | -0.10 | 0.901 | 0.920 |
| Guidelines effective prevent getting CV19 |
-0.03 (-0.18 – 0.12) |
-0.38 | -0.38 | 0.704 | 0.706 |
0.09 (-0.05 – 0.23) |
1.24 | 1.25 | 0.217 | 0.211 |
0.03 (-0.12 – 0.18) |
0.47 | 0.39 | 0.639 | 0.697 |
| Guidelines effective save lives |
0.14 (0.01 – 0.28) |
2.08 | 2.07 | 0.038 | 0.039 |
0.07 (-0.06 – 0.20) |
1.12 | 1.07 | 0.264 | 0.284 |
0.08 (-0.07 – 0.22) |
1.07 | 1.05 | 0.287 | 0.294 |
| Guidelines effective slow spread |
-0.04 (-0.21 – 0.12) |
-0.40 | -0.52 | 0.693 | 0.605 |
-0.16 (-0.31 – 0.00) |
-1.99 | -1.96 | 0.047 | 0.050 |
-0.08 (-0.25 – 0.09) |
-0.91 | -0.93 | 0.365 | 0.352 |
| Willingness to stay home again |
0.21 (0.09 – 0.32) |
3.63 | 3.58 | <0.001 | <0.001 |
0.22 (0.11 – 0.33) |
4.00 | 4.00 | <0.001 | <0.001 |
0.15 (0.03 – 0.27) |
2.52 | 2.53 | 0.012 | 0.012 |
| Willingness to follow guidelines |
-0.06 (-0.16 – 0.05) |
-1.04 | -1.07 | 0.298 | 0.286 |
0.07 (-0.03 – 0.17) |
1.33 | 1.31 | 0.184 | 0.191 |
-0.05 (-0.16 – 0.06) |
-0.88 | -0.87 | 0.381 | 0.385 |
| Risky Behavioral intent scale |
0.31 (0.20 – 0.41) |
5.76 | 5.61 | <0.001 | <0.001 |
0.33 (0.23 – 0.43) |
6.64 | 6.45 | <0.001 | <0.001 |
0.24 (0.13 – 0.35) |
4.29 | 4.25 | <0.001 | <0.001 |
| Protective Behavioral intent scale |
-0.07 (-0.19 – 0.04) |
-1.55 | -1.30 | 0.123 | 0.194 |
-0.16 (-0.27 – -0.06) |
-3.23 | -3.09 | 0.001 | 0.002 |
-0.18 (-0.29 – -0.06) |
-3.15 | -3.03 | 0.002 | 0.003 |
| Prosocial scale |
-0.04 (-0.13 – 0.05) |
-0.93 | -0.93 | 0.352 | 0.352 |
-0.09 (-0.17 – -0.00) |
-2.05 | -2.02 | 0.041 | 0.045 |
-0.11 (-0.21 – -0.02) |
-2.47 | -2.42 | 0.014 | 0.016 |
| Individual risk |
0.02 (-0.07 – 0.12) |
0.37 | 0.46 | 0.714 | 0.645 |
0.12 (0.03 – 0.21) |
2.67 | 2.63 | 0.008 | 0.009 |
0.12 (0.02 – 0.22) |
2.50 | 2.45 | 0.013 | 0.015 |
| Age |
-0.09 (-0.18 – -0.00) |
-1.88 | -1.99 | 0.061 | 0.047 |
-0.16 (-0.24 – -0.07) |
-3.40 | -3.56 | 0.001 | <0.001 |
-0.31 (-0.40 – -0.21) |
-5.64 | -6.41 | <0.001 | <0.001 |
| AgeXPriority: Back to work |
0.10 (-0.03 – 0.23) |
1.54 | 1.54 | 0.125 | 0.125 |
-0.02 (-0.14 – 0.10) |
-0.33 | -0.33 | 0.741 | 0.741 |
0.02 (-0.11 – 0.16) |
0.37 | 0.37 | 0.715 | 0.715 |
| AgeXPriority: Economy |
-0.01 (-0.13 – 0.12) |
-0.12 | -0.12 | 0.904 | 0.904 |
0.10 (-0.02 – 0.22) |
1.71 | 1.71 | 0.088 | 0.088 |
0.03 (-0.10 – 0.16) |
0.47 | 0.47 | 0.640 | 0.640 |
| AgeXPriority: Normal |
-0.07 (-0.19 – 0.06) |
-1.05 | -1.05 | 0.296 | 0.296 |
-0.05 (-0.17 – 0.07) |
-0.83 | -0.83 | 0.407 | 0.407 |
-0.11 (-0.24 – 0.02) |
-1.69 | -1.69 | 0.092 | 0.092 |
| AgeXGuidelines restrictive |
0.08 (-0.03 – 0.19) |
1.47 | 1.47 | 0.144 | 0.144 |
-0.05 (-0.16 – 0.05) |
-1.04 | -1.04 | 0.297 | 0.297 |
0.02 (-0.09 – 0.13) |
0.36 | 0.36 | 0.721 | 0.721 |
| AgeXGuidelines effective prevent getting CV19 |
0.00 (-0.15 – 0.15) |
0.01 | 0.01 | 0.995 | 0.995 |
0.03 (-0.11 – 0.17) |
0.41 | 0.41 | 0.681 | 0.681 |
-0.10 (-0.25 – 0.06) |
-1.22 | -1.22 | 0.225 | 0.225 |
| AgeXGuidelines effective save lives |
0.03 (-0.10 – 0.17) |
0.47 | 0.47 | 0.640 | 0.640 |
-0.03 (-0.15 – 0.10) |
-0.41 | -0.41 | 0.681 | 0.681 |
0.01 (-0.13 – 0.14) |
0.09 | 0.09 | 0.927 | 0.927 |
| AgeXGuidelines effective slow spread |
-0.18 (-0.35 – -0.01) |
-2.09 | -2.09 | 0.037 | 0.037 |
-0.01 (-0.18 – 0.15) |
-0.18 | -0.18 | 0.855 | 0.855 |
-0.06 (-0.24 – 0.11) |
-0.72 | -0.72 | 0.474 | 0.474 |
| AgeXWillingness to stay home again |
0.00 (-0.13 – 0.13) |
0.01 | 0.01 | 0.993 | 0.993 |
0.04 (-0.08 – 0.16) |
0.60 | 0.60 | 0.549 | 0.549 |
0.04 (-0.09 – 0.18) |
0.67 | 0.67 | 0.506 | 0.506 |
| AgeXWillingness to follow guidelines |
-0.02 (-0.12 – 0.09) |
-0.30 | -0.30 | 0.762 | 0.762 |
-0.03 (-0.13 – 0.07) |
-0.52 | -0.52 | 0.604 | 0.604 |
0.01 (-0.10 – 0.12) |
0.23 | 0.23 | 0.819 | 0.819 |
| AgeXRisky Behavioral intent scale |
-0.08 (-0.20 – 0.05) |
-1.14 | -1.14 | 0.254 | 0.254 |
-0.09 (-0.21 – 0.03) |
-1.51 | -1.51 | 0.133 | 0.133 |
0.01 (-0.12 – 0.14) |
0.13 | 0.13 | 0.897 | 0.897 |
| AgeXProtective Behavioral intent scale |
0.19 (0.05 – 0.32) |
2.77 | 2.77 | 0.006 | 0.006 |
0.05 (-0.08 – 0.17) |
0.72 | 0.72 | 0.475 | 0.475 |
0.04 (-0.10 – 0.17) |
0.51 | 0.51 | 0.608 | 0.608 |
| AgeXProsocial scale |
0.01 (-0.08 – 0.09) |
0.18 | 0.18 | 0.855 | 0.855 |
0.04 (-0.04 – 0.12) |
0.97 | 0.97 | 0.335 | 0.335 |
0.06 (-0.03 – 0.15) |
1.41 | 1.41 | 0.160 | 0.160 |
| AgeXIndividual risk |
0.08 (-0.02 – 0.17) |
1.50 | 1.50 | 0.135 | 0.135 |
-0.03 (-0.13 – 0.06) |
-0.73 | -0.73 | 0.467 | 0.467 |
-0.04 (-0.14 – 0.06) |
-0.73 | -0.73 | 0.466 | 0.466 |
| Observations | 424 | 424 | 424 | ||||||||||||
| R2 / R2 adjusted | 0.389 / 0.347 | 0.464 / 0.428 | 0.350 / 0.306 | ||||||||||||
Do the public health messages (CDC & ours) influence willingness/intentions/attitudes regarding COVID-19 health guidelines?
To answer this question, we ran omnibus one-way ANOVA models to test the effect of group assignment (control; CDC message; tailored message) on our outcome measures and also analyzed whether age moderated the effect of the messages. For each model, we conducted two orthogonal planned contrasts, with Bonferroni correction (αadj=.025), to compare both public health message groups to the control group (contrast 1: control vs CDC and our message) and to compare the two message groups (contrast 2: CDC vs our message).
## CvsCD_KS CDCvsKS
## Control -2 0
## CDC 1 -1
## KS 1 1
We ran follow up independent samples t-tests when the planned contrasts revealed a significant effect and applied Bonferroni correction for multiple comparisons. The final sample (n=1,703) was sufficient to detect a conventionally small effect size (f=.10), for one-way ANOVA (fixed effects, omnibus, 3 groups), with 1-β=0.95 and two-sided α=.025.
Omnibus ANOVA test: CV19 priority preference (get to work even if means more older people will die)
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 9.122 | 4.561 | 1.359 | 0.257 |
| Residuals | 1670 | 5604.625 | 3.356 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 9.122 | 4.561 | 1.359 | 0.257 | 0.002 | 0.002 | 0 | 0 | 0 | 0.04 | 0.294 |
| …2 | Residuals | 1670 | 5604.625 | 3.356 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 3.159 | 0.045 | 70.509 | 0.000 |
| GroupCvsCD_KS | -0.052 | 0.031 | -1.644 | 0.100 |
| GroupCDCvsKS | -0.006 | 0.055 | -0.108 | 0.914 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 1673 | 1.832 | 0.002 | 0 |
Planned contrast effect sizes
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c1 | Group.c1 | 9.083 | 9.083 | 1 | 2.708 | 0.1 | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.04 | 0.377 |
| …2 | Residuals | 5604.665 | 3.354 | 1671 |
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c2 | Group.c2 | 0.039 | 0.039 | 1 | 0.012 | 0.914 | 0 | 0 | -0.001 | -0.001 | -0.001 | 0.003 | 0.051 |
| …2 | Residuals | 3701.279 | 3.377 | 1096 |
Contrast v2
## Df Sum Sq Mean Sq F value Pr(>F)
## Group 2 9 4.561 1.359 0.257
## Group: Control vs. CDC_KS 1 9 9.083 2.706 0.100
## Group: CDC vs KS 1 0 0.039 0.012 0.914
## Residuals 1670 5605 3.356
## 30 observations deleted due to missingness
lsmeans contrast (unadjusted)
| contrast | estimate | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| Control vs CDC and KS | -0.310 | 0.189 | 1670 | -0.680 | 0.060 | -1.644 | 0.100 |
| CDC vs KS | -0.012 | 0.111 | 1670 | -0.229 | 0.205 | -0.108 | 0.914 |
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 3.263 | 0.076 | 1670 | 3.113 | 3.412 |
| CDC | 3.114 | 0.079 | 1670 | 2.959 | 3.269 |
| KS | 3.102 | 0.077 | 1670 | 2.950 | 3.253 |
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 575 3.26 1.82 3 3.2 2.97 1 6 5 0.14 -1.43 0.08
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 537 3.11 1.82 3 3.02 2.97 1 6 5 0.27 -1.36 0.08
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 561 3.1 1.85 3 3 2.97 1 6 5 0.3 -1.36 0.08
Here is the moderated model. I just included age (mean centered) as an interaction term. Basically, "lm(DV ~ Group*AgeR, df)"
##
## Call:
## lm(formula = Ageism_CVPriority1 ~ Group * AgeR, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.6792 -1.7271 -0.2377 1.6376 3.4155
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.1559024 0.0447532 70.518 < 2e-16 ***
