Datanın daxil edilməsi:

iris

df <- iris[1:4] # yalnız ədədi dəyişənlər seçilir
df
NA

2 mərkəzli klaster qurmaq:

library(DMwR)
k_means <- kmeans(df, centers = 2)
k_means
K-means clustering with 2 clusters of sizes 53, 97

Cluster means:
  Sepal.Length Sepal.Width Petal.Length Petal.Width
1     5.005660    3.369811     1.560377    0.290566
2     6.301031    2.886598     4.958763    1.695876

Clustering vector:
  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2
 [71] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2
[106] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[141] 2 2 2 2 2 2 2 2 2 2

Within cluster sum of squares by cluster:
[1]  28.55208 123.79588
 (between_SS / total_SS =  77.6 %)

Available components:

[1] "cluster"      "centers"      "totss"        "withinss"    
[5] "tot.withinss" "betweenss"    "size"         "iter"        
[9] "ifault"      

Dəyişənlərin mərkəzləri ilə birlikdə ifadə edilməsi:

center_df <- k_means$centers[k_means$cluster,]
center_df
  Sepal.Length Sepal.Width Petal.Length Petal.Width
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
1     5.005660    3.369811     1.560377    0.290566
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
1     5.005660    3.369811     1.560377    0.290566
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
1     5.005660    3.369811     1.560377    0.290566
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
1     5.005660    3.369811     1.560377    0.290566
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876
2     6.301031    2.886598     4.958763    1.695876

Hər bir deyişən üçün uzaqlıqların hesablanması:

distance <- sqrt(rowSums(df, center_df)^2)
distance
  [1] 10.2  9.5  9.4  9.4 10.2 11.4  9.7 10.1  8.9  9.6 10.8 10.0  9.3  8.5
 [15] 11.2 12.0 11.0 10.3 11.5 10.7 10.7 10.7  9.4 10.6 10.3  9.8 10.4 10.4
 [29] 10.2  9.7  9.7 10.7 10.9 11.3  9.7  9.6 10.5 10.0  8.9 10.2 10.1  8.4
 [43]  9.1 10.7 11.2  9.5 10.7  9.4 10.7  9.9 16.3 15.6 16.4 13.1 15.4 14.3
 [57] 15.9 11.6 15.4 13.2 11.5 14.6 13.2 15.1 13.4 15.6 14.6 13.6 14.4 13.1
 [71] 15.7 14.2 15.2 14.8 14.9 15.4 15.8 16.4 14.9 12.8 12.8 12.6 13.6 15.4
 [85] 14.4 15.5 16.0 14.3 14.0 13.3 13.7 15.1 13.6 11.6 13.8 14.1 14.1 14.7
 [99] 11.7 13.9 18.1 15.5 18.1 16.6 17.5 19.3 13.6 18.3 16.8 19.4 16.8 16.3
[113] 17.4 15.2 16.1 17.2 16.8 20.4 19.5 14.7 18.1 15.3 19.2 15.7 17.8 18.2
[127] 15.6 15.8 16.9 17.6 18.2 20.1 17.0 15.7 15.7 19.1 17.7 16.8 15.6 17.5
[141] 17.8 17.4 15.5 18.2 18.2 17.2 15.7 16.7 17.3 15.8

İlk 5 outlier detection indeksləri:

od_index <- order(distance, decreasing = T)[1:5]
od_index
[1] 118 132 119 110 106

Outlier Detection-ları vizuallaşdırmaq:

Outlier Detection-ların indeksləri:

