library(treemap)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.3     v purrr   0.3.4
## v tibble  3.1.0     v dplyr   1.0.4
## v tidyr   1.1.2     v stringr 1.4.0
## v readr   1.4.0     v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(RColorBrewer)
data <- read.csv("http://datasets.flowingdata.com/post-data.txt")
head(data)
##     id  views comments               category
## 1 5019 148896       28 Artistic Visualization
## 2 1416  81374       26          Visualization
## 3 1416  81374       26               Featured
## 4 3485  80819       37               Featured
## 5 3485  80819       37                Mapping
## 6 3485  80819       37           Data Sources

##Code for creating a treemap

treemap(data, index="category", vSize="views", 
                vColor="comments", type="value", 
                palette="RdYlBu")

Use RColorBrewer to change the palette to RdYlBu

treemap(data, index="category", vSize="views", 
        vColor="comments", type="manual", 
        palette="RdYlBu")

Heatmaps

Load the nba data from Yau’s website

# How to make a heatmap
nba <- read.csv("http://datasets.flowingdata.com/ppg2008.csv")
nba
##                  Name  G  MIN  PTS  FGM  FGA   FGP FTM  FTA   FTP X3PM X3PA
## 1        Dwyane Wade  79 38.6 30.2 10.8 22.0 0.491 7.5  9.8 0.765  1.1  3.5
## 2       LeBron James  81 37.7 28.4  9.7 19.9 0.489 7.3  9.4 0.780  1.6  4.7
## 3        Kobe Bryant  82 36.2 26.8  9.8 20.9 0.467 5.9  6.9 0.856  1.4  4.1
## 4      Dirk Nowitzki  81 37.7 25.9  9.6 20.0 0.479 6.0  6.7 0.890  0.8  2.1
## 5      Danny Granger  67 36.2 25.8  8.5 19.1 0.447 6.0  6.9 0.878  2.7  6.7
## 6       Kevin Durant  74 39.0 25.3  8.9 18.8 0.476 6.1  7.1 0.863  1.3  3.1
## 7       Kevin Martin  51 38.2 24.6  6.7 15.9 0.420 9.0 10.3 0.867  2.3  5.4
## 8       Al Jefferson  50 36.6 23.1  9.7 19.5 0.497 3.7  5.0 0.738  0.0  0.1
## 9         Chris Paul  78 38.5 22.8  8.1 16.1 0.503 5.8  6.7 0.868  0.8  2.3
## 10   Carmelo Anthony  66 34.5 22.8  8.1 18.3 0.443 5.6  7.1 0.793  1.0  2.6
## 11        Chris Bosh  77 38.1 22.7  8.0 16.4 0.487 6.5  8.0 0.817  0.2  0.6
## 12       Brandon Roy  78 37.2 22.6  8.1 16.9 0.480 5.3  6.5 0.824  1.1  2.8
## 13    Antawn Jamison  81 38.2 22.2  8.3 17.8 0.468 4.2  5.6 0.754  1.4  3.9
## 14       Tony Parker  72 34.1 22.0  8.9 17.5 0.506 3.9  5.0 0.782  0.3  0.9
## 15  Amare Stoudemire  53 36.8 21.4  7.6 14.1 0.539 6.1  7.3 0.835  0.1  0.1
## 16       Joe Johnson  79 39.5 21.4  7.8 18.0 0.437 3.8  4.6 0.826  1.9  5.2
## 17      