## GroupCvsCD_KS -0.0521692 0.0314222 -1.660 0.0971 .
## GroupCDCvsKS 0.0053884 0.0551950 0.098 0.9222
## AgeR -0.0164966 0.0026176 -6.302 0.000000000376 ***
## GroupCvsCD_KS:AgeR -0.0002279 0.0018219 -0.125 0.9005
## GroupCDCvsKS:AgeR -0.0035093 0.0032552 -1.078 0.2812
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.814 on 1640 degrees of freedom
## (57 observations deleted due to missingness)
## Multiple R-squared: 0.02645, Adjusted R-squared: 0.02348
## F-statistic: 8.911 on 5 and 1640 DF, p-value: 0.00000002315
## 2.5 % 97.5 %
## (Intercept) 3.068122920 3.243681808
## GroupCvsCD_KS -0.113801015 0.009462690
## GroupCDCvsKS -0.102871651 0.113648432
## AgeR -0.021630715 -0.011362491
## GroupCvsCD_KS:AgeR -0.003801428 0.003345679
## GroupCDCvsKS:AgeR -0.009894115 0.002875608
Omnibus ANOVA test: CV19 priority preference (get to work even if means more older people will die)
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 28.97 | 14.485 | 4.702 | 0.009 |
| Residuals | 1681 | 5178.64 | 3.081 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 28.97 | 14.485 | 4.702 | 0.009 | 0.006 | 0.006 | 0.004 | 0.004 | 0.004 | 0.075 | 0.79 |
| …2 | Residuals | 1681 | 5178.64 | 3.081 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 2.903 | 0.043 | 67.857 | 0.000 |
| GroupCvsCD_KS | -0.089 | 0.030 | -2.974 | 0.003 |
| GroupCDCvsKS | -0.038 | 0.053 | -0.713 | 0.476 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 1684 | 1.755 | 0.006 | 0.004 |
Planned contrast effect sizes
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c1 | Group.c1 | 27.4 | 27.40 | 1 | 8.898 | 0.003 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.073 | 0.847 |
| …2 | Residuals | 5180.2 | 3.08 | 1682 |
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c2 | Group.c2 | 1.565 | 1.565 | 1 | 0.516 | 0.473 | 0 | 0 | 0 | 0 | 0 | 0.022 | 0.111 |
| …2 | Residuals | 3367.493 | 3.037 | 1109 |
Contrast v2
## Df Sum Sq Mean Sq F value Pr(>F)
## Group 2 29 14.485 4.702 0.0092 **
## Group: Control vs. CDC_KS 1 27 27.404 8.895 0.0029 **
## Group: CDC vs KS 1 2 1.565 0.508 0.4761
## Residuals 1681 5179 3.081
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 19 observations deleted due to missingness
lsmeans contrast (unadjusted)
| contrast | estimate | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| Control vs CDC and KS | -0.537 | 0.181 | 1681 | -0.891 | -0.183 | -2.974 | 0.003 |
| CDC vs KS | -0.075 | 0.105 | 1681 | -0.282 | 0.132 | -0.713 | 0.476 |
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 3.082 | 0.073 | 1681 | 2.938 | 3.226 |
| CDC | 2.851 | 0.075 | 1681 | 2.704 | 2.999 |
| KS | 2.776 | 0.074 | 1681 | 2.631 | 2.921 |
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 573 3.08 1.78 3 2.98 2.97 1 6 5 0.33 -1.18 0.07
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 544 2.85 1.76 3 2.69 2.97 1 6 5 0.48 -1.1 0.08
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 567 2.78 1.72 3 2.6 2.97 1 6 5 0.52 -0.99 0.07
Exploratory: Age moderation
##
## Call:
## lm(formula = Ageism_CVPriority2_1 ~ Group * AgeR, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2065 -1.7232 -0.1141 1.2092 3.4214
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.8936106 0.0432264 66.941 < 2e-16 ***
## GroupCvsCD_KS -0.0848113 0.0304309 -2.787 0.00538 **
## GroupCDCvsKS -0.0275402 0.0531736 -0.518 0.60458
## AgeR -0.0063828 0.0025330 -2.520 0.01183 *
## GroupCvsCD_KS:AgeR -0.0005494 0.0017726 -0.310 0.75666
## GroupCDCvsKS:AgeR 0.0006742 0.0031340 0.215 0.82969
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.757 on 1650 degrees of freedom
## (47 observations deleted due to missingness)
## Multiple R-squared: 0.008968, Adjusted R-squared: 0.005965
## F-statistic: 2.986 on 5 and 1650 DF, p-value: 0.0109
## 2.5 % 97.5 %
## (Intercept) 2.808826219 2.978394892
## GroupCvsCD_KS -0.144498678 -0.025124000
## GroupCDCvsKS -0.131835086 0.076754617
## AgeR -0.011350973 -0.001414561
## GroupCvsCD_KS:AgeR -0.004026103 0.002927393
## GroupCDCvsKS:AgeR -0.005472792 0.006821253
Omnibus ANOVA test: CV19 priority preference (get to work even if means more older people will die)
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 32.83 | 16.41 | 5.66 | 0.004 |
| Residuals | 1665 | 4828.90 | 2.90 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 32.83 | 16.41 | 5.66 | 0.004 | 0.007 | 0.007 | 0.006 | 0.006 | 0.006 | 0.082 | 0.863 |
| …2 | Residuals | 1665 | 4828.90 | 2.90 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 2.879 | 0.042 | 69.027 | 0.000 |
| GroupCvsCD_KS | -0.098 | 0.029 | -3.348 | 0.001 |
| GroupCDCvsKS | 0.019 | 0.051 | 0.369 | 0.712 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 1668 | 1.703 | 0.007 | 0.006 |
Planned contrast effect sizes
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c1 | Group.c1 | 32.44 | 32.436 | 1 | 11.19 | 0.001 | 0.007 | 0.007 | 0.006 | 0.006 | 0.006 | 0.082 | 0.917 |
| …2 | Residuals | 4829.30 | 2.899 | 1666 |
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c2 | Group.c2 | 0.395 | 0.395 | 1 | 0.14 | 0.709 | 0 | 0 | -0.001 | -0.001 | -0.001 | 0.011 | 0.066 |
| …2 | Residuals | 3093.146 | 2.822 | 1096 |
Contrast v2
## Df Sum Sq Mean Sq F value Pr(>F)
## Group 2 33 16.42 5.660 0.003550 **
## Group: Control vs. CDC_KS 1 32 32.44 11.184 0.000843 ***
## Group: CDC vs KS 1 0 0.39 0.136 0.712309
## Residuals 1665 4829 2.90
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 35 observations deleted due to missingness
lsmeans contrast (unadjusted)
| contrast | estimate | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| Control vs CDC and KS | -0.589 | 0.176 | 1665 | -0.934 | -0.244 | -3.348 | 0.001 |
| CDC vs KS | 0.038 | 0.103 | 1665 | -0.164 | 0.240 | 0.369 | 0.712 |
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 3.075 | 0.071 | 1665 | 2.936 | 3.215 |
| CDC | 2.762 | 0.073 | 1665 | 2.618 | 2.906 |
| KS | 2.800 | 0.072 | 1665 | 2.659 | 2.941 |
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 570 3.08 1.75 3 2.97 2.97 1 6 5 0.3 -1.18 0.07
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 538 2.76 1.69 3 2.58 2.97 1 6 5 0.56 -0.92 0.07
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 560 2.8 1.67 3 2.63 2.97 1 6 5 0.49 -0.94 0.07
Exploratory: Age moderation
##
## Call:
## lm(formula = Ageism_CVPriority2_2 ~ Group * AgeR, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2069 -1.6814 -0.0693 1.1687 3.5166
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.8774608 0.0421183 68.319 < 2e-16 ***
## GroupCvsCD_KS -0.0956208 0.0296114 -3.229 0.00127 **
## GroupCDCvsKS 0.0262946 0.0518782 0.507 0.61233
## AgeR -0.0063822 0.0024676 -2.586 0.00978 **
## GroupCvsCD_KS:AgeR -0.0006433 0.0017250 -0.373 0.70923
## GroupCDCvsKS:AgeR -0.0002102 0.0030562 -0.069 0.94517
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.704 on 1635 degrees of freedom
## (62 observations deleted due to missingness)
## Multiple R-squared: 0.0108, Adjusted R-squared: 0.007773
## F-statistic: 3.57 on 5 and 1635 DF, p-value: 0.003253
## 2.5 % 97.5 %
## (Intercept) 2.794849277 2.960072317
## GroupCvsCD_KS -0.153701069 -0.037540512
## GroupCDCvsKS -0.075460189 0.128049354
## AgeR -0.011222136 -0.001542174
## GroupCvsCD_KS:AgeR -0.004026768 0.002740082
## GroupCDCvsKS:AgeR -0.006204665 0.005784256
Omnibus ANOVA test: The guidelines for slowing the spread of COVID-19 (e.g., distancing and mask wearing) are too restrictive; just right; not restrictive enough.
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 6.476 | 3.238 | 1.02 | 0.361 |
| Residuals | 1687 | 5358.208 | 3.176 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 6.476 | 3.238 | 1.02 | 0.361 | 0.001 | 0.001 | 0 | 0 | 0 | 0.035 | 0.229 |
| …2 | Residuals | 1687 | 5358.208 | 3.176 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 4.210 | 0.043 | 97.074 | 0.000 |
| GroupCvsCD_KS | 0.035 | 0.030 | 1.141 | 0.254 |
| GroupCDCvsKS | -0.047 | 0.053 | -0.876 | 0.381 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 1690 | 1.782 | 0.001 | 0 |
Planned contrast effect sizes
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c1 | Group.c1 | 4.04 | 4.040 | 1 | 1.272 | 0.26 | 0.001 | 0.001 | 0 | 0 | 0 | 0.027 | 0.204 |
| …2 | Residuals | 5360.64 | 3.176 | 1688 |
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c2 | Group.c2 | 2.437 | 2.437 | 1 | 0.788 | 0.375 | 0.001 | 0.001 | 0 | 0 | 0 | 0.027 | 0.144 |
| …2 | Residuals | 3434.578 | 3.091 | 1111 |
Contrast v2
## Df Sum Sq Mean Sq F value Pr(>F)
## Group 2 6 3.238 1.020 0.361
## Group: Control vs. CDC_KS 1 4 4.040 1.272 0.260
## Group: CDC vs KS 1 2 2.437 0.767 0.381
## Residuals 1687 5358 3.176
## 13 observations deleted due to missingness
lsmeans contrast (unadjusted)
| contrast | estimate | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| Control vs CDC and KS | 0.209 | 0.183 | 1687 | -0.150 | 0.567 | 1.141 | 0.254 |
| CDC vs KS | -0.094 | 0.107 | 1687 | -0.303 | 0.116 | -0.876 | 0.381 |
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 4.140 | 0.074 | 1687 | 3.995 | 4.286 |
| CDC | 4.292 | 0.077 | 1687 | 4.141 | 4.442 |
| KS | 4.198 | 0.075 | 1687 | 4.052 | 4.344 |
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 577 4.14 1.83 4 4.17 1.48 1 7 6 -0.14 -0.57 0.08
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 542 4.29 1.78 4 4.36 1.48 1 7 6 -0.11 -0.47 0.08
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 571 4.2 1.74 4 4.25 1.48 1 7 6 -0.1 -0.38 0.07
Exploratory: Age moderation
##
## Call:
## lm(formula = AdhereAttitude2 ~ Group * AgeR, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7471 -0.5921 -0.0838 1.0094 3.2556
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.2165458 0.0432150 97.571 < 2e-16 ***
## GroupCvsCD_KS 0.0281966 0.0303920 0.928 0.354
## GroupCDCvsKS -0.0582234 0.0532127 -1.094 0.274
## AgeR 0.0149079 0.0025292 5.894 0.00000000455 ***
## GroupCvsCD_KS:AgeR -0.0000022 0.0017644 -0.001 0.999
## GroupCDCvsKS:AgeR 0.0013968 0.0031387 0.445 0.656
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.761 on 1657 degrees of freedom
## (40 observations deleted due to missingness)
## Multiple R-squared: 0.02195, Adjusted R-squared: 0.019
## F-statistic: 7.437 on 5 and 1657 DF, p-value: 0.0000006552
## 2.5 % 97.5 %
## (Intercept) 4.131784088 4.301307555
## GroupCvsCD_KS -0.031414118 0.087807299
## GroupCDCvsKS -0.162594609 0.046147765
## AgeR 0.009947079 0.019868648
## GroupCvsCD_KS:AgeR -0.003462921 0.003458520
## GroupCDCvsKS:AgeR -0.004759354 0.007552979
Omnibus ANOVA test: Following COVID-19 guidelines (e.g., distancing and mask wearing) is an effective method for preventing getting COVID-19
Strongly disagree(1), Disagree(2), Somewhat disagree(3), Somewhat agree(4), Agree(5), Strongly agree(6)
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 6.16 | 3.080 | 1.879 | 0.153 |
| Residuals | 1697 | 2782.13 | 1.639 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 6.16 | 3.080 | 1.879 | 0.153 | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.047 | 0.393 |
| …2 | Residuals | 1697 | 2782.13 | 1.639 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 4.768 | 0.031 | 153.471 | 0.000 |
| GroupCvsCD_KS | 0.042 | 0.022 | 1.932 | 0.054 |
| GroupCDCvsKS | -0.007 | 0.038 | -0.184 | 0.854 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 1700 | 1.28 | 0.002 | 0.001 |
Planned contrast effect sizes
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c1 | Group.c1 | 6.105 | 6.105 | 1 | 3.726 | 0.054 | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | 0.047 | 0.488 |
| …2 | Residuals | 2782.184 | 1.639 | 1698 |
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c2 | Group.c2 | 0.055 | 0.055 | 1 | 0.036 | 0.85 | 0 | 0 | -0.001 | -0.001 | -0.001 | 0.006 | 0.054 |
| …2 | Residuals | 1720.401 | 1.540 | 1117 |
Contrast v2
## Df Sum Sq Mean Sq F value Pr(>F)
## Group 2 6.2 3.080 1.879 0.1531
## Group: Control vs. CDC_KS 1 6.1 6.105 3.724 0.0538 .
## Group: CDC vs KS 1 0.1 0.055 0.034 0.8544
## Residuals 1697 2782.1 1.639
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 3 observations deleted due to missingness
lsmeans contrast (unadjusted)
| contrast | estimate | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| Control vs CDC and KS | 0.253 | 0.131 | 1697 | -0.004 | 0.510 | 1.932 | 0.054 |
| CDC vs KS | -0.014 | 0.077 | 1697 | -0.164 | 0.136 | -0.184 | 0.854 |
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 4.683 | 0.053 | 1697 | 4.579 | 4.787 |
| CDC | 4.817 | 0.055 | 1697 | 4.709 | 4.924 |
| KS | 4.803 | 0.053 | 1697 | 4.698 | 4.908 |
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 581 4.68 1.35 5 4.89 1.48 1 6 5 -1.06 0.47 0.06
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 546 4.82 1.23 5 5 1.48 1 6 5 -1.06 0.59 0.05
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 573 4.8 1.25 5 4.98 1.48 1 6 5 -1.05 0.61 0.05
Exploratory: Age moderation. Plots shown following significant interaction
##
## Call:
## lm(formula = AdhereAttitude3_2 ~ Group * AgeR, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2508 -0.6716 0.2812 1.0373 1.5674
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.7765255 0.0309515 154.323 < 2e-16 ***
## GroupCvsCD_KS 0.0415431 0.0217587 1.909 0.0564 .
## GroupCDCvsKS -0.0168321 0.0381269 -0.441 0.6589
## AgeR 0.0101718 0.0018125 5.612 0.0000000234 ***
## GroupCvsCD_KS:AgeR 0.0029501 0.0012640 2.334 0.0197 *
## GroupCDCvsKS:AgeR 0.0004722 0.0022499 0.210 0.8338
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.264 on 1666 degrees of freedom
## (31 observations deleted due to missingness)
## Multiple R-squared: 0.02356, Adjusted R-squared: 0.02063
## F-statistic: 8.04 on 5 and 1666 DF, p-value: 0.0000001671
## 2.5 % 97.5 %
## (Intercept) 4.7158175840 4.837233406
## GroupCvsCD_KS -0.0011342281 0.084220433
## GroupCDCvsKS -0.0916137480 0.057949453
## AgeR 0.0066168573 0.013726814
## GroupCvsCD_KS:AgeR 0.0004708257 0.005429348
## GroupCDCvsKS:AgeR -0.0039406197 0.004885118
Omnibus ANOVA test: Following COVID-19 guidelines (e.g., distancing and mask wearing) is an effective method for slowing the spread of COVID-19
Strongly disagree(1), Disagree(2), Somewhat disagree(3), Somewhat agree(4), Agree(5), Strongly agree(6)
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 10.57 | 5.286 | 3.145 | 0.043 |
| Residuals | 1696 | 2850.59 | 1.681 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 10.57 | 5.286 | 3.145 | 0.043 | 0.004 | 0.004 | 0.003 | 0.003 | 0.003 | 0.061 | 0.606 |
| …2 | Residuals | 1696 | 2850.59 | 1.681 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 4.830 | 0.031 | 153.506 | 0.000 |
| GroupCvsCD_KS | 0.054 | 0.022 | 2.459 | 0.014 |
| GroupCDCvsKS | 0.018 | 0.039 | 0.462 | 0.644 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 1699 | 1.296 | 0.004 | 0.003 |
Planned contrast effect sizes
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c1 | Group.c1 | 10.21 | 10.21 | 1 | 6.079 | 0.014 | 0.004 | 0.004 | 0.003 | 0.003 | 0.003 | 0.06 | 0.693 |
| …2 | Residuals | 2850.95 | 1.68 | 1697 |
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c2 | Group.c2 | 0.358 | 0.358 | 1 | 0.223 | 0.637 | 0 | 0 | -0.001 | -0.001 | -0.001 | 0.014 | 0.076 |
| …2 | Residuals | 1791.757 | 1.606 | 1116 |
Contrast v2
## Df Sum Sq Mean Sq F value Pr(>F)
## Group 2 10.6 5.286 3.145 0.0433 *
## Group: Control vs. CDC_KS 1 10.2 10.213 6.077 0.0138 *
## Group: CDC vs KS 1 0.4 0.358 0.213 0.6445
## Residuals 1696 2850.6 1.681
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 4 observations deleted due to missingness
lsmeans contrast (unadjusted)
| contrast | estimate | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| Control vs CDC and KS | 0.326 | 0.133 | 1696 | 0.066 | 0.586 | 2.459 | 0.014 |
| CDC vs KS | 0.036 | 0.078 | 1696 | -0.116 | 0.188 | 0.462 | 0.644 |
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 4.721 | 0.054 | 1696 | 4.616 | 4.827 |
| CDC | 4.866 | 0.055 | 1696 | 4.757 | 4.975 |
| KS | 4.902 | 0.054 | 1696 | 4.796 | 5.008 |
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 581 4.72 1.35 5 4.93 1.48 1 6 5 -1.11 0.66 0.06
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 546 4.87 1.25 5 5.06 1.48 1 6 5 -1.14 0.84 0.05
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 572 4.9 1.28 5 5.12 1.48 1 6 5 -1.2 0.84 0.05
Exploratory: Age moderation
##
## Call:
## lm(formula = AdhereAttitude3_3 ~ Group * AgeR, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.316 -0.684 0.316 1.034 1.581
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.838197 0.031154 155.302 < 2e-16 ***