df[distance, "Sepal.Length"]
  [1] 4.9 4.4 4.4 4.4 4.9 5.4 4.4 4.9 5.0 4.4 4.9 4.9 4.4 5.0 5.4 4.8 5.4
 [18] 4.9 5.4 4.9 4.9 4.9 4.4 4.9 4.9 4.4 4.9 4.9 4.9 4.4 4.4 4.9 4.9 5.4
 [35] 4.4 4.4 4.9 4.9 5.0 4.9 4.9 5.0 4.4 4.9 5.4 4.4 4.9 4.4 4.9 4.4 5.7
 [52] 5.8 5.7 4.8 5.8 4.3 5.8 5.4 5.8 4.8 5.4 4.3 4.8 5.8 4.8 5.8 4.3 4.8
 [69] 4.3 4.8 5.8 4.3 5.8 4.3 4.3 5.8 5.8 5.7 4.3 4.8 4.8 4.8 4.8 5.8 4.3
 [86] 5.8 5.7 4.3 4.3 4.8 4.8 5.8 4.8 5.4 4.8 4.3 4.3 4.3 5.4 4.8 5.1 5.8
[103] 5.1 5.7 5.4 5.7 4.8 5.1 5.7 5.7 5.7 5.7 5.4 5.8 5.7 5.4 5.7 5.1 5.7
[120] 4.3 5.1 5.8 5.7 5.8 5.4 5.1 5.8 5.8 5.7 5.4 5.1 5.1 5.4 5.8 5.8 5.7
[137] 5.4 5.7 5.8 5.4 5.4 5.4 5.8 5.1 5.1 5.4 5.8 5.7 5.4 5.8
df[distance, "Sepal.Width"]
  [1] 3.1 2.9 2.9 2.9 3.1 3.7 2.9 3.1 3.4 2.9 3.1 3.1 2.9 3.4 3.7 3.4 3.7
 [18] 3.1 3.7 3.1 3.1 3.1 2.9 3.1 3.1 2.9 3.1 3.1 3.1 2.9 2.9 3.1 3.1 3.7
 [35] 2.9 2.9 3.1 3.1 3.4 3.1 3.1 3.4 2.9 3.1 3.7 2.9 3.1 2.9 3.1 2.9 4.4
 [52] 4.0 4.4 3.0 4.0 3.0 4.0 3.7 4.0 3.0 3.7 3.0 3.0 4.0 3.0 4.0 3.0 3.0
 [69] 3.0 3.0 4.0 3.0 4.0 3.0 3.0 4.0 4.0 4.4 3.0 3.4 3.4 3.4 3.0 4.0 3.0
 [86] 4.0 4.4 3.0 3.0 3.0 3.0 4.0 3.0 3.7 3.0 3.0 3.0 3.0 3.7 3.0 3.5 4.0
[103] 3.5 4.4 3.9 3.8 3.0 3.5 4.4 3.8 4.4 4.4 3.9 4.0 4.4 3.9 4.4 3.8 3.8
[120] 3.0 3.5 4.0 3.8 4.0 3.9 3.5 4.0 4.0 4.4 3.9 3.5 3.8 3.9 4.0 4.0 3.8
[137] 3.9 4.4 4.0 3.9 3.9 3.9 4.0 3.5 3.5 3.9 4.0 4.4 3.9 4.0
df[distance, "Petal.Length"]
  [1] 1.5 1.4 1.4 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.6 1.5
 [18] 1.5 1.5 1.5 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.5 1.5 1.4 1.4 1.5 1.5 1.5
 [35] 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.4 1.5 1.5 1.4 1.5 1.4 1.5 1.4 1.5
 [52] 1.2 1.5 1.4 1.2 1.1 1.2 1.5 1.2 1.4 1.5 1.1 1.4 1.2 1.4 1.2 1.1 1.4
 [69] 1.1 1.4 1.2 1.1 1.2 1.1 1.1 1.2 1.2 1.5 1.1 1.6 1.6 1.6 1.4 1.2 1.1
 [86] 1.2 1.5 1.1 1.1 1.4 1.4 1.2 1.4 1.5 1.4 1.1 1.1 1.1 1.5 1.4 1.4 1.2
[103] 1.4 1.5 1.3 1.7 1.4 1.4 1.5 1.7 1.5 1.5 1.3 1.2 1.5 1.3 1.5 1.5 1.7
[120] 1.1 1.4 1.2 1.7 1.2 1.3 1.4 1.2 1.2 1.5 1.3 1.4 1.5 1.3 1.2 1.2 1.7
[137] 1.3 1.5 1.2 1.3 1.3 1.3 1.2 1.4 1.4 1.3 1.2 1.5 1.3 1.2
df[distance, "Petal.Width"]
  [1] 0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.2
 [18] 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.2
 [35] 0.2 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.1 0.2 0.4
 [52] 0.2 0.4 0.1 0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.1
 [69] 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.2 0.2 0.4 0.1 0.2 0.2 0.2 0.1 0.2 0.1
 [86] 0.2 0.4 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.1 0.3 0.2
[103] 0.3 0.4 0.4 0.3 0.1 0.3 0.4 0.3 0.4 0.4 0.4 0.2 0.4 0.4 0.4 0.3 0.3
[120] 0.1 0.3 0.2 0.3 0.2 0.4 0.3 0.2 0.2 0.4 0.4 0.3 0.3 0.4 0.2 0.2 0.3
[137] 0.4 0.4 0.2 0.4 0.4 0.4 0.2 0.3 0.3 0.4 0.2 0.4 0.4 0.2