Devin Harris  69 36.1 21.3  6.6 15.1 0.438 7.2  8.8 0.820  0.9  3.2
## 18      Michael Redd  33 36.4 21.2  7.5 16.6 0.455 4.0  4.9 0.814  2.1  5.8
## 19        David West  76 39.3 21.0  8.0 17.0 0.472 4.8  5.5 0.884  0.1  0.3
## 20  Zachary Randolph  50 35.1 20.8  8.3 17.5 0.475 3.6  4.9 0.734  0.6  1.9
## 21      Caron Butler  67 38.6 20.8  7.3 16.2 0.453 5.1  6.0 0.858  1.0  3.1
## 22      Vince Carter  80 36.8 20.8  7.4 16.8 0.437 4.2  5.1 0.817  1.9  4.9
## 23   Stephen Jackson  59 39.7 20.7  7.0 16.9 0.414 5.0  6.0 0.826  1.7  5.2
## 24        Ben Gordon  82 36.6 20.7  7.3 16.0 0.455 4.0  4.7 0.864  2.1  5.1
## 25     Dwight Howard  79 35.7 20.6  7.1 12.4 0.572 6.4 10.7 0.594  0.0  0.0
## 26       Paul Pierce  81 37.4 20.5  6.7 14.6 0.457 5.7  6.8 0.830  1.5  3.8
## 27     Al Harrington  73 34.9 20.1  7.3 16.6 0.439 3.2  4.0 0.793  2.3  6.4
## 28    Jamal Crawford  65 38.1 19.7  6.4 15.7 0.410 4.6  5.3 0.872  2.2  6.1
## 29          Yao Ming  77 33.6 19.7  7.4 13.4 0.548 4.9  5.7 0.866  0.0  0.0
## 30 Richard Jefferson  82 35.9 19.6  6.5 14.9 0.439 5.1  6.3 0.805  1.4  3.6
## 31       Jason Terry  74 33.6 19.6  7.3 15.8 0.463 2.7  3.0 0.880  2.3  6.2
## 32    Deron Williams  68 36.9 19.4  6.8 14.5 0.471 4.8  5.6 0.849  1.0  3.3
## 33        Tim Duncan  75 33.7 19.3  7.4 14.8 0.504 4.5  6.4 0.692  0.0  0.0
## 34       Monta Ellis  25 35.6 19.0  7.8 17.2 0.451 3.1  3.8 0.830  0.3  1.0
## 35          Rudy Gay  79 37.3 18.9  7.2 16.0 0.453 3.3  4.4 0.767  1.1  3.1
## 36         Pau Gasol  81 37.1 18.9  7.3 12.9 0.567 4.2  5.4 0.781  0.0  0.0
## 37    Andre Iguodala  82 39.8 18.8  6.6 14.0 0.473 4.6  6.4 0.724  1.0  3.2
## 38    Corey Maggette  51 31.1 18.6  5.7 12.4 0.461 6.7  8.1 0.824  0.5  1.9
## 39         O.J. Mayo  82 38.0 18.5  6.9 15.6 0.438 3.0  3.4 0.879  1.8  4.6
## 40      John Salmons  79 37.5 18.3  6.5 13.8 0.472 3.6  4.4 0.830  1.6  3.8
## 41  Richard Hamilton  67 34.0 18.3  7.0 15.6 0.447 3.3  3.9 0.848  1.0  2.8
## 42         Ray Allen  79 36.3 18.2  6.3 13.2 0.480 3.0  3.2 0.952  2.5  6.2
## 43 LaMarcus Aldridge  81 37.1 18.1  7.4 15.3 0.484 3.2  4.1 0.781  0.1  0.3
## 44       Josh Howard  52 31.9 18.0  6.8 15.1 0.451 3.3  4.2 0.782  1.1  3.2
## 45  Maurice Williams  81 35.0 17.8  6.5 13.9 0.467 2.6  2.8 0.912  2.3  5.2
## 46  Shaquille O'neal  75 30.1 17.8  6.8 11.2 0.609 4.1  6.9 0.595  0.0  0.0
## 47     Rashard Lewis  79 36.2 17.7  6.1 13.8 0.439 2.8  3.4 0.836  2.8  7.0
## 48  Chauncey Billups  79 35.3 17.7  5.2 12.4 0.418 5.3  5.8 0.913  2.1  