## GroupCvsCD_KS 0.054539 0.021897 2.491 0.0128 *
## GroupCDCvsKS 0.001868 0.038382 0.049 0.9612
## AgeR 0.013092 0.001824 7.176 0.00000000000107 ***
## GroupCvsCD_KS:AgeR 0.002144 0.001272 1.686 0.0921 .
## GroupCDCvsKS:AgeR 0.002292 0.002265 1.012 0.3117
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.272 on 1665 degrees of freedom
## (32 observations deleted due to missingness)
## Multiple R-squared: 0.036, Adjusted R-squared: 0.03311
## F-statistic: 12.44 on 5 and 1665 DF, p-value: 0.00000000000717
## 2.5 % 97.5 %
## (Intercept) 4.7770931402 4.899301466
## GroupCvsCD_KS 0.0115903323 0.097488392
## GroupCDCvsKS -0.0734130964 0.077149830
## AgeR 0.0095139167 0.016670541
## GroupCvsCD_KS:AgeR -0.0003507873 0.004639408
## GroupCDCvsKS:AgeR -0.0021505199 0.006734616
Omnibus ANOVA test: Following COVID-19 guidelines (e.g., distancing and mask wearing) is an effective method for slowing the spread of COVID-19
Strongly disagree(1), Disagree(2), Somewhat disagree(3), Somewhat agree(4), Agree(5), Strongly agree(6)
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 12.79 | 6.397 | 3.303 | 0.037 |
| Residuals | 1698 | 3288.16 | 1.936 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 12.79 | 6.397 | 3.303 | 0.037 | 0.004 | 0.004 | 0.003 | 0.003 | 0.003 | 0.062 | 0.628 |
| …2 | Residuals | 1698 | 3288.16 | 1.936 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 4.785 | 0.034 | 141.770 | 0.000 |
| GroupCvsCD_KS | 0.054 | 0.024 | 2.286 | 0.022 |
| GroupCDCvsKS | -0.050 | 0.042 | -1.210 | 0.226 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 1701 | 1.392 | 0.004 | 0.003 |
Planned contrast effect sizes
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c1 | Group.c1 | 9.958 | 9.958 | 1 | 5.141 | 0.023 | 0.003 | 0.003 | 0.002 | 0.002 | 0.002 | 0.055 | 0.621 |
| …2 | Residuals | 3290.994 | 1.937 | 1699 |
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c2 | Group.c2 | 2.835 | 2.835 | 1 | 1.546 | 0.214 | 0.001 | 0.001 | 0 | 0 | 0 | 0.037 | 0.237 |
| …2 | Residuals | 2048.888 | 1.834 | 1117 |
Contrast v2
## Df Sum Sq Mean Sq F value Pr(>F)
## Group 2 13 6.397 3.303 0.0370 *
## Group: Control vs. CDC_KS 1 10 9.958 5.142 0.0235 *
## Group: CDC vs KS 1 3 2.835 1.464 0.2264
## Residuals 1698 3288 1.936
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 2 observations deleted due to missingness
lsmeans contrast (unadjusted)
| contrast | estimate | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| Control vs CDC and KS | 0.325 | 0.142 | 1698 | 0.046 | 0.604 | 2.286 | 0.022 |
| CDC vs KS | -0.101 | 0.083 | 1698 | -0.264 | 0.063 | -1.210 | 0.226 |
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 4.677 | 0.058 | 1698 | 4.564 | 4.790 |
| CDC | 4.890 | 0.060 | 1698 | 4.773 | 5.007 |
| KS | 4.789 | 0.058 | 1698 | 4.675 | 4.903 |
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 582 4.68 1.46 5 4.91 1.48 1 6 5 -1.07 0.25 0.06
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 545 4.89 1.31 5 5.1 1.48 1 6 5 -1.21 0.87 0.06
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 574 4.79 1.4 5 5.02 1.48 1 6 5 -1.08 0.32 0.06
Exploratory: Age moderation
##
## Call:
## lm(formula = AdhereAttitude3_1 ~ Group * AgeR, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.4694 -0.6392 0.3972 1.0171 1.7864
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.799540 0.033056 145.195 <2e-16 ***
## GroupCvsCD_KS 0.051853 0.023231 2.232 0.0257 *
## GroupCDCvsKS -0.072093 0.040732 -1.770 0.0769 .
## AgeR 0.017556 0.001936 9.069 <2e-16 ***
## GroupCvsCD_KS:AgeR 0.001176 0.001350 0.871 0.3840
## GroupCDCvsKS:AgeR 0.002127 0.002403 0.885 0.3762
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.351 on 1667 degrees of freedom
## (30 observations deleted due to missingness)
## Multiple R-squared: 0.05228, Adjusted R-squared: 0.04943
## F-statistic: 18.39 on 5 and 1667 DF, p-value: < 2.2e-16
## 2.5 % 97.5 %
## (Intercept) 4.734704368 4.864375149
## GroupCvsCD_KS 0.006289194 0.097417324
## GroupCDCvsKS -0.151984792 0.007797953
## AgeR 0.013758795 0.021352421
## GroupCvsCD_KS:AgeR -0.001472117 0.003823297
## GroupCDCvsKS:AgeR -0.002586277 0.006840558
Omnibus ANOVA test: CV19 willingness (to do another period of staying at home in Winter if cases rise)
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 18.89 | 9.445 | 4.751 | 0.009 |
| Residuals | 1699 | 3377.81 | 1.988 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 18.89 | 9.445 | 4.751 | 0.009 | 0.006 | 0.006 | 0.004 | 0.004 | 0.004 | 0.075 | 0.794 |
| …2 | Residuals | 1699 | 3377.81 | 1.988 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 4.791 | 0.034 | 140.127 | 0.000 |
| GroupCvsCD_KS | 0.072 | 0.024 | 2.982 | 0.003 |
| GroupCDCvsKS | 0.031 | 0.042 | 0.738 | 0.460 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 1702 | 1.41 | 0.006 | 0.004 |
Planned contrast effect sizes
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c1 | Group.c1 | 17.81 | 17.807 | 1 | 8.959 | 0.003 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.073 | 0.849 |
| …2 | Residuals | 3378.89 | 1.988 | 1700 |
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c2 | Group.c2 | 1.084 | 1.084 | 1 | 0.573 | 0.449 | 0.001 | 0.001 | 0 | 0 | 0 | 0.023 | 0.118 |
| …2 | Residuals | 2113.016 | 1.890 | 1118 |
Contrast v2
## Df Sum Sq Mean Sq F value Pr(>F)
## Group 2 19 9.445 4.751 0.00876 **
## Group: Control vs. CDC_KS 1 18 17.807 8.957 0.00280 **
## Group: CDC vs KS 1 1 1.084 0.545 0.46047
## Residuals 1699 3378 1.988
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
lsmeans contrast (unadjusted)
| contrast | estimate | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| Control vs CDC and KS | 0.430 | 0.144 | 1699 | 0.147 | 0.712 | 2.982 | 0.003 |
| CDC vs KS | 0.062 | 0.084 | 1699 | -0.103 | 0.228 | 0.738 | 0.460 |
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 4.648 | 0.058 | 1699 | 4.533 | 4.762 |
| CDC | 4.832 | 0.060 | 1699 | 4.713 | 4.950 |
| KS | 4.894 | 0.059 | 1699 | 4.778 | 5.009 |
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 582 4.65 1.48 5 4.89 1.48 1 6 5 -1.07 0.23 0.06
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 546 4.83 1.42 5 5.09 1.48 1 6 5 -1.26 0.81 0.06
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 574 4.89 1.33 5 5.13 1.48 1 6 5 -1.33 1.24 0.06
Exploratory: Age moderation
##
## Call:
## lm(formula = Adhere_willing ~ Group * AgeR, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.1917 -0.7787 0.2879 1.1550 1.4848
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.7971171 0.0344228 139.359 < 2e-16 ***
## GroupCvsCD_KS 0.0732758 0.0241950 3.029 0.00249 **
## GroupCDCvsKS 0.0186262 0.0424099 0.439 0.66058
## AgeR 0.0058217 0.0020164 2.887 0.00394 **
## GroupCvsCD_KS:AgeR 0.0003193 0.0014062 0.227 0.82039
## GroupCDCvsKS:AgeR 0.0039874 0.0025032 1.593 0.11137
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.407 on 1668 degrees of freedom
## (29 observations deleted due to missingness)
## Multiple R-squared: 0.01261, Adjusted R-squared: 0.009651
## F-statistic: 4.261 on 5 and 1668 DF, p-value: 0.0007468
## 2.5 % 97.5 %
## (Intercept) 4.7296005926 4.864633565
## GroupCvsCD_KS 0.0258200433 0.120731473
## GroupCDCvsKS -0.0645560922 0.101808485
## AgeR 0.0018667609 0.009776709
## GroupCvsCD_KS:AgeR -0.0024387321 0.003077341
## GroupCDCvsKS:AgeR -0.0009223315 0.008897070
Omnibus ANOVA test: CV19 willingness (to do another period of staying at home in Winter if cases rise)
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 2.245 | 1.122 | 0.82 | 0.44 |
| Residuals | 1648 | 2254.486 | 1.368 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 2.245 | 1.122 | 0.82 | 0.44 | 0.001 | 0.001 | 0 | 0 | 0 | 0.032 | 0.192 |
| …2 | Residuals | 1648 | 2254.486 | 1.368 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 4.227 | 0.029 | 146.780 | 0.000 |
| GroupCvsCD_KS | 0.025 | 0.020 | 1.214 | 0.225 |
| GroupCDCvsKS | -0.015 | 0.035 | -0.429 | 0.668 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 1651 | 1.17 | 0.001 | 0 |
Planned contrast effect sizes
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c1 | Group.c1 | 1.993 | 1.993 | 1 | 1.458 | 0.227 | 0.001 | 0.001 | 0 | 0 | 0 | 0.03 | 0.227 |
| …2 | Residuals | 2254.737 | 1.367 | 1649 |
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c2 | Group.c2 | 0.251 | 0.251 | 1 | 0.187 | 0.665 | 0 | 0 | -0.001 | -0.001 | -0.001 | 0.013 | 0.072 |
| …2 | Residuals | 1458.248 | 1.343 | 1086 |
Contrast v2
## Df Sum Sq Mean Sq F value Pr(>F)
## Group 2 2.2 1.1223 0.820 0.440
## Group: Control vs. CDC_KS 1 2.0 1.9934 1.457 0.228
## Group: CDC vs KS 1 0.3 0.2513 0.184 0.668
## Residuals 1648 2254.5 1.3680
## 52 observations deleted due to missingness
lsmeans contrast (unadjusted)
| contrast | estimate | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| Control vs CDC and KS | 0.147 | 0.121 | 1648 | -0.091 | 0.386 | 1.214 | 0.225 |
| CDC vs KS | -0.030 | 0.071 | 1648 | -0.170 | 0.109 | -0.429 | 0.668 |
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 4.178 | 0.049 | 1648 | 4.081 | 4.274 |
| CDC | 4.267 | 0.051 | 1648 | 4.167 | 4.366 |
| KS | 4.236 | 0.049 | 1648 | 4.139 | 4.333 |
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 563 4.18 1.19 5 4.41 0 1 5 4 -1.31 0.63 0.05
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 529 4.27 1.16 5 4.52 0 1 5 4 -1.48 1.13 0.05
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 559 4.24 1.16 5 4.48 0 1 5 4 -1.43 1.03 0.05
Exploratory: Age moderation
##
## Call:
## lm(formula = AdhereAttitude1_1 ~ Group * AgeR, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9021 -0.5462 0.4862 0.8116 1.2208
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.2337180 0.0283498 149.339 <2e-16 ***
## GroupCvsCD_KS 0.0254209 0.0199400 1.275 0.203
## GroupCDCvsKS -0.0321206 0.0349044 -0.920 0.358
## AgeR 0.0142210 0.0016482 8.628 <2e-16 ***
## GroupCvsCD_KS:AgeR -0.0001221 0.0011494 -0.106 0.915
## GroupCDCvsKS:AgeR 0.0024136 0.0020460 1.180 0.238
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.141 on 1617 degrees of freedom
## (80 observations deleted due to missingness)
## Multiple R-squared: 0.04691, Adjusted R-squared: 0.04396
## F-statistic: 15.92 on 5 and 1617 DF, p-value: 2.475e-15
## 2.5 % 97.5 %
## (Intercept) 4.178111906 4.289324149
## GroupCvsCD_KS -0.013690006 0.064531767
## GroupCDCvsKS -0.100583290 0.036342062
## AgeR 0.010988190 0.017453747
## GroupCvsCD_KS:AgeR -0.002376527 0.002132315
## GroupCDCvsKS:AgeR -0.001599545 0.006426743
Omnibus ANOVA test: How frequently, if at all, do you plan to do the following things in the next month?
(e.g., going to gatherings of 10 or more people)
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 23.09 | 11.547 | 5.151 | 0.006 |
| Residuals | 1699 | 3808.57 | 2.242 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 23.09 | 11.547 | 5.151 | 0.006 | 0.006 | 0.006 | 0.005 | 0.005 | 0.005 | 0.078 | 0.827 |
| …2 | Residuals | 1699 | 3808.57 | 2.242 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 2.839 | 0.036 | 78.201 | 0.000 |
| GroupCvsCD_KS | -0.082 | 0.026 | -3.200 | 0.001 |
| GroupCDCvsKS | -0.009 | 0.045 | -0.209 | 0.835 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 1702 | 1.497 | 0.006 | 0.005 |
Planned contrast effect sizes
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c1 | Group.c1 | 23 | 23.00 | 1 | 10.27 | 0.001 | 0.006 | 0.006 | 0.005 | 0.005 | 0.005 | 0.078 | 0.893 |
| …2 | Residuals | 3809 | 2.24 | 1700 |
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c2 | Group.c2 | 0.098 | 0.098 | 1 | 0.044 | 0.834 | 0 | 0 | -0.001 | -0.001 | -0.001 | 0.006 | 0.055 |
| …2 | Residuals | 2473.896 | 2.213 | 1118 |
Contrast v2
## Df Sum Sq Mean Sq F value Pr(>F)
## Group 2 23 11.547 5.151 0.00588 **
## Group: Control vs. CDC_KS 1 23 22.997 10.259 0.00139 **
## Group: CDC vs KS 1 0 0.098 0.044 0.83471
## Residuals 1699 3809 2.242
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 1 observation deleted due to missingness
lsmeans contrast (unadjusted)
| contrast | estimate | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| Control vs CDC and KS | -0.490 | 0.153 | 1699 | -0.790 | -0.189 | -3.200 | 0.001 |
| CDC vs KS | -0.019 | 0.090 | 1699 | -0.194 | 0.157 | -0.209 | 0.835 |
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 3.002 | 0.062 | 1699 | 2.881 | 3.124 |
| CDC | 2.767 | 0.064 | 1699 | 2.641 | 2.893 |
| KS | 2.748 | 0.062 | 1699 | 2.626 | 2.871 |
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 582 3 1.52 2.8 2.9 1.78 1 6 5 0.45 -0.93 0.06
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 546 2.77 1.48 2.4 2.63 1.48 1 6 5 0.62 -0.74 0.06
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 574 2.75 1.49 2.4 2.6 1.48 1 6 5 0.66 -0.73 0.06
Exploratory: Age moderation
##
## Call:
## lm(formula = BehavIntRisk_Avg ~ Group * AgeR, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7038 -1.0880 -0.2833 0.9014 3.6812
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.829922260 0.034765759 81.400 < 2e-16 ***
## GroupCvsCD_KS -0.077087260 0.024436016 -3.155 0.00164 **
## GroupCDCvsKS 0.004238658 0.042832433 0.099 0.92118
## AgeR -0.027563545 0.002036505 -13.535 < 2e-16 ***
## GroupCvsCD_KS:AgeR -0.000003949 0.001420175 -0.003 0.99778
## GroupCDCvsKS:AgeR -0.001888044 0.002528115 -0.747 0.45528
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.421 on 1668 degrees of freedom
## (29 observations deleted due to missingness)
## Multiple R-squared: 0.1056, Adjusted R-squared: 0.1029
## F-statistic: 39.38 on 5 and 1668 DF, p-value: < 2.2e-16
## 2.5 % 97.5 %
## (Intercept) 2.761733144 2.898111375
## GroupCvsCD_KS -0.125015749 -0.029158770
## GroupCDCvsKS -0.079772329 0.088249646
## AgeR -0.031557921 -0.023569170
## GroupCvsCD_KS:AgeR -0.002789462 0.002781564
## GroupCDCvsKS:AgeR -0.006846658 0.003070569
Omnibus ANOVA test: How frequently, if at all, do you plan to do the following things in the next month?