Outlier Detectionları NA ilə əvəz etmək:

Outlier Detectionları təxmin etmə:

library(missForest)
rf_data <- missForest(df)
  missForest iteration 1 in progress...done!
  missForest iteration 2 in progress...done!
  missForest iteration 3 in progress...done!
  missForest iteration 4 in progress...done!
rf_data <- rf_data$ximp
rf_data
rf_data[distance,]

Yeni data üzərində model quraq:

2 mərkəzli klaster qurmaq:

library(DMwR)
k_means <- kmeans(rf_data, centers = 2)
k_means
K-means clustering with 2 clusters of sizes 40, 110

Cluster means:
  Sepal.Length Sepal.Width Petal.Length Petal.Width
1     4.972500    3.317500     1.602500    0.310000
2     6.239632    2.854059     4.852317    1.627464

Clustering vector:
  [1] 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2
 [71] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2
[106] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[141] 2 2 2 2 2 2 2 2 2 2

Within cluster sum of squares by cluster:
[1]  21.92325 140.90044
 (between_SS / total_SS =  71.8 %)

Available components:

[1] "cluster"      "centers"      "totss"        "withinss"    
[5] "tot.withinss" "betweenss"    "size"         "iter"        
[9] "ifault"      

Dəyişənlərin mərkəzləri ilə birlikdə ifadə edilməsi:

center_df <- k_means$centers[k_means$cluster,]
center_df
  Sepal.Length Sepal.Width Petal.Length Petal.Width
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
1     4.972500    3.317500     1.602500    0.310000
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
1     4.972500    3.317500     1.602500    0.310000
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
1     4.972500    3.317500     1.602500    0.310000
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
1     4.972500    3.317500     1.602500    0.310000
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464
2     6.239632    2.854059     4.852317    1.627464

Hər bir deyişən üçün uzaqlıqların hesablanması:

distance <- sqrt(rowSums(rf_data, center_df)^2)
distance
  [1] 10.20000  9.50000  9.40000  9.40000 10.20000 11.40000  9.70000
  [8] 13.56783 13.56783 13.56783 13.56783 13.56783 13.56783 13.56783
 [15] 13.56783 13.56783 13.56783 13.56783 13.56783 13.56783 10.70000
 [22] 10.70000  9.40000 10.60000 10.30000  9.80000 10.40000 10.40000
 [29] 10.20000  9.70000  9.70000 10.70000 10.90000 11.30000  9.70000
 [36]  9.60000 10.50000 10.00000  8.90000 10.20000 10.10000  8.40000
 [43]  9.10000 10.70000 11.20000  9.50000 10.70000  9.40000 10.70000
 [50]  9.90000 16.30000 15.60000 16.40000 13.10000 15.40000 14.30000
 [57] 15.90000 11.60000 15.40000 13.20000 11.50000 14.60000 13.20000
 [64] 15.10000 13.40000 15.60000 14.60000 13.60000 14.40000 13.10000
 [71] 15.70000 14.20000 15.20000 14.80000 14.90000 15.40000 15.80000
 [78] 16.40000 14.90000 12.80000 12.80000 12.60000 13.60000 15.40000
 [85] 14.40000 15.50000 16.00000 14.30000 14.00000 13.30000 13.70000
 [92] 15.10000 13.60000 11.60000 13.80000 14.10000 14.10000 14.70000
 [99] 11.70000 13.90000 18.10000 15.50000 18.10000 16.60000 17.50000
[106] 19.30000 13.60000 18.30000 16.80000 19.40000 16.80000 16.30000
[113] 17.40000 15.20000 16.10000 17.20000 16.80000 20.40000 19.50000
[120] 14.70000 18.10000 15.30000 19.20000 15.70000 17.80000 18.20000
[127] 15.60000 15.80000 16.90000 17.60000 18.20000 20.10000 17.00000
[134] 15.70000 15.70000 19.10000 17.70000 16.80000 15.60000 17.50000
[141] 17.80000 17.40000 15.50000 18.20000 18.20000 17.20000 15.70000
[148] 16.70000 17.30000 15.80000