5.0
## 49     Allen Iverson  57 36.7 17.5  6.1 14.6 0.417 4.8  6.1 0.781  0.5  1.7
## 50     Nate Robinson  74 29.9 17.2  6.1 13.9 0.437 3.4  4.0 0.841  1.7  5.2
##     X3PP ORB DRB  TRB  AST STL BLK  TO  PF
## 1  0.317 1.1 3.9  5.0  7.5 2.2 1.3 3.4 2.3
## 2  0.344 1.3 6.3  7.6  7.2 1.7 1.1 3.0 1.7
## 3  0.351 1.1 4.1  5.2  4.9 1.5 0.5 2.6 2.3
## 4  0.359 1.1 7.3  8.4  2.4 0.8 0.8 1.9 2.2
## 5  0.404 0.7 4.4  5.1  2.7 1.0 1.4 2.5 3.1
## 6  0.422 1.0 5.5  6.5  2.8 1.3 0.7 3.0 1.8
## 7  0.415 0.6 3.0  3.6  2.7 1.2 0.2 2.9 2.3
## 8  0.000 3.4 7.5 11.0  1.6 0.8 1.7 1.8 2.8
## 9  0.364 0.9 4.7  5.5 11.0 2.8 0.1 3.0 2.7
## 10 0.371 1.6 5.2  6.8  3.4 1.1 0.4 3.0 3.0
## 11 0.245 2.8 7.2 10.0  2.5 0.9 1.0 2.3 2.5
## 12 0.377 1.3 3.4  4.7  5.1 1.1 0.3 1.9 1.6
## 13 0.351 2.4 6.5  8.9  1.9 1.2 0.3 1.5 2.7
## 14 0.292 0.4 2.7  3.1  6.9 0.9 0.1 2.6 1.5
## 15 0.429 2.2 5.9  8.1  2.0 0.9 1.1 2.8 3.1
## 16 0.360 0.8 3.6  4.4  5.8 1.1 0.2 2.5 2.2
## 17 0.291 0.4 2.9  3.3  6.9 1.7 0.2 3.1 2.4
## 18 0.366 0.7 2.5  3.2  2.7 1.1 0.1 1.6 1.4
## 19 0.240 2.1 6.4  8.5  2.3 0.6 0.9 2.1 2.7
## 20 0.330 3.1 6.9 10.1  2.1 0.9 0.3 2.3 2.7
## 21 0.310 1.8 4.4  6.2  4.3 1.6 0.3 3.1 2.5
## 22 0.385 0.9 4.2  5.1  4.7 1.0 0.5 2.1 2.9
## 23 0.338 1.2 3.9  5.1  6.5 1.5 0.5 3.9 2.6
## 24 0.410 0.6 2.8  3.5  3.4 0.9 0.3 2.4 2.2
## 25 0.000 4.3 9.6 13.8  1.4 1.0 2.9 3.0 3.4
## 26 0.391 0.7 5.0  5.6  3.6 1.0 0.3 2.8 2.7
## 27 0.364 1.4 4.9  6.2  1.4 1.2 0.3 2.2 3.1
## 28 0.360 0.4 2.6  3.0  4.4 0.9 0.2 2.3 1.4
## 29 1.000 2.6 7.2  9.9  1.8 0.4 1.9 3.0 3.3
## 30 0.397 0.7 3.9  4.6  2.4 0.8 0.2 2.0 3.1
## 31 0.366 0.5 1.9  2.4  3.4 1.3 0.3 1.6 1.9
## 32 0.310 0.4 2.5  2.9 10.7 1.1 0.3 3.4 2.0
## 33 0.000 2.7 8.0 10.7  3.5 0.5 1.7 2.2 2.3
## 34 0.308 0.6 3.8  4.3  3.7 1.6 0.3 2.7 2.7
## 35 0.351 1.4 4.2  5.5  1.7 1.2 0.7 2.6 2.8
## 36 0.500 3.2 6.4  9.6  3.5 0.6 1.0 1.9 2.1
## 37 0.307 1.1 4.6  5.7  5.3 1.6 0.4 2.7 1.9
## 38 0.253 1.0 4.6  5.5  1.8 0.9 0.2 2.4 3.8
## 39 0.384 0.7 3.1  3.8  3.2 1.1 0.2 2.8 2.5
## 40 0.417 0.7 3.5  4.2  3.2 1.1 0.3 2.1 2.3
## 41 0.368 0.7 2.4  3.1  4.4 0.6 0.1 2.0 2.6
## 42 0.409 0.8 2.7  3.5  2.8 0.9 0.2 1.7 2.0
## 43 0.250 2.9 4.6  7.5  1.9 1.0 1.0 1.5 2.6
## 44 0.345 1.1 3.9  5.1  1.6 1.1 0.6 1.7 2.6
## 45 0.436 0.6 2.9  3.4  4.1 0.9 0.1 2.2 2.7
## 46 0.000 2.5 5.9  8.4  1.7 0.7 1.4 2.2 3.4
## 47 0.397 1.2 4.6  5.7  2.6 1.0 0.6 2.0 2.5
## 48 0.408 0.4 2.6  3.0  6.4 1.2 0.2 2.2 2.0
## 49 0.283 0.5 2.5  3.0  5.0 1.5 0.1 2.6 1.5
## 50 0.325 1.3 2.6  3.9  4.1 1.3 0.1 1.9 2.8