(e.g., Wearing a mask over your nose and mouth when you are in a public place (e.g., store))
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 3.691 | 1.845 | 1.399 | 0.247 |
| Residuals | 1696 | 2237.984 | 1.320 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 3.691 | 1.845 | 1.399 | 0.247 | 0.002 | 0.002 | 0 | 0 | 0 | 0.041 | 0.302 |
| …2 | Residuals | 1696 | 2237.984 | 1.320 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 4.963 | 0.028 | 178.032 | 0.000 |
| GroupCvsCD_KS | 0.030 | 0.020 | 1.521 | 0.129 |
| GroupCDCvsKS | -0.025 | 0.034 | -0.716 | 0.474 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 1699 | 1.149 | 0.002 | 0 |
Planned contrast effect sizes
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c1 | Group.c1 | 3.014 | 3.014 | 1 | 2.285 | 0.131 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.037 | 0.327 |
| …2 | Residuals | 2238.661 | 1.319 | 1697 |
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c2 | Group.c2 | 0.676 | 0.676 | 1 | 0.515 | 0.473 | 0 | 0 | 0 | 0 | 0 | 0.021 | 0.111 |
| …2 | Residuals | 1463.595 | 1.313 | 1115 |
Contrast v2
## Df Sum Sq Mean Sq F value Pr(>F)
## Group 2 3.7 1.8454 1.399 0.247
## Group: Control vs. CDC_KS 1 3.0 3.0145 2.284 0.131
## Group: CDC vs KS 1 0.7 0.6764 0.513 0.474
## Residuals 1696 2238.0 1.3196
## 4 observations deleted due to missingness
lsmeans contrast (unadjusted)
| contrast | estimate | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| Control vs CDC and KS | 0.179 | 0.117 | 1696 | -0.052 | 0.409 | 1.521 | 0.129 |
| CDC vs KS | -0.049 | 0.069 | 1696 | -0.184 | 0.086 | -0.716 | 0.474 |
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 4.904 | 0.048 | 1696 | 4.810 | 4.997 |
| CDC | 5.018 | 0.049 | 1696 | 4.921 | 5.114 |
| KS | 4.968 | 0.048 | 1696 | 4.874 | 5.063 |
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 582 4.9 1.15 5.33 5.08 0.99 1 6 5 -1.15 0.73 0.05
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 546 5.02 1.11 5.33 5.2 0.99 1 6 5 -1.29 1.18 0.05
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 571 4.97 1.18 5.33 5.17 0.99 1 6 5 -1.34 1.26 0.05
Exploratory: Age moderation
##
## Call:
## lm(formula = BehavIntPrtct_Avg ~ Group * AgeR, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.2958 -0.5875 0.3140 0.8249 1.4557
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.9754887 0.0273265 182.076 <2e-16 ***
## GroupCvsCD_KS 0.0306301 0.0191989 1.595 0.111
## GroupCDCvsKS -0.0321408 0.0336812 -0.954 0.340
## AgeR 0.0143961 0.0016032 8.979 <2e-16 ***
## GroupCvsCD_KS:AgeR 0.0001172 0.0011167 0.105 0.916
## GroupCDCvsKS:AgeR -0.0010377 0.0019925 -0.521 0.603
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.116 on 1665 degrees of freedom
## (32 observations deleted due to missingness)
## Multiple R-squared: 0.04824, Adjusted R-squared: 0.04538
## F-statistic: 16.88 on 5 and 1665 DF, p-value: 2.653e-16
## 2.5 % 97.5 %
## (Intercept) 4.921890832 5.029086656
## GroupCvsCD_KS -0.007026323 0.068286612
## GroupCDCvsKS -0.098202752 0.033921127
## AgeR 0.011251503 0.017540631
## GroupCvsCD_KS:AgeR -0.002073096 0.002307504
## GroupCDCvsKS:AgeR -0.004945753 0.002870283
Omnibus ANOVA test: Individual susceptibility and likelihood of getting CV19
(higher score correspond to more risk)
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 0.151 | 0.076 | 0.04 | 0.961 |
| Residuals | 1390 | 2623.983 | 1.888 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 0.151 | 0.076 | 0.04 | 0.961 | 0 | 0 | -0.001 | -0.001 | -0.001 | 0.008 | 0.056 |
| …2 | Residuals | 1390 | 2623.983 | 1.888 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 4.147 | 0.037 | 112.635 | 0.000 |
| GroupCvsCD_KS | -0.007 | 0.026 | -0.277 | 0.782 |
| GroupCDCvsKS | -0.003 | 0.045 | -0.057 | 0.954 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 1393 | 1.374 | 0 | -0.001 |
## Df Sum Sq Mean Sq F value Pr(>F)
## Group 2 0.2 0.0757 0.040 0.961
## Group: Control vs. CDC_KS 1 0.1 0.1452 0.077 0.782
## Group: CDC vs KS 1 0.0 0.0062 0.003 0.954
## Residuals 1390 2624.0 1.8878
## 310 observations deleted due to missingness
Planned contrast effect sizes
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c1 | Group.c1 | 0.145 | 0.145 | 1 | 0.077 | 0.781 | 0 | 0 | -0.001 | -0.001 | -0.001 | 0.007 | 0.059 |
| …2 | Residuals | 2623.989 | 1.886 | 1391 |
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c2 | Group.c2 | 0.006 | 0.006 | 1 | 0.003 | 0.955 | 0 | 0 | -0.001 | -0.001 | -0.001 | 0.002 | 0.05 |
| …2 | Residuals | 1748.207 | 1.894 | 923 |
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 4.161 | 0.064 | 1390 | 4.037 | 4.286 |
| CDC | 4.142 | 0.064 | 1390 | 4.016 | 4.269 |
| KS | 4.137 | 0.063 | 1390 | 4.013 | 4.261 |
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 468 4.16 1.37 4.11 4.17 1.32 1 7 6 -0.04 -0.3 0.06
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 455 4.14 1.39 4.22 4.16 1.32 1 7 6 -0.13 -0.46 0.07
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 470 4.14 1.36 4.11 4.16 1.32 1 7 6 -0.14 -0.27 0.06
Exploratory: Age moderation
##
## Call:
## lm(formula = IndivRisk_Avg ~ Group * AgeR, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2192 -0.9320 0.0047 0.9337 2.9546
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.1458147 0.0371954 111.461 <2e-16 ***
## GroupCvsCD_KS -0.0100602 0.0262305 -0.384 0.701
## GroupCDCvsKS -0.0134342 0.0456768 -0.294 0.769
## AgeR 0.0001202 0.0021349 0.056 0.955
## GroupCvsCD_KS:AgeR 0.0018224 0.0014935 1.220 0.223
## GroupCDCvsKS:AgeR 0.0008935 0.0026423 0.338 0.735
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.374 on 1372 degrees of freedom
## (325 observations deleted due to missingness)
## Multiple R-squared: 0.001276, Adjusted R-squared: -0.002363
## F-statistic: 0.3507 on 5 and 1372 DF, p-value: 0.882
## 2.5 % 97.5 %
## (Intercept) 4.072848764 4.218780666
## GroupCvsCD_KS -0.061516402 0.041395976
## GroupCDCvsKS -0.103038180 0.076169764
## AgeR -0.004067922 0.004308236
## GroupCvsCD_KS:AgeR -0.001107504 0.004752207
## GroupCDCvsKS:AgeR -0.004289916 0.006076927
Here are the posthoc Tukey multiple comparisons of means (95% family-wise confidence level) with a plot to show.
Omnibus ANOVA test: CV19-OAS by group
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 0.865 | 0.433 | 1.038 | 0.354 |
| Residuals | 1700 | 708.252 | 0.417 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 0.865 | 0.433 | 1.038 | 0.354 | 0.001 | 0.001 | 0 | 0 | 0 | 0.035 | 0.233 |
| …2 | Residuals | 1700 | 708.252 | 0.417 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 2.197 | 0.016 | 140.411 | 0.000 |
| GroupCvsCD_KS | -0.004 | 0.011 | -0.391 | 0.696 |
| GroupCDCvsKS | 0.027 | 0.019 | 1.393 | 0.164 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 1703 | 0.645 | 0.001 | 0 |
Planned contrast effect sizes
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c1 | Group.c1 | 0.057 | 0.057 | 1 | 0.136 | 0.712 | 0 | 0 | -0.001 | -0.001 | -0.001 | 0.009 | 0.066 |
| …2 | Residuals | 709.061 | 0.417 | 1701 |
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c2 | Group.c2 | 0.808 | 0.808 | 1 | 1.914 | 0.167 | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | 0.041 | 0.283 |
| …2 | Residuals | 472.668 | 0.422 | 1119 |
Contrast v2
## Df Sum Sq Mean Sq F value Pr(>F)
## Group 2 0.9 0.4326 1.038 0.354
## Group: Control vs. CDC_KS 1 0.1 0.0569 0.137 0.712
## Group: CDC vs KS 1 0.8 0.8083 1.940 0.164
## Residuals 1700 708.3 0.4166
lsmeans contrast (unadjusted)
| contrast | estimate | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| Control vs CDC and KS | -0.026 | 0.066 | 1700 | -0.155 | 0.104 | -0.391 | 0.696 |
| CDC vs KS | 0.054 | 0.039 | 1700 | -0.022 | 0.129 | 1.393 | 0.164 |
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 2.206 | 0.027 | 1700 | 2.153 | 2.258 |
| CDC | 2.166 | 0.028 | 1700 | 2.112 | 2.220 |
| KS | 2.220 | 0.027 | 1700 | 2.167 | 2.272 |
Show standard means and sds by group
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 582 2.21 0.64 2.2 2.18 0.89 1 3.6 2.6 0.28 -0.77 0.03
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 546 2.17 0.66 2 2.14 0.59 1 3.6 2.6 0.36 -0.89 0.03
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 575 2.22 0.64 2.2 2.19 0.89 1 4 3 0.29 -0.78 0.03
Exploratory: Age moderation
##
## Call:
## lm(formula = AgeismMyth_Avg ~ Group * AgeR, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.44651 -0.48166 -0.08682 0.44685 1.95660
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.1938184 0.0152943 143.440 <2e-16 ***
