library(tidyverse)
## ── Attaching packages ────────────────────────────────────────────── tidyverse 1.3.0 ──
## ✓ ggplot2 3.3.2 ✓ purrr 0.3.4
## ✓ tibble 3.0.3 ✓ dplyr 1.0.2
## ✓ tidyr 1.1.1 ✓ stringr 1.4.0
## ✓ readr 1.3.1 ✓ forcats 0.5.0
## ── Conflicts ───────────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
milb_data <- read.csv('jm_milb.csv')
mlb_data <- read.csv('jm_mlb.csv')
class_vector <- milb_data$Class
factor_class_vector <- factor(class_vector, ordered = TRUE, levels = c("Rookie", "A", "Adv A", "AA", "AAA"))
milb_data$Class <- factor_class_vector
class_vector <- mlb_data$Class
factor_class_vector <- factor(class_vector, ordered = TRUE, levels = c("Rookie", "A", "Adv A", "AA", "AAA"))
mlb_data$Class <- factor_class_vector
ggplot(mlb_data, aes(Class, ERA, color=Name))+geom_point() +ggtitle('Class vs. ERA')
ggplot(mlb_data, aes(Class, SO9, color=Name))+geom_point() +ggtitle('Class vs SO9')
ggplot(mlb_data, aes(Class, HR9, color=Name))+geom_point() +ggtitle('Class vs. HR9')
ggplot(milb_data, aes(Age, Class, color = Name)) + geom_point() + ggtitle('Age vs Minor League Level') + xlab('Age') + ylab('Level')
ggplot(milb_data, aes(Age, ERA, color = Name)) + geom_point() + ggtitle('Age vs ERA')
ggplot(milb_data, aes(Age, SO9, color = Name)) + geom_point() + ggtitle('Age vs SO9')
ggplot(milb_data, aes(Age, HR9, color = Name)) + geom_point() + ggtitle('Age vs HR9')
Based off Joey Marciano’s 2019 results, we project his chances of pitching in MLB at 25%.