Create a cool-color heatmap of the nba 2008 data

nba <- nba[order(nba$PTS),]
row.names(nba) <- nba$Name
nba <- nba[,2:19]
nba_matrix <- data.matrix(nba)
nba_heatmap <- heatmap(nba_matrix, Rowv=NA, Colv=NA, 
                       col = cm.colors(256), scale="column", margins=c(5,10),
                       xlab = "NBA Player Stats",
                       ylab = "NBA Players",
                       main = "NBA Payer Stats in 2008")

Change the heatmap colors to heat colors

nba_heatmap <- heatmap(nba_matrix, Rowv=NA, Colv=NA, col = heat.colors(256), 
                       scale="column", margins=c(5,10),
                        xlab = "NBA Player Stats",
                       ylab = "NBA Players",
                       main = "NBA Payer Stats in 2008")

Use the viridis colors

library(viridis)
## Loading required package: viridisLite
nba_heatmap <- heatmap(nba_matrix, Rowv=NA, col = viridis(25, direction = -1), 
                       scale="column", margins=c(5,10),
                        xlab = "NBA Player Stats",
                       ylab = "NBA Players",
                       main = "NBA Payer Stats in 2008")

Use the dataset NYCFlights13 to create a heatmap that explores Late Arrivals

library(nycflights13)
library(RColorBrewer)
#view(flights)

#Late Arrivals Affect the Usage Cost of Airports

flights_nona <- na.omit (flights)      # remove observations with NA values
delays <- flights_nona %>%             # create a delays dataframe by:
  group_by (dest) %>%                  # grouping by point of destination
  summarize (count = n(),              # create these variables: number of flights to each destination,
             dist = mean (distance),   # mean distance flown to each destination,
             delay = mean (arr_delay), # mean delay of arrival to each destination,
             delaycost= mean(count*delay/distance)) # delay cost index defined as:
                    #  [(number of flights)*delay/distance] for a destination

top100 <- delays %>%                     # select the top 100 largest arrival delays
  arrange(desc(delaycost)) %>%                              
  head(100)

#Create a matrix from the dataframe

row.names(top100) <- top100$dest       # rename the rows according to destination airport codes
## Warning: Setting row names on a tibble is deprecated.
delays_mat <- data.matrix(top100)     # convert delays dataframe to a matrix  (required by heatmap)
delays_matrix <- delays_mat[,2:5]    # remove redundant column of destination airport codes

#Call heatmap using a ColorBrewer color set, margins=c(7,10) for aspect ratio, titles of graph, x and y labels,font size of x and y labels, and set up a RowSideColors bar

varcols = setNames(colorRampPalette(brewer.pal(nrow(delays_matrix), "YlGnBu"))(nrow(delays_matrix)), rownames(delays_matrix))   # parameter for RowSideColors
## Warning in brewer.pal(nrow(delays_matrix), "YlGnBu"): n too large, allowed maximum for palette YlGnBu is 9
## Returning the palette you asked for with that many colors
heatmap(delays_matrix, Rowv = NA, 
        Colv = NA, 
        col= colorRampPalette(brewer.pal(nrow(delays_matrix), "YlGnBu"))(nrow(delays_matrix)), 
        s=0.6, v=1, scale="column", 
        margins=c(7,10), 
        main = "Cost of Late Arrivals", 
        xlab =" Flight Characteristics", 
        ylab="Arrival Airport", 
        labCol = c("Flights","Distance","Delay","Cost Index"), 
        cexCol=1, cexRow =1, RowSideColors = varcols)
## layout: widths =  0.05 0.2 4 , heights =  0.25 4 ; lmat=
##      [,1] [,2] [,3]
## [1,]    0    0    4
## [2,]    3    1    2
## Warning in brewer.pal(nrow(delays_matrix), "YlGnBu"): n too large, allowed maximum for palette YlGnBu is 9
## Returning the palette you asked for with that many colors