## GroupCvsCD_KS -0.0028177 0.0107516 -0.262 0.7933
## GroupCDCvsKS 0.0325963 0.0188403 1.730 0.0838 .
## AgeR -0.0094017 0.0008961 -10.491 <2e-16 ***
## GroupCvsCD_KS:AgeR -0.0001934 0.0006249 -0.309 0.7570
## GroupCDCvsKS:AgeR -0.0004827 0.0011124 -0.434 0.6644
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6253 on 1669 degrees of freedom
## (28 observations deleted due to missingness)
## Multiple R-squared: 0.06338, Adjusted R-squared: 0.06058
## F-statistic: 22.59 on 5 and 1669 DF, p-value: < 2.2e-16
## 2.5 % 97.5 %
## (Intercept) 2.163820281 2.223816489
## GroupCvsCD_KS -0.023905816 0.018270347
## GroupCDCvsKS -0.004356858 0.069549493
## AgeR -0.011159347 -0.007644006
## GroupCvsCD_KS:AgeR -0.001419139 0.001032373
## GroupCDCvsKS:AgeR -0.002664630 0.001699213
Omnibus ANOVA test: CV19 priority preference (get to work even if means more older people will die)
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 0.48 | 0.240 | 0.646 | 0.524 |
| Residuals | 1700 | 631.60 | 0.372 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 0.48 | 0.240 | 0.646 | 0.524 | 0.001 | 0.001 | 0 | 0 | 0 | 0.028 | 0.159 |
| …2 | Residuals | 1700 | 631.60 | 0.372 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 2.212 | 0.015 | 149.73 | 0.000 |
| GroupCvsCD_KS | -0.009 | 0.010 | -0.86 | 0.390 |
| GroupCDCvsKS | -0.013 | 0.018 | -0.73 | 0.465 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 1703 | 0.61 | 0.001 | 0 |
Planned contrast effect sizes
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c1 | Group.c1 | 0.282 | 0.282 | 1 | 0.759 | 0.384 | 0 | 0 | 0 | 0 | 0 | 0.021 | 0.14 |
| …2 | Residuals | 631.795 | 0.371 | 1701 |
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c2 | Group.c2 | 0.198 | 0.198 | 1 | 0.52 | 0.471 | 0 | 0 | 0 | 0 | 0 | 0.022 | 0.111 |
| …2 | Residuals | 426.267 | 0.381 | 1119 |
Contrast v2
## Df Sum Sq Mean Sq F value Pr(>F)
## Group 2 0.5 0.2400 0.646 0.524
## Group: Control vs. CDC_KS 1 0.3 0.2819 0.759 0.384
## Group: CDC vs KS 1 0.2 0.1982 0.533 0.465
## Residuals 1700 631.6 0.3715
lsmeans contrast (unadjusted)
| contrast | estimate | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| Control vs CDC and KS | -0.054 | 0.062 | 1700 | -0.176 | 0.069 | -0.86 | 0.390 |
| CDC vs KS | -0.027 | 0.036 | 1700 | -0.098 | 0.045 | -0.73 | 0.465 |
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 2.230 | 0.025 | 1700 | 2.181 | 2.280 |
| CDC | 2.217 | 0.026 | 1700 | 2.166 | 2.268 |
| KS | 2.190 | 0.025 | 1700 | 2.140 | 2.240 |
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 582 2.23 0.59 2.17 2.22 0.64 1 3.39 2.39 0.08 -0.91 0.02
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 546 2.22 0.6 2.17 2.21 0.64 1 3.35 2.35 0.03 -0.82 0.03
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 575 2.19 0.63 2.13 2.18 0.71 1 3.57 2.57 0.08 -0.95 0.03
Exploratory: Age moderation
##
## Call:
## lm(formula = AgeismFraboni_Avg ~ Group * AgeR, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.45247 -0.38124 -0.01317 0.39308 1.37556
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.2093980 0.0139605 158.260 <2e-16 ***
## GroupCvsCD_KS -0.0066457 0.0098140 -0.677 0.498
## GroupCDCvsKS -0.0078410 0.0171973 -0.456 0.648
## AgeR -0.0125092 0.0008180 -15.293 <2e-16 ***
## GroupCvsCD_KS:AgeR -0.0005269 0.0005704 -0.924 0.356
## GroupCDCvsKS:AgeR -0.0019263 0.0010154 -1.897 0.058 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5708 on 1669 degrees of freedom
## (28 observations deleted due to missingness)
## Multiple R-squared: 0.1265, Adjusted R-squared: 0.1239
## F-statistic: 48.35 on 5 and 1669 DF, p-value: < 2.2e-16
## 2.5 % 97.5 %
## (Intercept) 2.182015998 2.23677992934
## GroupCvsCD_KS -0.025894705 0.01260326925
## GroupCDCvsKS -0.041571495 0.02588947399
## AgeR -0.014113568 -0.01090480083
## GroupCvsCD_KS:AgeR -0.001645770 0.00059194449
## GroupCDCvsKS:AgeR -0.003917919 0.00006535293
Omnibus ANOVA test: CV19 priority preference (get to work even if means more older people will die)
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 0.009 | 0.005 | 0.15 | 0.86 |
| Residuals | 1700 | 51.737 | 0.030 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 0.009 | 0.005 | 0.15 | 0.86 | 0 | 0 | -0.001 | -0.001 | -0.001 | 0.013 | 0.073 |
| …2 | Residuals | 1700 | 51.737 | 0.030 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 0.386 | 0.004 | 91.245 | 0.000 |
| GroupCvsCD_KS | -0.002 | 0.003 | -0.540 | 0.589 |
| GroupCDCvsKS | 0.000 | 0.005 | -0.085 | 0.932 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 1703 | 0.174 | 0 | -0.001 |
Planned contrast effect sizes
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c1 | Group.c1 | 0.009 | 0.009 | 1 | 0.294 | 0.588 | 0 | 0 | 0 | 0 | 0 | 0.013 | 0.084 |
| …2 | Residuals | 51.738 | 0.030 | 1701 |
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c2 | Group.c2 | 0.00 | 0.000 | 1 | 0.007 | 0.933 | 0 | 0 | -0.001 | -0.001 | -0.001 | 0.003 | 0.051 |
| …2 | Residuals | 34.95 | 0.031 | 1119 |
Contrast v2
## Df Sum Sq Mean Sq F value Pr(>F)
## Group 2 0.01 0.004576 0.150 0.860
## Group: Control vs. CDC_KS 1 0.01 0.008931 0.293 0.588
## Group: CDC vs KS 1 0.00 0.000221 0.007 0.932
## Residuals 1700 51.74 0.030434
lsmeans contrast (unadjusted)
| contrast | estimate | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| Control vs CDC and KS | -0.010 | 0.018 | 1700 | -0.045 | 0.025 | -0.540 | 0.589 |
| CDC vs KS | -0.001 | 0.010 | 1700 | -0.021 | 0.020 | -0.085 | 0.932 |
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 0.389 | 0.007 | 1700 | 0.375 | 0.403 |
| CDC | 0.385 | 0.007 | 1700 | 0.370 | 0.399 |
| KS | 0.384 | 0.007 | 1700 | 0.370 | 0.398 |
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 582 0.39 0.17 0.42 0.39 0.25 0 0.92 0.92 0.09 -0.54 0.01
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 546 0.38 0.17 0.39 0.38 0.21 0 0.92 0.92 0.19 -0.57 0.01
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 575 0.38 0.18 0.42 0.38 0.25 0 0.92 0.92 0.19 -0.43 0.01
Exploratory: Age moderation
##
## Call:
## lm(formula = AgeismFact_Avg ~ Group * AgeR, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.42152 -0.11179 -0.00056 0.10671 0.55727
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.38410138 0.00387432 99.140 <2e-16 ***
## GroupCvsCD_KS -0.00069544 0.00272357 -0.255 0.798
## GroupCDCvsKS 0.00321718 0.00477258 0.674 0.500
## AgeR -0.00421834 0.00022701 -18.582 <2e-16 ***
## GroupCvsCD_KS:AgeR -0.00006077 0.00015831 -0.384 0.701
## GroupCDCvsKS:AgeR -0.00001896 0.00028180 -0.067 0.946
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1584 on 1669 degrees of freedom
## (28 observations deleted due to missingness)
## Multiple R-squared: 0.1718, Adjusted R-squared: 0.1694
## F-statistic: 69.26 on 5 and 1669 DF, p-value: < 2.2e-16
## 2.5 % 97.5 %
## (Intercept) 0.3765023484 0.3917004083
## GroupCvsCD_KS -0.0060374098 0.0046465296
## GroupCDCvsKS -0.0061436893 0.0125780465
## AgeR -0.0046635833 -0.0037730878
## GroupCvsCD_KS:AgeR -0.0003712753 0.0002497343
## GroupCDCvsKS:AgeR -0.0005716756 0.0005337600
Omnibus ANOVA test: death anxiety scale
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 0.041 | 0.021 | 0.06 | 0.942 |
| Residuals | 1700 | 584.366 | 0.344 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 0.041 | 0.021 | 0.06 | 0.942 | 0 | 0 | -0.001 | -0.001 | -0.001 | 0.008 | 0.059 |
| …2 | Residuals | 1700 | 584.366 | 0.344 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 3.050 | 0.014 | 214.604 | 0.000 |
| GroupCvsCD_KS | -0.003 | 0.010 | -0.326 | 0.744 |
| GroupCDCvsKS | -0.002 | 0.018 | -0.110 | 0.913 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 1703 | 0.586 | 0 | -0.001 |
Planned contrast effect sizes
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c1 | Group.c1 | 0.037 | 0.037 | 1 | 0.108 | 0.743 | 0 | 0 | -0.001 | -0.001 | -0.001 | 0.008 | 0.062 |
| …2 | Residuals | 584.370 | 0.344 | 1701 |
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c2 | Group.c2 | 0.004 | 0.004 | 1 | 0.012 | 0.914 | 0 | 0 | -0.001 | -0.001 | -0.001 | 0.003 | 0.051 |
| …2 | Residuals | 399.197 | 0.357 | 1119 |
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 3.057 | 0.024 | 1700 | 3.009 | 3.104 |
| CDC | 3.049 | 0.025 | 1700 | 3.000 | 3.098 |
| KS | 3.045 | 0.024 | 1700 | 2.997 | 3.093 |
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 582 3.06 0.56 3.11 3.09 0.49 1.11 5 3.89 -0.49 0.64 0.02
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 546 3.05 0.58 3.11 3.08 0.49 1 4.56 3.56 -0.42 0.17 0.02
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 575 3.04 0.61 3.11 3.08 0.49 1 5 4 -0.45 0.45 0.03
Exploratory: Age moderation
##
## Call:
## lm(formula = DeathAnxty_Avg ~ Group * AgeR, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.10064 -0.34485 0.05506 0.38800 2.05563
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0472683 0.0138863 219.444 <2e-16 ***
## GroupCvsCD_KS -0.0002433 0.0097618 -0.025 0.980
## GroupCDCvsKS 0.0022274 0.0171058 0.130 0.896
## AgeR -0.0090451 0.0008136 -11.117 <2e-16 ***
## GroupCvsCD_KS:AgeR -0.0008155 0.0005674 -1.437 0.151
## GroupCDCvsKS:AgeR -0.0007545 0.0010100 -0.747 0.455
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5678 on 1669 degrees of freedom
## (28 observations deleted due to missingness)
## Multiple R-squared: 0.0702, Adjusted R-squared: 0.06742
## F-statistic: 25.2 on 5 and 1669 DF, p-value: < 2.2e-16
## 2.5 % 97.5 %
## (Intercept) 3.020031919 3.074504718
## GroupCvsCD_KS -0.019389974 0.018903340
## GroupCDCvsKS -0.031323819 0.035778519
## AgeR -0.010640950 -0.007449242
## GroupCvsCD_KS:AgeR -0.001928425 0.000297394
## GroupCDCvsKS:AgeR -0.002735512 0.001226584
Here are the posthoc Tukey multiple comparisons of means (95% family-wise confidence level) with a plot to show.
Group:
| diff | lwr | upr | p adj | |
|---|---|---|---|---|
| CDC-Control | -0.008 | -0.090 | 0.074 | 0.973 |
| KS-Control | -0.012 | -0.093 | 0.069 | 0.938 |
| KS-CDC | -0.004 | -0.086 | 0.078 | 0.993 |
Omnibus ANOVA test: Death worry single item
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 3.481 | 1.741 | 0.871 | 0.419 |
| Residuals | 1698 | 3393.913 | 1.999 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 3.481 | 1.741 | 0.871 | 0.419 | 0.001 | 0.001 | 0 | 0 | 0 | 0.032 | 0.201 |
| …2 | Residuals | 1698 | 3393.913 | 1.999 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 3.063 | 0.034 | 89.321 | 0.000 |
| GroupCvsCD_KS | -0.007 | 0.024 | -0.296 | 0.767 |
| GroupCDCvsKS | -0.054 | 0.042 | -1.281 | 0.200 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 1701 | 1.414 | 0.001 | 0 |
Planned contrast effect sizes
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c1 | Group.c1 | 0.199 | 0.199 | 1 | 0.1 | 0.752 | 0 | 0 | -0.001 | -0.001 | -0.001 | 0.008 | 0.061 |
| …2 | Residuals | 3397.195 | 2.000 | 1699 |
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c2 | Group.c2 | 3.282 | 3.282 | 1 | 1.635 | 0.201 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.038 | 0.248 |
| …2 | Residuals | 2242.393 | 2.008 | 1117 |
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 3.077 | 0.059 | 1698 | 2.962 | 3.192 |
| CDC | 3.110 | 0.061 | 1698 | 2.991 | 3.229 |
| KS | 3.002 | 0.059 | 1698 | 2.886 | 3.117 |
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 582 3.08 1.41 3 3.1 1.48 1 5 4 -0.09 -1.24 0.06
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 545 3.11 1.41 3 3.14 1.48 1 5 4 -0.12 -1.25 0.06
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 574 3 1.42 3 3 1.48 1 5 4 -0.1 -1.28 0.06
Exploratory: Age moderation
##
## Call:
## lm(formula = D_Worry ~ Group * AgeR, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.66377 -1.15388 0.08944 1.09087 2.66792
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0611724 0.0337534 90.692 <2e-16 ***
## GroupCvsCD_KS -0.0031167 0.0237205 -0.131 0.895
## GroupCDCvsKS -0.0525942 0.0415919 -1.265 0.206
## AgeR -0.0183459 0.0019770 -9.280 <2e-16 ***
## GroupCvsCD_KS:AgeR -0.0012357 0.0013785 -0.896 0.370
## GroupCDCvsKS:AgeR 0.0008143 0.0024545 0.332 0.740
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.379 on 1667 degrees of freedom
## (30 observations deleted due to missingness)
## Multiple R-squared: 0.05062, Adjusted R-squared: 0.04777
## F-statistic: 17.78 on 5 and 1667 DF, p-value: < 2.2e-16
## 2.5 % 97.5 %
## (Intercept) 2.994968955 3.127375873
## GroupCvsCD_KS -0.049641867 0.043408369
## GroupCDCvsKS -0.134172010 0.028983550
## AgeR -0.022223518 -0.014468269
## GroupCvsCD_KS:AgeR -0.003939459 0.001468147
## GroupCDCvsKS:AgeR -0.003999832 0.005628513
Here are the posthoc Tukey multiple comparisons of means (95% family-wise confidence level) with a plot to show.
Group:
| diff | lwr | upr | p adj | |
|---|---|---|---|---|
| CDC-Control | 0.033 | -0.165 | 0.23 | 0.920 |
| KS-Control | -0.076 | -0.271 | 0.12 | 0.635 |
| KS-CDC | -0.108 | -0.307 | 0.09 | 0.406 |
Omnibus ANOVA test: worry about getting older
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 4.455 | 2.228 | 1.108 | 0.33 |
| Residuals | 1700 | 3417.904 | 2.011 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 4.455 | 2.228 | 1.108 | 0.33 | 0.001 | 0.001 | 0 | 0 | 0 | 0.036 | 0.246 |
| …2 | Residuals | 1700 | 3417.904 | 2.011 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 3.125 | 0.034 | 90.926 | 0.000 |
| GroupCvsCD_KS | -0.022 | 0.024 | -0.890 | 0.373 |
| GroupCDCvsKS | -0.050 | 0.042 | -1.179 | 0.238 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 1703 | 1.418 | 0.001 | 0 |
Planned contrast effect sizes
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c1 | Group.c1 | 1.659 | 1.659 | 1 | 0.825 | 0.364 | 0 | 0 | 0 | 0 | 0 | 0.022 | 0.149 |
| …2 | Residuals | 3420.701 | 2.011 | 1701 |
| term | sumsq | meansq | df | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group.c2 | Group.c2 | 2.797 | 2.797 | 1 | 1.353 | 0.245 | 0.001 | 0.001 | 0 | 0 | 0 | 0.035 | 0.214 |
| …2 | Residuals | 2312.406 | 2.066 | 1119 |
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 3.168 | 0.059 | 1700 | 3.053 | 3.284 |
| CDC | 3.154 | 0.061 | 1700 | 3.035 | 3.273 |
| KS | 3.054 | 0.059 | 1700 | 2.938 | 3.170 |
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 582 3.17 1.38 3 3.21 1.48 1 5 4 -0.21 -1.15 0.06
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 546 3.15 1.43 3 3.19 1.48 1 5 4 -0.2 -1.25 0.06
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 575 3.05 1.45 3 3.07 1.48 1 5 4 -0.08 -1.29 0.06
Exploratory: Age moderation
##
## Call:
## lm(formula = O_Worry ~ Group * AgeR, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.6579 -1.2079 0.1157 1.1709 2.6031
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.120551521 0.033956850 91.898 <2e-16 ***
## GroupCvsCD_KS -0.020251561 0.023871002 -0.848 0.396
## GroupCDCvsKS -0.045895994 0.041829758 -1.097 0.273
## AgeR -0.017309321 0.001989624 -8.700 <2e-16 ***
## GroupCvsCD_KS:AgeR -0.001550339 0.001387514 -1.117 0.264
## GroupCDCvsKS:AgeR 0.000008015 0.002469862 0.003 0.997
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.388 on 1669 degrees of freedom
## (28 observations deleted due to missingness)
## Multiple R-squared: 0.04536, Adjusted R-squared: 0.0425
## F-statistic: 15.86 on 5 and 1669 DF, p-value: 2.729e-15
## 2.5 % 97.5 %
## (Intercept) 3.053949018 3.187154023
## GroupCvsCD_KS -0.067071820 0.026568698
## GroupCDCvsKS -0.127940311 0.036148324
## AgeR -0.021211742 -0.013406900
## GroupCvsCD_KS:AgeR -0.004271791 0.001171112
## GroupCDCvsKS:AgeR -0.004836338 0.004852369
Here are the posthoc Tukey multiple comparisons of means (95% family-wise confidence level) with a plot to show.