Outlier Detection-ları vizuallaşdırmaq:

Nəticə:

Real datada olduğu kimi Random Forestlə təxmin etdiyimiz datanın tərkibində də outlier detectionlara rast gəlinir. Bunun səbəbi datadakı outlier detectionlar istər təxmin edildikdən, istər NA ilə doldurulduqdan, istərsə də ortalama dəyər ilə doldurulduqdan sonra yeni variyasalardan asılı olduğu üçün dəyişənlər müxtəlif şəkildə paylanır. Nəticə də isə yeni outlier detectionlar əmələ gəlir.

LS0tDQp0aXRsZTogIk91dGxpZXIgRGV0ZWN0aW9uIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQplZGl0b3Jfb3B0aW9uczogDQogIGNodW5rX291dHB1dF90eXBlOiBpbmxpbmUNCi0tLQ0KDQoNCiMgRGF0YW7EsW4gZGF4aWwgZWRpbG3JmXNpOg0KDQpgYGB7cn0NCg0KaXJpcw0KZGYgPC0gaXJpc1sxOjRdICMgeWFsbsSxeiDJmWTJmWRpIGTJmXlpxZ/JmW5syZlyIHNlw6dpbGlyDQpkZg0KDQpgYGANCg0KIyAyIG3JmXJryZl6bGkga2xhc3RlciBxdXJtYXE6DQoNCmBgYHtyfQ0KDQpsaWJyYXJ5KERNd1IpDQprX21lYW5zIDwtIGttZWFucyhkZiwgY2VudGVycyA9IDIpDQprX21lYW5zDQoNCmBgYA0KDQojIETJmXlpxZ/JmW5syZlyaW4gbcmZcmvJmXpsyZlyaSBpbMmZIGJpcmxpa2TJmSBpZmFkyZkgZWRpbG3JmXNpOg0KDQpgYGB7cn0NCg0KY2VudGVyX2RmIDwtIGtfbWVhbnMkY2VudGVyc1trX21lYW5zJGNsdXN0ZXIsXQ0KY2VudGVyX2RmDQoNCmBgYA0KDQojIEjJmXIgYmlyIGRleWnFn8mZbiDDvMOnw7xuIHV6YXFsxLFxbGFyxLFuIGhlc2FibGFubWFzxLE6DQoNCmBgYHtyfQ0KDQpkaXN0YW5jZSA8LSBzcXJ0KHJvd1N1bXMoZGYsIGNlbnRlcl9kZileMikNCmRpc3RhbmNlDQoNCmBgYA0KDQojIMSwbGsgNSBvdXRsaWVyIGRldGVjdGlvbiBpbmRla3NsyZlyaToNCg0KYGBge3J9DQoNCm9kX2luZGV4IDwtIG9yZGVyKGRpc3RhbmNlLCBkZWNyZWFzaW5nID0gVClbMTo1XQ0Kb2RfaW5kZXgNCg0KYGBgDQoNCiMgT3V0bGllciBEZXRlY3Rpb24tbGFyxLEgdml6dWFsbGHFn2TEsXJtYXE6DQoNCmBgYHtyfQ0KDQpwbG90KDEwOjEpDQpsaW5lKDE6MTApDQoNCnBsb3QoZGZbICxjKCJTZXBhbC5MZW5ndGgiLCAiU2VwYWwuV2lkdGgiKV0sIA0KICAgICBwY2ggPSAiLiIsIA0KICAgICBjb2wgPSBrX21lYW5zJGNsdXN0ZXIsIA0KICAgICBjZXggPSA2KQ0KDQpwb2ludHMoa19tZWFucyRjZW50ZXJzWyAsYygiU2VwYWwuTGVuZ3RoIiwgIlNlcGFsLldpZHRoIildLCANCiAgICAgICBjb2wgPSAxOjMsIA0KICAgICAgIHBjaCA9IDgsIA0KICAgICAgIGNleCA9IDMpDQoNCnBvaW50cyhrX21lYW5zJGNlbnRlcnNbICxjKCJTZXBhbC5MZW5ndGgiLCAiU2VwYWwuV2lkdGgiKV0sIA0KICAgICAgIGNvbCA9IDE6MywgDQogICAgICAgcGNoID0gOSwgDQogICAgICAgY2V4ID0gNCkNCg0KcG9pbnRzKGRmW2Rpc3RhbmNlLCBjKCJTZXBhbC5MZW5ndGgiLCAiU2VwYWwuV2lkdGgiKV0sIA0KICAgICBwY2ggPSAiKyIsIA0KICAgICBjb2wgPSA0LCANCiAgICAgY2V4ID0gMykNCg0KYGBgDQoNCiMgT3V0bGllciBEZXRlY3Rpb24tbGFyxLFuIGluZGVrc2zJmXJpOg0KDQpgYGB7cn0NCg0KZGZbZGlzdGFuY2UsICJTZXBhbC5MZW5ndGgiXQ0KZGZbZGlzdGFuY2UsICJTZXBhbC5XaWR0aCJdDQpkZltkaXN0YW5jZSwgIlBldGFsLkxlbmd0aCJdDQpkZltkaXN0YW5jZSwgIlBldGFsLldpZHRoIl0NCg0KYGBgDQoNCiMgT3V0bGllciBEZXRlY3Rpb25sYXLEsSBOQSBpbMmZIMmZdsmZeiBldG3JmWs6DQoNCmBgYHtyfQ0KDQpkZltkaXN0YW5jZSwgIlNlcGFsLkxlbmd0aCJdIDwtIE5BDQpkZltkaXN0YW5jZSwgIlNlcGFsLldpZHRoIl0gPC0gTkENCmRmW2Rpc3RhbmNlLCAiUGV0YWwuTGVuZ3RoIl0gPC0gTkENCmRmW2Rpc3RhbmNlLCAiUGV0YWwuV2lkdGgiXSA8LSBOQQ0KZGZbZGlzdGFuY2UsXQ0KDQpgYGANCg0KIyBPdXRsaWVyIERldGVjdGlvbmxhcsSxIHTJmXhtaW4gZXRtyZk6DQoNCmBgYHtyfQ0KDQpsaWJyYXJ5KG1pc3NGb3Jlc3QpDQpyZl9kYXRhIDwtIG1pc3NGb3Jlc3QoZGYpDQpyZl9kYXRhIDwtIHJmX2RhdGEkeGltcA0KcmZfZGF0YQ0KcmZfZGF0YVtkaXN0YW5jZSxdDQoNCmBgYA0KDQojIyBZZW5pIGRhdGEgw7x6yZlyaW5kyZkgbW9kZWwgcXVyYXE6DQojIDIgbcmZcmvJmXpsaSBrbGFzdGVyIHF1cm1hcToNCg0KYGBge3J9DQoNCmxpYnJhcnkoRE13UikNCmtfbWVhbnMgPC0ga21lYW5zKHJmX2RhdGEsIGNlbnRlcnMgPSAyKQ0Ka19tZWFucw0KDQpgYGANCg0KIyBEyZl5acWfyZlubMmZcmluIG3JmXJryZl6bMmZcmkgaWzJmSBiaXJsaWtkyZkgaWZhZMmZIGVkaWxtyZlzaToNCg0KYGBge3J9DQoNCmNlbnRlcl9kZiA8LSBrX21lYW5zJGNlbnRlcnNba19tZWFucyRjbHVzdGVyLF0NCmNlbnRlcl9kZg0KDQpgYGANCg0KIyBIyZlyIGJpciBkZXlpxZ/JmW4gw7zDp8O8biB1emFxbMSxcWxhcsSxbiBoZXNhYmxhbm1hc8SxOg0KDQpgYGB7cn0NCg0KZGlzdGFuY2UgPC0gc3FydChyb3dTdW1zKHJmX2RhdGEsIGNlbnRlcl9kZileMikNCmRpc3RhbmNlDQoNCmBgYA0KDQojIE91dGxpZXIgRGV0ZWN0aW9uLWxhcsSxIHZpenVhbGxhxZ9kxLFybWFxOg0KDQpgYGB7cn0NCg0KcGxvdCgxMDoxKQ0KbGluZSgxOjEwKQ0KDQpwbG90KHJmX2RhdGFbICxjKCJTZXBhbC5MZW5ndGgiLCAiU2VwYWwuV2lkdGgiKV0sIA0KICAgICBwY2ggPSAiLiIsIA0KICAgICBjb2wgPSBrX21lYW5zJGNsdXN0ZXIsIA0KICAgICBjZXggPSA2KQ0KDQpwb2ludHMoa19tZWFucyRjZW50ZXJzWyAsYygiU2VwYWwuTGVuZ3RoIiwgIlNlcGFsLldpZHRoIildLCANCiAgICAgICBjb2wgPSAxOjMsIA0KICAgICAgIHBjaCA9IDgsIA0KICAgICAgIGNleCA9IDMpDQoNCnBvaW50cyhrX21lYW5zJGNlbnRlcnNbICxjKCJTZXBhbC5MZW5ndGgiLCAiU2VwYWwuV2lkdGgiKV0sIA0KICAgICAgIGNvbCA9IDE6MywgDQogICAgICAgcGNoID0gOSwgDQogICAgICAgY2V4ID0gNCkNCg0KcG9pbnRzKHJmX2RhdGFbZGlzdGFuY2UsIGMoIlNlcGFsLkxlbmd0aCIsICJTZXBhbC5XaWR0aCIpXSwgDQogICAgIHBjaCA9ICIrIiwgDQogICAgIGNvbCA9IDQsIA0KICAgICBjZXggPSAzKQ0KDQpgYGANCg0KIyMjIE7JmXRpY8mZOg0KIyMjIFJlYWwgZGF0YWRhIG9sZHXEn3Uga2ltaSBSYW5kb20gRm9yZXN0bMmZIHTJmXhtaW4gZXRkaXlpbWl6IGRhdGFuxLFuIHTJmXJraWJpbmTJmSBkyZkgb3V0bGllciBkZXRlY3Rpb25sYXJhIHJhc3QgZ8mZbGluaXIuIEJ1bnVuIHPJmWLJmWJpIGRhdGFkYWvEsSBvdXRsaWVyIGRldGVjdGlvbmxhciBpc3TJmXIgdMmZeG1pbiBlZGlsZGlrZMmZbiwgaXN0yZlyIE5BIGlsyZkgZG9sZHVydWxkdXFkYW4sIGlzdMmZcnPJmSBkyZkgb3J0YWxhbWEgZMmZecmZciBpbMmZIGRvbGR1cnVsZHVxZGFuIHNvbnJhIHllbmkgdmFyaXlhc2FsYXJkYW4gYXPEsWzEsSBvbGR1xJ91IMO8w6fDvG4gZMmZeWnFn8mZbmzJmXIgbcO8eHTJmWxpZiDFn8mZa2lsZMmZIHBheWxhbsSxci4gTsmZdGljyZkgZMmZIGlzyZkgeWVuaSBvdXRsaWVyIGRldGVjdGlvbmxhciDJmW3JmWzJmSBnyZlsaXIuDQoNCg0KDQoNCg0KDQoNCg0KDQo=