#Streamgraphs

#Load devtools and libraries to create the following streamgraphs

devtools::install_github("hrbrmstr/streamgraph")
## Skipping install of 'streamgraph' from a github remote, the SHA1 (76f7173e) has not changed since last install.
##   Use `force = TRUE` to force installation
devtools::session_info()
## - Session info ---------------------------------------------------------------
##  setting  value                       
##  version  R version 4.0.4 (2021-02-15)
##  os       Windows 10 x64              
##  system   x86_64, mingw32             
##  ui       RTerm                       
##  language (EN)                        
##  collate  English_United States.1252  
##  ctype    English_United States.1252  
##  tz       America/New_York            
##  date     2021-02-28                  
## 
## - Packages -------------------------------------------------------------------
##  package      * version date       lib source        
##  assertthat     0.2.1   2019-03-21 [1] CRAN (R 4.0.3)
##  backports      1.2.1   2020-12-09 [1] CRAN (R 4.0.3)
##  broom          0.7.5   2021-02-19 [1] CRAN (R 4.0.3)
##  bslib          0.2.4   2021-01-25 [1] CRAN (R 4.0.3)
##  cachem         1.0.4   2021-02-13 [1] CRAN (R 4.0.3)
##  callr          3.5.1   2020-10-13 [1] CRAN (R 4.0.3)
##  cellranger     1.1.0   2016-07-27 [1] CRAN (R 4.0.3)
##  cli            2.3.1   2021-02-23 [1] CRAN (R 4.0.3)
##  colorspace     2.0-0   2020-11-11 [1] CRAN (R 4.0.3)
##  crayon         1.4.1   2021-02-08 [1] CRAN (R 4.0.3)
##  curl           4.3     2019-12-02 [1] CRAN (R 4.0.3)
##  data.table     1.14.0  2021-02-21 [1] CRAN (R 4.0.4)
##  DBI            1.1.1   2021-01-15 [1] CRAN (R 4.0.3)
##  dbplyr         2.1.0   2021-02-03 [1] CRAN (R 4.0.3)
##  desc           1.2.0   2018-05-01 [1] CRAN (R 4.0.3)
##  devtools       2.3.2   2020-09-18 [1] CRAN (R 4.0.3)
##  digest         0.6.27  2020-10-24 [1] CRAN (R 4.0.3)
##  dplyr        * 1.0.4   2021-02-02 [1] CRAN (R 4.0.3)
##  ellipsis       0.3.1   2020-05-15 [1] CRAN (R 4.0.3)
##  evaluate       0.14    2019-05-28 [1] CRAN (R 4.0.3)
##  fansi          0.4.2   2021-01-15 [1] CRAN (R 4.0.3)
##  fastmap        1.1.0   2021-01-25 [1] CRAN (R 4.0.3)
##  forcats      * 0.5.1   2021-01-27 [1] CRAN (R 4.0.3)
##  fs             1.5.0   2020-07-31 [1] CRAN (R 4.0.3)
##  generics       0.1.0   2020-10-31 [1] CRAN (R 4.0.3)
##  ggplot2      * 3.3.3   2020-12-30 [1] CRAN (R 4.0.3)
##  glue           1.4.2   2020-08-27 [1] CRAN (R 4.0.3)
##  gridBase       0.4-7   2014-02-24 [1] CRAN (R 4.0.3)
##  gridExtra      2.3     2017-09-09 [1] CRAN (R 4.0.3)
##  gtable         0.3.0   2019-03-25 [1] CRAN (R 4.0.3)
##  haven          2.3.1   2020-06-01 [1] CRAN (R 4.0.3)
##  highr          0.8     2019-03-20 [1] CRAN (R 4.0.3)
##  hms            1.0.0   2021-01-13 [1] CRAN (R 4.0.3)
##  htmltools      0.5.1.1 2021-01-22 [1] CRAN (R 4.0.3)
##  httpuv         1.5.5   2021-01-13 [1] CRAN (R 4.0.3)
##  httr           1.4.2   2020-07-20 [1] CRAN (R 4.0.3)
##  igraph         1.2.6   2020-10-06 [1] CRAN (R 4.0.3)
##  jquerylib      0.1.3   2020-12-17 [1] CRAN (R 4.0.3)
##  jsonlite       1.7.2   2020-12-09 [1] CRAN (R 4.0.4)