Group:
| diff | lwr | upr | p adj | |
|---|---|---|---|---|
| CDC-Control | -0.015 | -0.213 | 0.184 | 0.984 |
| KS-Control | -0.114 | -0.310 | 0.081 | 0.355 |
| KS-CDC | -0.100 | -0.299 | 0.099 | 0.466 |
First row is Control vs CDC. Second row is Control vs Kitchen Sink.
| Var | M_C | sd_C | M_XI | sd_XI | Diff_est | CI_low | CI_high | t_statistic | test_dfs | p_value | p_value_Holm | p_value_Bonf | Effect_D |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Ageism_CVPriority2_1 | 3.082 | 1.779 | 2.851 | 1.764 | 0.231 | 0.023 | 0.439 | 2.178 | 1113 | 0.030 | 0.119 | 0.356 | 0.130 |
| Ageism_CVPriority2_1 | 3.082 | 1.779 | 2.776 | 1.722 | 0.306 | 0.103 | 0.509 | 2.951 | 1137 | 0.003 | 0.032 | 0.039 | 0.175 |
| Ageism_CVPriority2_2 | 3.075 | 1.747 | 2.762 | 1.692 | 0.313 | 0.111 | 0.516 | 3.033 | 1105 | 0.002 | 0.030 | 0.030 | 0.182 |
| Ageism_CVPriority2_2 | 3.075 | 1.747 | 2.800 | 1.668 | 0.275 | 0.076 | 0.475 | 2.711 | 1127 | 0.007 | 0.054 | 0.082 | 0.161 |
| Adhere_willing | 4.648 | 1.475 | 4.832 | 1.425 | -0.184 | -0.353 | -0.014 | -2.127 | 1125 | 0.034 | 0.119 | 0.403 | 0.127 |
| Adhere_willing | 4.648 | 1.475 | 4.894 | 1.325 | -0.246 | -0.408 | -0.084 | -2.983 | 1144 | 0.003 | 0.032 | 0.035 | 0.175 |
| AdhereAttitude3_1 | 4.677 | 1.460 | 4.890 | 1.307 | -0.213 | -0.375 | -0.051 | -2.582 | 1123 | 0.010 | 0.060 | 0.119 | 0.154 |
| AdhereAttitude3_1 | 4.677 | 1.460 | 4.789 | 1.398 | -0.112 | -0.277 | 0.053 | -1.335 | 1153 | 0.182 | 0.182 | 1.000 | 0.079 |
| AdhereAttitude3_3 | 4.721 | 1.351 | 4.866 | 1.248 | -0.145 | -0.297 | 0.007 | -1.874 | 1125 | 0.061 | 0.122 | 0.734 | 0.112 |
| AdhereAttitude3_3 | 4.721 | 1.351 | 4.902 | 1.285 | -0.181 | -0.333 | -0.029 | -2.330 | 1150 | 0.020 | 0.100 | 0.240 | 0.137 |
| BehavIntRisk_Avg | 3.002 | 1.516 | 2.767 | 1.485 | 0.235 | 0.060 | 0.411 | 2.635 | 1124 | 0.009 | 0.060 | 0.102 | 0.157 |
| BehavIntRisk_Avg | 3.002 | 1.516 | 2.748 | 1.490 | 0.254 | 0.081 | 0.428 | 2.875 | 1154 | 0.004 | 0.037 | 0.049 | 0.169 |
Does the framing of the question (how many would die vs. how many would recover) influence how people think COVID-19 would impact older adults?
I ran a Welch’s independent samples t-test to test whether participants estimates of number of adults aged 50-64 (out of 100 who got COVID) who would die differed depending on how the question was framed (recover vs. die).
We found that asking how many adults will die (46 out of 100) results in higher estimates than asking how many recover (36 out of 100). On average, both groups overestimate how many will die compared to current CFR (1.3) for this age group which is corresponding to 1 out of 100 (according to CDC data).
## Warning in independentSamplesTTest(formula = fiftytosixtyfour_die ~ Frame, : 16
## case(s) removed due to missingness
##
## Welch's independent samples t-test
##
## Outcome variable: fiftytosixtyfour_die
## Grouping variable: Frame
##
## Descriptive statistics:
## How many die framing How many recover framing
## mean 44.708 34.959
## std dev. 31.461 25.054
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: 7.036
## degrees of freedom: 1597.34
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [7.031, 12.467]
## estimated effect size (Cohen's d): 0.343
I then ran the same test for the questions asking about adults over 65 years old.
Again, asking how many will die results in higher estimates (55 out of 100) than asking how many will recover (42 out of 100). Again, both groups on average overestimate how many will die compared to current CFR (9.9) for this age group which is corresponding to 10 out of 100.
## Warning in independentSamplesTTest(formula = sixtyfiveorolder_die ~ Frame, : 16
## case(s) removed due to missingness
##
## Welch's independent samples t-test
##
## Outcome variable: sixtyfiveorolder_die
## Grouping variable: Frame
##
## Descriptive statistics:
## How many die framing How many recover framing
## mean 53.827 42.392
## std dev. 30.699 28.346
##
## Hypotheses:
## null: population means equal for both groups
## alternative: different population means in each group
##
## Test results:
## t-statistic: 7.948
## degrees of freedom: 1674.082
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [8.613, 14.257]
## estimated effect size (Cohen's d): 0.387
Check whether estimates differ based on the group for fifty to sixty four years old. Combined, in the die framing, and in the recover framing.
Check whether estimates differ based on the group for sixty or older. Combined, in the die framing, and in the recover framing.
We asked if teenage suicide is more tragic than suicide among the old (M=2.48, SD=1.04) and if a teenager dying from COVID-19 is more tragic than an older person dying from COVID-19 (M=2.25, SD=1.08).
There was a significant difference - on average the death of a teenager was seen as more tragic than the death of an older person when it is a result of suicide rather than when it is caused by COVID-19.
## Warning in pairedSamplesTTest(formula = ~Ageism_CVBelief_5 +
## Ageism_Fabroni2_4, : 5 case(s) removed due to missingness
##
## Paired samples t-test
##
## Variables: Ageism_CVBelief_5 , Ageism_Fabroni2_4
##
## Descriptive statistics:
## Ageism_CVBelief_5 Ageism_Fabroni2_4 difference
## mean 2.249 2.475 -0.226
## std dev. 1.084 1.037 1.052
##
## Hypotheses:
## null: population means equal for both measurements
## alternative: different population means for each measurement
##
## Test results:
## t-statistic: -8.839
## degrees of freedom: 1697
## p-value: <.001
##
## Other information:
## two-sided 95% confidence interval: [-0.276, -0.176]
## estimated effect size (Cohen's d): 0.214
In the debrief we said:
*If you have any final comments for us about the survey, please leave them in the textbox below
Below are the responses…
| very interesting!!! |
| no thanks |
| None |
| Easy to understand very straight forward |
| 6 |
| H |
| students have the option to click “mark as done” (see the … Last edited 4/30/20 |
| I appreciate the survey and your time. |
| thank you! |
| None |
| Idk |
| y |
| No |
| no.thanx |
| noone |
| I like it very well |
| I cummed |
| It is a good survey |
| Very good |
| No |
| Thanks |
| Nahhhh |
| 4 |
| Nice |
| Good |
| Increase in text size |
| Udkd |
| Nothing |
| Increase in text size |
| None |
| No |
| Nothing |
| No thanks |
| Fantastic |
| Gghhg |
| Yes |
| Good |
| I’d be very interested in seeing the poll results of this survey |
| I never been asked about my views on death before it made me think |
| None |
| None |
| No thanks |
| No |
| Good |
| Love it |
| This a pretty well formed survey |
| I don’t have |
| None |
| n/a |
| Nome |
| No |
| No |
| Good thoughts better option for me |
| Its find |
| Awesome |
| Great Survey |
| This survey was repetitive and dumb |
| Nope |
| None |
| None |
| No comments |
| Love it |
| None thx |
| Nothing |
| Nome |
| ‘Cjfdgh |
| none |
| hmn |
| Great survey |
| The survey was so cool |
| I really liked it make more |
| Stay safe America and international |
| No questions |
| ask more about god and with out god in peoples lives. Why the mill. generation wants thing for free instead earning them |
| Interesting survey |
| None |
| Good luck. |
| Bad |
| It’s long |
| Jrnr |
| this survey helps alot |
| Idk |
| Nothing at all I can just get it to the. |
| Wear a man |
| None |
| Great |
| No |
| Okivfg hfynk |
| none |
| Excellent |
| Uuuiikk |
| Nothing in particular. |
| The questions were saddening in regards to various opinions in regards to the elderly. |
| Thank you! |
| A little worries |
| Thanks |
| great work |
| NA |
| I really enjoyed taking this survey. Thank you. |
| good |
| God be praised |
| The scale with the dots was very confusing |
| yes |
| Through this entire pandemic I have worked being cautious. It has been very taxing but I believe we will get through it. |
| new retirement age 55 |
| Good survey |
| No |
| this survey is really good. |
| Pmccau7514@aol.com |
| other than severe diseases, Geriatrics is a sad place to work, death is anticipated more frequently than the Middle age groups, due to the Life Expectancy. the other end is the neonates, they too die, and while this is heart breaking, EVERYLIFE is important no matter the issues experienced, I was Licensed in 1977, 4-1977 Thank you, for allowing me to participate:) |
| good survey |
| I am 74 and pretty much knew where this survey was going. I am in the high risk group myself, but still say I don’t want the rest of the population, which is younger than 74, to give up their life, liberty, and way to make a living for me. I say NO LOCKDOWN AGAIN…I’ll take my chances. Live YOUR life. |
| None |
| a good survey. I enjoy it |
| I enjoyed this survey very much. Thank you! |
| interesting survey, would like to know results |
| The format was tedious but thank you. |
| Great survey. I’m 68 years old and love heavy metal. Go to concerts as often as I can. Don’t listen to people who think I’m too old to like this type of music, |
| very good survey |
| Great thought provoking survey. Well written. |
| I think it was a good survey. I’m glad that I took it. |
| no comments |
| No |
| well formulated TYVM |
| hjgfghjk |
| none just wear your mask |
| none |
| very interesting survey enjoyed it |
| Interesting survey! |
| None |
| Survey hit home. I am classified as elderly and some of the questions tended to make me a bit angry. In the society that we live in, especially in this country, very often the elderly are disrespected and not valued. |
| Good survey,there were questions for everyone to answer. |
| None, thanks |
| good questions |
| Very thought provoking |
| none |
| Good questions |
| None |
| Very interesting |
| This survey was way too long |
| Thanks |
| GOOD SURVEY THANKS |
| I wonder what good this survey will do |
| No comment I’m very well pleased 🎱 |
| No |
| I am so glad that there were continuously repetitive same type of Likert questions. Short and sweet. |
| It was interesting |
| Very interesting |
| A very interesting survey |
| No win |
| Great survey |
| abc |
| it’s better and unique |
| ok |
| too many time |
| very good |
| i love it so much |
| Stay home |
| I like this servey |
| very interesr |
| No no |
| thank you |
| yes |
| very ricbits this moment my life, covid 19. |
| As soon as the virus is gone, let everyone be well. and one more thing is ,survey was good. |
| too much very well |
| This is one of the best survey i have done |
| i have nothing yo say |
| no |
| the survey was very good |
| good survey |
| yes |
| this survey was very good and this |
| it usefull |
| very nice |
| LIKE |
| good |
| Thanks for the great survey. I really enjoyed it |
| i prefer not to say |
| No i have no final comments. |
| ok vai |
| it is informatibe fo me |
| no comment |
| nc |
| survey |
| I like to get to be there for the meeting on Monday |
| Nothing, it’s all simple and easy to understand |
| Good vibes |
| yes |
| GOOD |
| Thanks for asking me this question and It’s a good survey. |
| it was a good survey |
| All Is Good in This Surveys |
| none for now |
| mikky.himself@gmail.com I need financial support for the sick ones in my neighborhood |
| I enjoy this survey very much. |
| Alsome |
| kije |
| good |
| Nothing much |
| great i will more enjoy |
| yes |
| Thanks |
| well |
| good |
| It is good |
| This was good survey indeed. |
| Good |
| well |
| my final comment is please use mask .and maintain social distence because its too much important in this time |
| no |
| best site |
| I’m glad to see your comments. |
| Nothing specifically for the moment |
| No |
| i like it |
| Thanks |
| it was good |
| it’s great for us |
| The feeling is that you are cutting jobs to save money so everyone is nervous that they are not going to have a job. It’s especially hard when there’s no outline of duties that will stay in the dept. |
| Nothing at all |
| It was my great pleasure participating in the survey. |
| Covid 19 An epidemic size virus. I have been asked more questions about this for so long. This disease is more common in the elderly. But everyone, big or small, has to be careful. |
| The survey was conducted excellently thanks. |
| Nothing |
| None |
| No comments thank you |
| Good |
| i really enjoy this survey |
| thank you it was a nice experience with your survey and informative also. i get to know many things from it. |
| N/A |
| thank you for. your work |
| THE SURVEY WAS GREAT |
| this needs to be more convenient and relevant |
| none |
| ok |
| BEAUTIFUL |
| no comment |
| good |
| good |
| very nice |
| it better |
| fcghbncfbxhn |
| yes |
| Thank you for taking the time to complete this survey. We truly value the information you have provided. |
| good |
| iuytreoiuytpoikjhkjhjh |
| jnkm.m, |
| you have questions |
| good |
| it is very good |
| well survey |
| its great |
| study was about COVID-19 |
| 12 |
| good |
| good |
| this study is very knowledgable |
| yes |
| Best survey |
| no |
| This is very like it.good survey. |
| 1 |
| yes i aggere with you |
| Thanks |
| I don’t |
| Since I am. 70, many questions were asked that actually applied to me as “older” person! |
| I take the survey because I got knowledge about the corona virus |
| Nope |
| None |
| no |
| good |
| No |
| Too long |
| Covid is real but so is the flu and it kills many people too. We can’t stay locked up any longer. People need to live but be mindful of others and be careful |
| Way too long |
| Na |
| Jji |
| this was very nice |
| good |
| Thank you! |
| 1 |
| good |
| N/A |
| easy to complete and understand |
| good |
| Great interesting survey |
| Good |
| no final comments |
| Some of those statements were downright rude and insulting. |
| good survey |
| Nice survey which asks very simple practical question. |
| Interesting survey thank you |
| The survey was much longer than it was advertised |
| Nothing comes to mind |
| None |
| None |
| really |
| Easy survey |
| cool |
| I enjoy this survey |
| Thanks |
| none |
| Perfect |
| None |
| Thank you for your invitation |
| The study was really good, hope i will get more study like this.This helps me a lot. Thank you so much. |
| Nothing |
| good luck - hope I helped - it was thought provoking |
| too long |
| I don’t know |
| I thought this was a very good survey and very fully informated |
| Nothing but…..thank you! |
| Very interesting survey. |
| Na |
| Survey is longer than advertised |
| g |
| I’m fine with that you are |
| Good smattering of questions. |
| none |
| None |
| yes |
| Quality healthy |
| From a very small point to find out how many of these people were born and get |
| 1 |
| 1 |
| nope |
| No just give me my money |
| Old people arnt villians or boring spend more time volunteering |
| Good one |
| Better than expected |
| I love it |
| Best |
| it was great survey |
| Bbvddghbbb |
| idk |
| ☺️ |
| nice |
| u can come to my house and I will be there for the next few days and will be in touch |
| no |
| like |
| good sruvey |
| NA |
| 19 will kill you |
| Simple and clear |
| No comments |
| None |
| Yh M cv |
| No |
| I thought this survey was excellent |
| None |
| Hdrtdu5rjtf6fjyfyfjxngrjy |
| Not at all |
| Vou ver se |
| No comment |
| It was interesting |
| This survey is awesome and appealing |
| Nothing |
| N/A |
| No I don’t |
| dnxnxgsysujfkr shehe heir ahshehehs aj shehe sidhbr sdf g |
| The covid-19 virus really affected us as a whole |
| Jaoenejosksn sza kLa |
| It’s sooo long |
| no other comments |
| No |
| Ioi |
| None |
| None |
| None |
| none |
| No |
| 1 |
| I like this survey |
| I like this survey |
| None |
| It was a good survey .Peace and thanks!!! |
| none |
| Not really |
| Usissn snsosks zhsokss bajd |
| Nothing much |
| 358 |
| leo |
| Nothing to say |
| Car |
| Hh |
| The survey works well nothing |
| Good |
| Interesting and informative |
| Enjoyed |
| Very complete. |
| Really good but took too long |
| nice survey |
| No |
| N/A |
| None |
| D |
| it’s good site |
| This was a great survey to take |
| good survey |
| No comments |
| none |
| none |
| continuing junction |
| Dk |
| The topic will remain through out history for now on end |
| Nothing |
| Don’t know |
| Needs a progress meter and its too long. |
| None |
| None |
| 1 |
| Great work. We do need our voices heard more. |
| Ok I just wanna talk about the stuff that I’m doing right now |
| BS she |
| No |
| Cool suvey |
| none |
| i can not say any thing |
| this is very good service and this is very nice |
| Not applicable |
| VERY FRANK QUESTIONS THAT WE ALL NEED TO LISTEN TO |
| its very good |
| I love this survey. |
| none |
| I am 70andI don’t feel old. Your questions about “old” people should be revised to “older”. |
| Too long |
| very nice |
| its very consersative |
| no |
| none |
| An interesting survey it is. Very thought provoking. |
| Good |
| very nice |
| i prefer not to say |
| Thank you so much gfor this survey |
| great survey |
| Good survey. A few of the questions needed a few more words to narrow down the choices. I did the best I could and maybe overthink something more than necessary. |
| one of the best i’ve taken. |
| 30 |
| thamk you quite interesting |
| I have no further comments. |
| too long |
| This survey was very interesting. |
| As long as people, places, cities and states do not comply with COVID precautions, we’re in big trouible! |
| Thank You |
| I have been tested for covid-19 . came back neg. also I have copd |
| The survey was interesting and informative.I am happy to share my opinion.Thanks |
| a enjoyable survey |
| Interesting survey |
| It appears you are looking out for the elderly . Thank you I am one of them and still care about everyone regardless of age or race ! Thanks again |
| You don’t have a question on why the cdc doesn’t have a clue |
| Very interesting metrics; I would be interested in seeing the results, if you can achieve a large enough sample set |
| no comments |
| None |
| Too long and no indication of the completion. |
| I’m a senior I didn’t like the questions about old people |
| Very unique and interesting survey, enjoyed providing feedback |
| I think this was a very interesting survey. Enjoyed it alot. |
| Informative survey! |
| I feel that the world doesn’t know how deal with elderly. |
| none |
| No Comment |
| none |
| very interesting |
| none |
| COVID-19 can affect everyone regardless of age. |
| None |
| None |
| no comment |
| 1 |
| good this was |
| good |
| This was good |
| amazing |
| 1 |
| yes |
| like it |
| Nice Survey Thank u for select me for this survey. |
| very good |
| well |
| yes |
| no more today it is good |
| LIKE |
| great concept |
| Nice |
| yes |
| yes i want this |
| the university is so good |
| no |
| none |
| Good. |
| nothing more |
| no thanks |
| 1 |
| very good |
| yes |
| i like it. it very helpfull |
| why vienna vairus a deadly disease |
| this survey is Very good |
| good |
| good |
| love |
| This will place one textbox for additional comments below each row in the question. Validation. You can choose from the following validation options to requir |
| Nice survey |
| gcvghfghfgh |
| very good |
| Am happy to participate in this type of survey |
| BJBHKMBVHJBJK, |
| very good |
| i like servey |
| very good |
| no,it’ ok |
| yhhchncbnv |
| nhjfgcxjchgj hjghjkgkghkg bjmhkhgk bvjnhgjm |
| very good |
| 1 |
| not |
| Booooool |
| yes |
| Thank you for your invitation |
| I was awesome |
| i love this survey |
| None |
| 1 |
| I like it so much |
| lik it |
| Nothing much |
| very goog |
| Thanks for the survey |
| yes. its good |
| Extremely very good, i like this survey. |
| good |
| it was awesome time. |
| This survey is very good and discuss good information. |
| I dont have anything to say for now |
| I would like to say that this survey was really good and comfortable answering |
| Nothing at all |
| Nothing to say |
| I like this survey very much beacuse it is different from other |
| Good |
| The survey was conducted appropriately. |
| This servey is very helpful |
| yes |
| very good survey. |
| Thank you |
| Thank you |
| yes |
| Best survey |
| Thank you it was so good |
| I don’t have any comment |
| This survey is great and appealing. Thanks for your time and consideration |
| I love the surveys |
| 1 |
| very good |
| yes |
| better |
| It’s very good survey |
| good |
| interesting |
| no |
| Nothing |
| good |
| very good |
| No,Thanks |
| cvbhjkjhg |
| important survey for present positon |
| cxzczdx |
| as soon as |
| this survey is very helpful with us |
| i like this survey |
| good |
| none |
| VERT GOOD |
| very good |
| very good survey |
| no ,good survey,thanks |
| There are several means by which you can gather customer information: comments, social media, live sessions, emails, in-product … |
| the food is alright but, food was alright and i. |
| none |
| It was OK |
| I pray this ends soon |
| None for now |
| no |
| It good |
| No but thanks for the opportunity and God Bless |
| Weird questions |
| Ejejeje |
| No |
| survey was good |
| Thanks |
| None |
| The survey was great |
| I have some learn about these any questions |
| Nope |
| This survey really awesome |
| It’s a helpful survey |
| good |
| Thank you |
| none |
| Nothing |
| Young shit-ass punk brats under 30 should LEARN and appreciate the elderly. |
| None |
| 1 |
| I may be mistaken, but I thought you asked for age (72) before giving survey. Awkward answering questions about “old people”! |
| this is very exccelent survey |
| good |
| WELL-DESIGNED and interesting |
| no,thank you |
| Good survey about important issue |
| Yes |
| good |
| yes |
| leave |
| fun fun |
| Thanks for this nice survey |
| It’s amazing |
| none |
| none |
| well also |
| awsdxfc |
| none |
| very good |
| good |
| The survey was so easy and understand |
| COVID-19 affects different people in different ways. Infected people have had a wide range of symptoms reported – from mild symptoms to severe illness. |
| Great survey |
| Nice survey |
| None |
| thought-provoking |
| no one knows what they are doing when it comes to COVID-19 |
| none |
| Thank you for taking the time to make this survey . |
| Nick |
| Well put together enjoyed taking your survey |
| Na |
First plot…
Same plot but showing density distributions
Here checking to see if age predicts the outcomes measures.
| Age | |||
|---|---|---|---|
| Predictors | Beta (95% CI) | Statistic | p value |
| (Intercept) |
-0.00 (-0.09 – 0.09) |
6.75 | <0.001 |
| Priority: Back to work |
0.02 (-0.11 – 0.15) |
0.30 | 0.764 |
| Priority: Economy |
0.04 (-0.09 – 0.16) |
0.58 | 0.563 |
| Priority: Normal |
0.07 (-0.06 – 0.19) |
1.03 | 0.301 |
| Guidelines restrictive |
-0.03 (-0.14 – 0.07) |
-0.61 | 0.542 |
| Guidelines effective prevent getting CV19 |
-0.23 (-0.39 – -0.08) |
-2.90 | 0.004 |
| Guidelines effective save lives |
0.08 (-0.06 – 0.22) |
1.11 | 0.267 |
| Guidelines effective slow spread |
0.12 (-0.05 – 0.29) |
1.38 | 0.169 |
| Willingness to stay home again |
-0.04 (-0.17 – 0.08) |
-0.65 | 0.518 |
| Willingness to follow guidelines |
0.08 (-0.04 – 0.20) |
1.36 | 0.176 |
| Risky Behavioral intent scale |
-0.36 (-0.48 – -0.25) |
-6.32 | <0.001 |
| Protective Behavioral intent scale |
0.18 (0.07 – 0.29) |
3.10 | 0.002 |
| Prosocial scale |
0.04 (-0.06 – 0.14) |
0.77 | 0.441 |
| Individual risk |
0.02 (-0.08 – 0.13) |
0.45 | 0.654 |
| Observations | 424 | ||
| R2 / R2 adjusted | 0.176 / 0.149 | ||
From Laura: “you might find that the CDC intervention reduces intentions to social distance among younger adults, but the mediator is perceived risk not attitudes toward older adults. For my peace of mind let’s make sure to test this alternative mediator”
Risk perceptions predicted behavioral intentions for the risky behaviors
##
## Call:
## lm(formula = BehavIntRisk_Avg ~ IndivRisk_Avg, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1463 -1.1355 -0.2791 1.0173 4.0318
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.77190 0.11641 15.222 < 2e-16 ***
## IndivRisk_Avg 0.19634 0.02666 7.364 0.000000000000306 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.364 on 1390 degrees of freedom
## (311 observations deleted due to missingness)
## Multiple R-squared: 0.03754, Adjusted R-squared: 0.03685
## F-statistic: 54.22 on 1 and 1390 DF, p-value: 0.0000000000003056
However, risk perception was not predicted by group. I think theoretically we are not justified to run the mediation.
Just to be sure, running the mediation model anyway.
##
## Call:
## lm(formula = BehavIntRisk_Avg ~ Group + IndivRisk_Avg, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1776 -1.1312 -0.2800 0.9824 4.0718
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.77493 0.11603 15.297 < 2e-16 ***
## GroupCvsCD_KS -0.08214 0.02571 -3.195 0.00143 **
## GroupCDCvsKS -0.03989 0.04472 -0.892 0.37265
## IndivRisk_Avg 0.19554 0.02658 7.357 0.000000000000321 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.359 on 1388 degrees of freedom
## (311 observations deleted due to missingness)
## Multiple R-squared: 0.04515, Adjusted R-squared: 0.04308
## F-statistic: 21.88 on 3 and 1388 DF, p-value: 0.00000000000007635
## $`Mod1: Y~X`
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.58539432 0.03712839 69.633897 0.000000000
## predCvsCD_KS -0.08374515 0.02619633 -3.196827 0.001420779
## predCDCvsKS -0.04098819 0.04557201 -0.899416 0.368587041
##
## $`Mod2: Y~X+M`
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.77492976 0.11603311 15.2967528 6.222939e-49
## predCvsCD_KS -0.08214012 0.02571023 -3.1948425 1.430535e-03
## predCDCvsKS -0.03988637 0.04472500 -0.8918137 3.726474e-01
## med 0.19553817 0.02657874 7.3569398 3.207467e-13
##
## $`Mod3: M~X`
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.144789551 0.03678497 112.6761804 0.0000000
## predCvsCD_KS -0.008208263 0.02595403 -0.3162616 0.7518515
## predCDCvsKS -0.005634830 0.04515049 -0.1248011 0.9006991
##
## $Indirect.Effect
## [1] 0.0003273978
##
## $SE
## [1] 0.001098379
##
## $z.value
## [1] 0.2980736
##
## $N
## [1] 1392
## [1] 1.234353
## Control CDC KS
## 3.002320 2.766850 2.748171
## Control CDC KS
## 4.161206 4.142216 4.137051
Omnibus ANOVA test: Risky behaviors by group controlling for individual risk perception
(e.g., going to gatherings of 10 or more people)
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 21.26 | 10.629 | 5.752 | 0.003 |
| IndivRisk_Avg | 1 | 100.01 | 100.014 | 54.125 | 0.000 |
| Residuals | 1388 | 2564.82 | 1.848 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 21.26 | 10.629 | 5.752 | 0.003 | 0.008 | 0.008 | 0.007 | 0.007 | 0.007 | 0.091 | 0.869 |
| IndivRisk_Avg | IndivRisk_Avg | 1 | 100.01 | 100.014 | 54.125 | 0.000 | 0.037 | 0.038 | 0.037 | 0.037 | 0.037 | 0.197 | 1.000 |
| …3 | Residuals | 1388 | 2564.82 | 1.848 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 1.775 | 0.116 | 15.297 | 0.000 |
| GroupCvsCD_KS | -0.082 | 0.026 | -3.195 | 0.001 |
| GroupCDCvsKS | -0.040 | 0.045 | -0.892 | 0.373 |
| IndivRisk_Avg | 0.196 | 0.027 | 7.357 | 0.000 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 1392 | 1.359 | 0.045 | 0.043 |
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 2.750 | 0.063 | 1388 | 2.626 | 2.873 |
| CDC | 2.543 | 0.064 | 1388 | 2.418 | 2.668 |
| KS | 2.463 | 0.063 | 1388 | 2.340 | 2.587 |
Running the same tests but with participants under the age of 34.
Omnibus ANOVA test: Risky behaviors by group (young participants)
(higher score correspond to more risk)
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 1.534 | 0.767 | 0.432 | 0.65 |
| Residuals | 390 | 692.905 | 1.777 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 1.534 | 0.767 | 0.432 | 0.65 | 0.002 | 0.002 | -0.003 | -0.003 | -0.003 | 0.047 | 0.121 |
| …2 | Residuals | 390 | 692.905 | 1.777 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 3.997 | 0.067 | 59.415 | 0.000 |
| GroupCvsCD_KS | -0.043 | 0.047 | -0.920 | 0.358 |
| GroupCDCvsKS | 0.009 | 0.083 | 0.112 | 0.911 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 393 | 1.333 | 0.002 | -0.003 |
## Df Sum Sq Mean Sq F value Pr(>F)
## Group 2 1.5 0.7668 0.432 0.650
## Group: Control vs. CDC_KS 1 1.5 1.5112 0.851 0.357
## Group: CDC vs KS 1 0.0 0.0224 0.013 0.911
## Residuals 390 692.9 1.7767
## 118 observations deleted due to missingness
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 4.084 | 0.115 | 390 | 3.858 | 4.309 |
| CDC | 3.944 | 0.116 | 390 | 3.717 | 4.172 |
| KS | 3.963 | 0.119 | 390 | 3.729 | 4.197 |
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 135 4.08 1.24 4 4.08 1.15 1 7 6 0.01 0.08 0.11
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 133 3.94 1.3 4.11 3.97 1.15 1 7 6 -0.16 -0.02 0.11
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 125 3.96 1.46 3.89 3.97 1.32 1 7 6 -0.05 -0.45 0.13
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 582 3 1.52 2.8 2.9 1.78 1 6 5 0.45 -0.93 0.06
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 546 2.77 1.48 2.4 2.63 1.48 1 6 5 0.62 -0.74 0.06
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 574 2.75 1.49 2.4 2.6 1.48 1 6 5 0.66 -0.73 0.06
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 178 3.15 1.29 3.1 3.1 1.33 1 6 5 0.27 -0.65 0.1
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 168 2.89 1.29 3 2.82 1.48 1 6 5 0.35 -0.7 0.1
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 165 2.98 1.37 2.8 2.91 1.48 1 6 5 0.4 -0.83 0.11
Here are the posthoc Tukey multiple comparisons of means (95% family-wise confidence level) with a plot to show.
Group:
| diff | lwr | upr | p adj | |
|---|---|---|---|---|
| CDC-Control | -0.140 | -0.523 | 0.244 | 0.668 |
| KS-Control | -0.121 | -0.510 | 0.268 | 0.745 |
| KS-CDC | 0.019 | -0.372 | 0.409 | 0.993 |
Risk is associated with the risky behavioral intentions.