##  knitr          1.31    2021-01-27 [1] CRAN (R 4.0.3)
##  later          1.1.0.1 2020-06-05 [1] CRAN (R 4.0.3)
##  lifecycle      1.0.0   2021-02-15 [1] CRAN (R 4.0.4)
##  lubridate      1.7.10  2021-02-26 [1] CRAN (R 4.0.3)
##  magrittr       2.0.1   2020-11-17 [1] CRAN (R 4.0.3)
##  memoise        2.0.0   2021-01-26 [1] CRAN (R 4.0.3)
##  mime           0.10    2021-02-13 [1] CRAN (R 4.0.4)
##  modelr         0.1.8   2020-05-19 [1] CRAN (R 4.0.3)
##  munsell        0.5.0   2018-06-12 [1] CRAN (R 4.0.3)
##  nycflights13 * 1.0.1   2019-09-16 [1] CRAN (R 4.0.3)
##  pillar         1.5.0   2021-02-22 [1] CRAN (R 4.0.3)
##  pkgbuild       1.2.0   2020-12-15 [1] CRAN (R 4.0.3)
##  pkgconfig      2.0.3   2019-09-22 [1] CRAN (R 4.0.3)
##  pkgload        1.2.0   2021-02-23 [1] CRAN (R 4.0.3)
##  prettyunits    1.1.1   2020-01-24 [1] CRAN (R 4.0.3)
##  processx       3.4.5   2020-11-30 [1] CRAN (R 4.0.3)
##  promises       1.2.0.1 2021-02-11 [1] CRAN (R 4.0.3)
##  ps             1.5.0   2020-12-05 [1] CRAN (R 4.0.3)
##  purrr        * 0.3.4   2020-04-17 [1] CRAN (R 4.0.3)
##  R6             2.5.0   2020-10-28 [1] CRAN (R 4.0.3)
##  RColorBrewer * 1.1-2   2014-12-07 [1] CRAN (R 4.0.3)
##  Rcpp           1.0.6   2021-01-15 [1] CRAN (R 4.0.3)
##  readr        * 1.4.0   2020-10-05 [1] CRAN (R 4.0.3)
##  readxl         1.3.1   2019-03-13 [1] CRAN (R 4.0.3)
##  remotes        2.2.0   2020-07-21 [1] CRAN (R 4.0.3)
##  reprex         1.0.0   2021-01-27 [1] CRAN (R 4.0.3)
##  rlang          0.4.10  2020-12-30 [1] CRAN (R 4.0.3)
##  rmarkdown      2.7     2021-02-19 [1] CRAN (R 4.0.3)
##  rprojroot      2.0.2   2020-11-15 [1] CRAN (R 4.0.3)
##  rstudioapi     0.13    2020-11-12 [1] CRAN (R 4.0.3)
##  rvest          0.3.6   2020-07-25 [1] CRAN (R 4.0.3)
##  sass           0.3.1   2021-01-24 [1] CRAN (R 4.0.3)
##  scales         1.1.1   2020-05-11 [1] CRAN (R 4.0.3)
##  sessioninfo    1.1.1   2018-11-05 [1] CRAN (R 4.0.3)
##  shiny          1.6.0   2021-01-25 [1] CRAN (R 4.0.3)
##  stringi        1.5.3   2020-09-09 [1] CRAN (R 4.0.3)
##  stringr      * 1.4.0   2019-02-10 [1] CRAN (R 4.0.3)
##  testthat       3.0.2   2021-02-14 [1] CRAN (R 4.0.4)
##  tibble       * 3.1.0   2021-02-25 [1] CRAN (R 4.0.4)
##  tidyr        * 1.1.2   2020-08-27 [1] CRAN (R 4.0.3)
##  tidyselect     1.1.0   2020-05-11 [1] CRAN (R 4.0.3)
##  tidyverse    * 1.3.0   2019-11-21 [1] CRAN (R 4.0.3)
##  treemap      * 2.4-2   2017-01-04 [1] CRAN (R 4.0.3)
##  usethis        2.0.1   2021-02-10 [1] CRAN (R 4.0.3)
##  utf8           1.1.4   2018-05-24 [1] CRAN (R 4.0.3)
##  vctrs          0.3.6   2020-12-17 [1] CRAN (R 4.0.3)
##  viridis      * 0.5.1   2018-03-29 [1] CRAN (R 4.0.3)
##  viridisLite  * 0.3.0   2018-02-01 [1] CRAN (R 4.0.3)
##  withr          2.4.1   2021-01-26 [1] CRAN (R 4.0.3)
##  xfun           0.21    2021-02-10 [1] CRAN (R 4.0.3)
##  xml2           1.3.2   2020-04-23 [1] CRAN (R 4.0.3)
##  xtable         1.8-4   2019-04-21 [1] CRAN (R 4.0.3)
##  yaml           2.2.1   2020-02-01 [1] CRAN (R 4.0.3)
## 
## [1] C:/Users/clovi/OneDrive/Documents/R/win-library/4.0
## [2] C:/Program Files/R/R-4.0.4/library
library(dplyr)
library(streamgraph)
library(babynames)

#Here is a trivial streamgraph using simulated names over time

# Create data:
year=rep(seq(1990,2016) , each=10)
name=rep(letters[1:10] , 27)
value=sample( seq(0,1,0.0001) , length(year))
data=data.frame(year, name, value)
# Basic stream graph: just give the 3 arguments
streamgraph(data, key="name", value="value", date="year")
## Warning in widget_html(name = class(x)[1], package = attr(x, "package"), :
## streamgraph_html returned an object of class `list` instead of a `shiny.tag`.

#Now look at the babynames dataset

ncol(babynames)
## [1] 5
head(babynames)
## # A tibble: 6 x 5
##    year sex   name          n   prop
##   <dbl> <chr> <chr>     <int>  <dbl>
## 1  1880 F     Mary       7065 0.0724
## 2  1880 F     Anna       2604 0.0267
## 3  1880 F     Emma       2003 0.0205
## 4  1880 F     Elizabeth  1939 0.0199
## 5  1880 F     Minnie     1746 0.0179
## 6  1880 F     Margaret   1578 0.0162
str(babynames)
## tibble [1,924,665 x 5] (S3: tbl_df/tbl/data.frame)
##  $ year: num [1:1924665] 1880 1880 1880 1880 1880 1880 1880 1880 1880 1880 ...
##  $ sex : chr [1:1924665] "F" "F" "F" "F" ...
##  $ name: chr [1:1924665] "Mary" "Anna" "Emma" "Elizabeth" ...
##  $ n   : int [1:1924665] 7065 2604 2003 1939 1746 1578 1472 1414 1320 1288 ...
##  $ prop: num [1:1924665] 0.0724 0.0267 0.0205 0.0199 0.0179 ...

#Babynames streamgraph

babynames %>%
  filter(grepl("^Kr", name)) %>%
  group_by(year, name) %>%
  tally(wt=n) %>%
  streamgraph("name", "n", "year")
## Warning in widget_html(name = class(x)[1], package = attr(x, "package"), :
## streamgraph_html returned an object of class `list` instead of a `shiny.tag`.
# Streamgraphing Commercial Real Estate Transaction Volume by Asset Class Since 2001

dat <- read.csv("http://asbcllc.com/blog/2015/february/cre_stream_graph_test/data/cre_transaction-data.csv")

dat %>%
  streamgraph("asset_class", "volume_billions", "year", interpolate="cardinal") %>%
  sg_axis_x(1, "year", "%Y") %>%
  sg_fill_brewer("PuOr") 
## Warning in widget_html(name = class(x)[1], package = attr(x, "package"), :
## streamgraph_html returned an object of class `list` instead of a `shiny.tag`.

#Alluvials

#install.packages("alluvial")
library(alluvial)