##
## Call:
## lm(formula = BehavIntRisk_Avg ~ IndivRisk_Avg, data = df_Young)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2946 -1.0430 -0.0783 0.8665 3.4828
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.15432 0.20250 10.638 < 2e-16 ***
## IndivRisk_Avg 0.16289 0.04806 3.389 0.000772 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.267 on 391 degrees of freedom
## (118 observations deleted due to missingness)
## Multiple R-squared: 0.02854, Adjusted R-squared: 0.02606
## F-statistic: 11.49 on 1 and 391 DF, p-value: 0.0007721
Again, because risk is not predicted by group I don’t think we are justified to run this. But for robustness sake, here is the mediation model.
##
## Call:
## lm(formula = BehavIntRisk_Avg ~ Group + IndivRisk_Avg, data = df_Young)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2134 -1.0679 -0.1081 0.8865 3.5213
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.16738 0.20249 10.704 < 2e-16 ***
## GroupCvsCD_KS -0.07197 0.04486 -1.604 0.10946
## GroupCDCvsKS 0.02409 0.07882 0.306 0.76003
## IndivRisk_Avg 0.15920 0.04807 3.312 0.00101 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.265 on 389 degrees of freedom
## (118 observations deleted due to missingness)
## Multiple R-squared: 0.0352, Adjusted R-squared: 0.02776
## F-statistic: 4.731 on 3 and 389 DF, p-value: 0.002963
## $`Mod1: Y~X`
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.80370987 0.06467840 43.3484754 3.261012e-151
## predCvsCD_KS -0.07888581 0.04538209 -1.7382586 8.295449e-02
## predCDCvsKS 0.02557594 0.07982032 0.3204189 7.488224e-01
##
## $`Mod2: Y~X+M`
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.16737875 0.20248681 10.7038021 1.314652e-23
## predCvsCD_KS -0.07197172 0.04486169 -1.6043026 1.094589e-01
## predCDCvsKS 0.02409239 0.07882078 0.3056603 7.600268e-01
## med 0.15919862 0.04807263 3.3116268 1.014307e-03
##
## $`Mod3: M~X`
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.997089471 0.06727432 59.4147870 1.559738e-197
## predCvsCD_KS -0.043430573 0.04720354 -0.9200703 3.581048e-01
## predCDCvsKS 0.009318881 0.08302398 0.1122432 9.106883e-01
##
## $Indirect.Effect
## [1] -0.001046346
##
## $SE
## [1] 0.003607193
##
## $z.value
## [1] -0.2900721
##
## $N
## [1] 393
## [1] 0.7717611
## Control CDC KS
## 3.148315 2.886905 2.981818
## Control CDC KS
## 4.083951 3.944340 3.962978
Omnibus ANOVA test: Risky behaviors by group controlling for individual risk perception (young participants)
(e.g., going to gatherings of 10 or more people)
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 5.166 | 2.583 | 1.613 | 0.201 |
| IndivRisk_Avg | 1 | 17.561 | 17.561 | 10.967 | 0.001 |
| Residuals | 389 | 622.901 | 1.601 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 5.166 | 2.583 | 1.613 | 0.201 | 0.008 | 0.008 | 0.003 | 0.003 | 0.003 | 0.091 | 0.343 |
| IndivRisk_Avg | IndivRisk_Avg | 1 | 17.561 | 17.561 | 10.967 | 0.001 | 0.027 | 0.027 | 0.025 | 0.025 | 0.025 | 0.168 | 0.912 |
| …3 | Residuals | 389 | 622.901 | 1.601 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 2.167 | 0.202 | 10.704 | 0.000 |
| GroupCvsCD_KS | -0.072 | 0.045 | -1.604 | 0.109 |
| GroupCDCvsKS | 0.024 | 0.079 | 0.306 | 0.760 |
| IndivRisk_Avg | 0.159 | 0.048 | 3.312 | 0.001 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 393 | 1.265 | 0.035 | 0.028 |
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 2.948 | 0.109 | 389 | 2.734 | 3.162 |
| CDC | 2.708 | 0.110 | 389 | 2.492 | 2.924 |
| KS | 2.756 | 0.113 | 389 | 2.533 | 2.979 |
| Ageism Myth Avg | Ageism Fraboni Avg | Ageism Fact Avg | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Predictors | Beta (95% CI) | Statistic | p value | Beta (95% CI) | Statistic | p value | Beta (95% CI) | Statistic | p value |
| (Intercept) |
-0.00 (-0.08 – 0.08) |
7.83 | <0.001 |
0.00 (-0.07 – 0.07) |
11.02 | <0.001 |
0.00 (-0.08 – 0.08) |
9.27 | <0.001 |
| Priority: Back to work |
0.27 (0.16 – 0.39) |
4.75 | <0.001 |
0.27 (0.17 – 0.38) |
5.33 | <0.001 |
0.05 (-0.07 – 0.16) |
0.84 | 0.401 |
| Priority: Economy |
0.09 (-0.02 – 0.20) |
1.57 | 0.117 |
0.03 (-0.07 – 0.13) |
0.58 | 0.564 |
-0.03 (-0.14 – 0.09) |
-0.46 | 0.646 |
| Priority: Normal |
-0.01 (-0.12 – 0.10) |
-0.25 | 0.800 |
0.00 (-0.10 – 0.10) |
0.03 | 0.973 |
-0.01 (-0.12 – 0.10) |
-0.20 | 0.844 |
| Willingness to stay home again |
0.18 (0.07 – 0.30) |
3.23 | 0.001 |
0.14 (0.04 – 0.24) |
2.67 | 0.008 |
0.07 (-0.04 – 0.18) |
1.21 | 0.228 |
| Willingness to follow guidelines |
-0.05 (-0.16 – 0.05) |
-1.02 | 0.308 |
0.06 (-0.04 – 0.15) |
1.19 | 0.236 |
-0.03 (-0.14 – 0.07) |
-0.62 | 0.532 |
| Guidelines restrictive |
0.00 (-0.09 – 0.10) |
0.09 | 0.925 |
-0.00 (-0.09 – 0.08) |
-0.09 | 0.929 |
-0.03 (-0.13 – 0.07) |
-0.63 | 0.532 |
| Guidelines effective slow spread |
0.03 (-0.12 – 0.19) |
0.42 | 0.674 |
-0.11 (-0.25 – 0.03) |
-1.55 | 0.122 |
0.01 (-0.15 – 0.17) |
0.10 | 0.920 |
| Guidelines effective prevent getting CV19 |
-0.06 (-0.20 – 0.09) |
-0.78 | 0.436 |
0.04 (-0.09 – 0.17) |
0.56 | 0.573 |
-0.02 (-0.17 – 0.12) |
-0.29 | 0.774 |
| Guidelines effective save lives |
0.10 (-0.03 – 0.23) |
1.54 | 0.124 |
0.06 (-0.05 – 0.17) |
1.04 | 0.297 |
-0.00 (-0.13 – 0.13) |
-0.05 | 0.962 |
| Intent: 10 more |
0.17 (0.03 – 0.32) |
2.44 | 0.015 |
0.15 (0.02 – 0.28) |
2.35 | 0.020 |
0.08 (-0.06 – 0.23) |
1.14 | 0.255 |
| Intent: opt shops |
0.04 (-0.08 – 0.15) |
0.65 | 0.517 |
-0.04 (-0.15 – 0.06) |
-0.79 | 0.428 |
-0.02 (-0.14 – 0.10) |
-0.37 | 0.714 |
| Intent: opt travel |
0.10 (-0.05 – 0.26) |
1.33 | 0.186 |
0.20 (0.06 – 0.33) |
2.81 | 0.005 |
0.28 (0.12 – 0.43) |
3.53 | <0.001 |
| Intent: opt social |
0.00 (-0.14 – 0.15) |
0.05 | 0.958 |
0.04 (-0.09 – 0.17) |
0.65 | 0.517 |
-0.09 (-0.23 – 0.06) |
-1.15 | 0.252 |
| Intent: eat in restaurants |
0.05 (-0.08 – 0.18) |
0.79 | 0.432 |
0.07 (-0.05 – 0.18) |
1.13 | 0.259 |
0.10 (-0.03 – 0.23) |
1.46 | 0.146 |
| Intent: good hygeine (R) |
-0.08 (-0.19 – 0.02) |
-1.52 | 0.129 |
-0.23 (-0.33 – -0.14) |
-4.86 | <0.001 |
-0.27 (-0.38 – -0.17) |
-5.03 | <0.001 |
| Intent: mask in public (R) |
-0.09 (-0.22 – 0.04) |
-1.43 | 0.153 |
-0.03 (-0.14 – 0.09) |
-0.48 | 0.629 |
-0.14 (-0.27 – -0.01) |
-2.05 | 0.041 |
| Intent: mask outdoors (R) |
0.03 (-0.08 – 0.14) |
0.55 | 0.585 |
0.08 (-0.01 – 0.18) |
1.72 | 0.086 |
0.19 (0.08 – 0.29) |
3.39 | 0.001 |
| Prosocial scale |
-0.04 (-0.13 – 0.04) |
-0.99 | 0.324 |
-0.07 (-0.15 – 0.01) |
-1.75 | 0.081 |
-0.08 (-0.17 – 0.01) |
-1.77 | 0.078 |
| Individual risk |
0.03 (-0.07 – 0.12) |
0.55 | 0.586 |
0.11 (0.02 – 0.19) |
2.50 | 0.013 |
0.10 (0.00 – 0.20) |
2.06 | 0.040 |
| Observations | 428 | 428 | 428 | ||||||
| R2 / R2 adjusted | 0.356 / 0.326 | 0.482 / 0.458 | 0.342 / 0.311 | ||||||
VIF scores are less than 5 for all models
## Ageism_CVPriority1 Ageism_CVPriority2_1 Ageism_CVPriority2_2
## 2.042947 1.973152 1.966206
## AdhereAttitude2 AdhereAttitude3_2 AdhereAttitude3_3
## 1.489788 3.256179 2.572886
## AdhereAttitude3_1 Adhere_willing AdhereAttitude1_1
## 3.823082 1.973162 1.768511
## BehavIntRisk_Avg BehavIntPrtct_Avg Prosocial_Avg
## 1.664469 1.649452 1.224190
## IndivRisk_Avg
## 1.439253
Omnibus ANOVA test: Trust in CDC
| Df | Sum Sq | Mean Sq | F value | Pr(>F) | |
|---|---|---|---|---|---|
| Group | 2 | 2.258 | 1.129 | 0.873 | 0.418 |
| Residuals | 1699 | 2197.541 | 1.293 |
Effect sizes:
| term | df | sumsq | meansq | statistic | p.value | etasq | partial.etasq | omegasq | partial.omegasq | epsilonsq | cohens.f | power | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Group | Group | 2 | 2.258 | 1.129 | 0.873 | 0.418 | 0.001 | 0.001 | 0 | 0 | 0 | 0.032 | 0.201 |
| …2 | Residuals | 1699 | 2197.541 | 1.293 |
Contrasts:
| Estimate | Std. Error | t value | Pr(>|t|) | |
|---|---|---|---|---|
| (Intercept) | 3.626 | 0.028 | 131.484 | 0.000 |
| GroupCvsCD_KS | 0.015 | 0.019 | 0.754 | 0.451 |
| GroupCDCvsKS | 0.037 | 0.034 | 1.074 | 0.283 |
| Observations | Residual Std. Error | \(R^2\) | Adjusted \(R^2\) |
|---|---|---|---|
| 1702 | 1.137 | 0.001 | 0 |
lsmeans contrast (unadjusted)
| contrast | estimate | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control vs CDC and KS | 0.088 | 0.116 | 1699 | -0.14 | 0.316 |
| CDC vs KS | 0.073 | 0.068 | 1699 | -0.06 | 0.206 |
| t.ratio | p.value |
|---|---|
| 0.754 | 0.451 |
| 1.074 | 0.283 |
lsmeans contrast (adjusted)
## contrast estimate SE df lower.CL upper.CL t.ratio p.value
## Control vs CDC and KS 0.0876 0.116 1699 -0.1731 0.348 0.754 0.5658
## CDC vs KS 0.0730 0.068 1699 -0.0795 0.226 1.074 0.5658
##
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
## P value adjustment: holm method for 2 tests
Show least squares means and CIs around means
| Group | lsmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| Control | 3.597 | 0.047 | 1699 | 3.504 | 3.689 |
| CDC | 3.604 | 0.049 | 1699 | 3.509 | 3.700 |
| KS | 3.677 | 0.047 | 1699 | 3.584 | 3.770 |
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis
## CDCTrust1 1 581 3.60 1.28 4 3.74 1.48 1 5 4 -0.61 -0.64
## CDCTrust2 2 581 3.62 1.19 4 3.75 1.48 1 5 4 -0.64 -0.39
## CDCTrust3 3 582 3.57 1.27 4 3.71 1.48 1 5 4 -0.61 -0.62
## se
## CDCTrust1 0.05
## CDCTrust2 0.05
## CDCTrust3 0.05
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis
## CDCTrust1 1 546 3.63 1.26 4 3.78 1.48 1 5 4 -0.65 -0.55
## CDCTrust2 2 546 3.60 1.22 4 3.73 1.48 1 5 4 -0.64 -0.42
## CDCTrust3 3 545 3.58 1.23 4 3.70 1.48 1 5 4 -0.56 -0.62
## se
## CDCTrust1 0.05
## CDCTrust2 0.05
## CDCTrust3 0.05
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis
## CDCTrust1 1 574 3.69 1.24 4 3.85 1.48 1 5 4 -0.72 -0.38
## CDCTrust2 2 574 3.66 1.18 4 3.79 1.48 1 5 4 -0.69 -0.25
## CDCTrust3 3 574 3.68 1.19 4 3.81 1.48 1 5 4 -0.68 -0.36
## se
## CDCTrust1 0.05
## CDCTrust2 0.05
## CDCTrust3 0.05
##
## Descriptive statistics by group
## group: Control
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 582 3.6 1.16 4 3.72 1.48 1 5 4 -0.65 -0.39 0.05
## ------------------------------------------------------------
## group: CDC
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 546 3.6 1.14 3.83 3.72 1.24 1 5 4 -0.66 -0.35 0.05
## ------------------------------------------------------------
## group: KS
## vars n mean sd median trimmed mad min max range skew kurtosis se
## X1 1 574 3.68 1.12 4 3.8 1.48 1 5 4 -0.73 -0.15 0.05
Here are the posthoc Tukey multiple comparisons of means (95% family-wise confidence level) with a plot to show.
Group:
| diff | lwr | upr | p adj | |
|---|---|---|---|---|
| CDC-Control | 0.007 | -0.152 | 0.166 | 0.994 |
| KS-Control | 0.080 | -0.077 | 0.237 | 0.453 |
| KS-CDC | 0.073 | -0.086 | 0.233 | 0.530 |
Endorsement of age-related perceptions with agreement with protect people vs keep economy
## # A tibble: 3 x 2
## Group r
## <fct> <dbl>
## 1 Control 0.307
## 2 CDC 0.309
## 3 KS 0.264
Endorsement of age-related perceptions with agreement with protect people vs back to normal
## # A tibble: 3 x 2
## Group r
## <fct> <dbl>
## 1 Control 0.285
## 2 CDC 0.321
## 3 KS 0.246
Endorsement of age-related perceptions with agreement we should all get back to work, even if it means that more older people will die from COVID-19
## # A tibble: 3 x 2
## Group r
## <fct> <dbl>
## 1 Control 0.515
## 2 CDC 0.559
## 3 KS 0.551
3.17 Social values
Response scale: Not important at all(1), A little important(2), Somewhat important(3), Quite important(4), Extremely important(5).
Descriptive statistics for these items shown below.
The reliability of these items is ideal Cronbach’s Alpha is .86.
Below are the descriptive statistics for the social values scale overall.