#Refugees is a prebuilt dataset in the alluvial package

alluvial::Refugees
##         country year refugees
## 1   Afghanistan 2003  2136043
## 2       Burundi 2003   531637
## 3     Congo DRC 2003   453465
## 4          Iraq 2003   368580
## 5       Myanmar 2003   151384
## 6     Palestine 2003   350568
## 7       Somalia 2003   402336
## 8         Sudan 2003   606242
## 9         Syria 2003    20819
## 10      Vietnam 2003   363179
## 11  Afghanistan 2004  2084109
## 12      Burundi 2004   485454
## 13    Congo DRC 2004   461042
## 14         Iraq 2004   311905
## 15      Myanmar 2004   161013
## 16    Palestine 2004   350617
## 17      Somalia 2004   389304
## 18        Sudan 2004   730647
## 19        Syria 2004    21440
## 20      Vietnam 2004   349809
## 21  Afghanistan 2005  2166149
## 22      Burundi 2005   438706
## 23    Congo DRC 2005   430929
## 24         Iraq 2005   262299
## 25      Myanmar 2005   164864
## 26    Palestine 2005   349673
## 27      Somalia 2005   395553
## 28        Sudan 2005   693632
## 29        Syria 2005    16401
## 30      Vietnam 2005   358268
## 31  Afghanistan 2006  2107519
## 32      Burundi 2006   396541
## 33    Congo DRC 2006   401914
## 34         Iraq 2006  1450905
## 35      Myanmar 2006   202826
## 36    Palestine 2006   334142
## 37      Somalia 2006   464252
## 38        Sudan 2006   686311
## 39        Syria 2006    12338
## 40      Vietnam 2006   374279
## 41  Afghanistan 2007  1909911
## 42      Burundi 2007   375715
## 43    Congo DRC 2007   370386
## 44         Iraq 2007  2279245
## 45      Myanmar 2007   191256
## 46    Palestine 2007   335219
## 47      Somalia 2007   455356
## 48        Sudan 2007   523032
## 49        Syria 2007    13671
## 50      Vietnam 2007   327776
## 51  Afghanistan 2008  1817913
## 52      Burundi 2008   281592
## 53    Congo DRC 2008   367995
## 54         Iraq 2008  1873519
## 55      Myanmar 2008   184347
## 56    Palestine 2008   333990
## 57      Somalia 2008   559153
## 58        Sudan 2008   397013
## 59        Syria 2008    15186
## 60      Vietnam 2008   328183
## 61  Afghanistan 2009  1905804
## 62      Burundi 2009    94239
## 63    Congo DRC 2009   455852
## 64         Iraq 2009  1785212
## 65      Myanmar 2009   206650
## 66    Palestine 2009    95177
## 67      Somalia 2009   678308
## 68        Sudan 2009   348500
## 69        Syria 2009    17884
## 70      Vietnam 2009   339289
## 71  Afghanistan 2010  3054709
## 72      Burundi 2010    84064
## 73    Congo DRC 2010   476693
## 74         Iraq 2010  1683575
## 75      Myanmar 2010   215644
## 76    Palestine 2010    93299
## 77      Somalia 2010   770148
## 78        Sudan 2010   379067
## 79        Syria 2010    18428
## 80      Vietnam 2010   338698
## 81  Afghanistan 2011  2664436
## 82      Burundi 2011   101288
## 83    Congo DRC 2011   491481
## 84         Iraq 2011  1428308
## 85      Myanmar 2011   214594
## 86    Palestine 2011    94121
## 87      Somalia 2011  1075148
## 88        Sudan 2011   491013
## 89        Syria 2011    19900
## 90      Vietnam 2011   337829
## 91  Afghanistan 2012  2586034
## 92      Burundi 2012    73362
## 93    Congo DRC 2012   509082
## 94         Iraq 2012   746181
## 95      Myanmar 2012   215338
## 96    Palestine 2012    94820
## 97      Somalia 2012  1136713
## 98        Sudan 2012   558195
## 99        Syria 2012   728603
## 100     Vietnam 2012   336939
## 101 Afghanistan 2013  2556507
## 102     Burundi 2013    72652
## 103   Congo DRC 2013   499320
## 104        Iraq 2013   401384
## 105     Myanmar 2013   222053
## 106   Palestine 2013    96044
## 107     Somalia 2013  1121772
## 108       Sudan 2013   636400
## 109       Syria 2013  2457255
## 110     Vietnam 2013   314105
Refugees <- Refugees
write_csv(Refugees, "refugees.csv")

#Create the alluvial to show UNHCR-recognised refugess in the top 10 countries from 2003-2013

set.seed(39) # for nice colours
cols <- hsv(h = sample(1:10/10), s = sample(3:12)/15, v = sample(3:12)/15) # creates the vector of 10 colors

alluvial_ts(Refugees, wave = .3, ygap = 5, col = cols, plotdir = 'centred', alpha=.9,
            grid = TRUE, grid.lwd = 5, xmargin = 0.2, lab.cex = .7, xlab = '',
            ylab = '', border = NA, axis.cex = .8, leg.cex = .7,
            leg.col='white', 
            title = "UNHCR-recognised refugees\nTop 10 countriesv(2003-2013)\n")