Dissertation Analyses with ABOVE poverty only

load(file="/Users/meganwilliams/Desktop/Dissertation/AllvarsAbove.rdata")
load(file="/Users/meganwilliams/Desktop/Dissertation/AllvarsBelow.rdata")

library(effects)
library(interactions)
library(car)
library(rcompanion)

California Verbal Learning Test (Total Correct Trial A) - Psychological Aggression

Model 1

CVLTlog1 <- glm(PsychAggress ~ CVLtca + WRATtotal, data=AllvarsAbove,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PsychAggress ~ CVLtca + WRATtotal, family = "binomial", 
##     data = AllvarsAbove)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2682   0.4410   0.5192   0.5908   0.8676  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) 0.569417   0.765511   0.744   0.4570  
## CVLtca      0.045134   0.018102   2.493   0.0127 *
## WRATtotal   0.007628   0.018180   0.420   0.6748  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 364.97  on 439  degrees of freedom
## Residual deviance: 357.05  on 437  degrees of freedom
## AIC: 363.05
## 
## Number of Fisher Scoring iterations: 4
#Plots
plot(allEffects(CVLTlog1))

Model 3

CVLTlog3 <- glm(PsychAggress ~ (CVLtca+ Sex)^2 + Age + WRATtotal, data = AllvarsAbove, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (CVLtca + Sex)^2 + Age + WRATtotal, 
##     family = "binomial", data = AllvarsAbove)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3743   0.3908   0.4974   0.6121   0.9931  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    2.3425777  1.1845640   1.978   0.0480 *
## CVLtca         0.0329625  0.0276946   1.190   0.2340  
## SexMen        -0.4530255  0.7222164  -0.627   0.5305  
## Age           -0.0309024  0.0158556  -1.949   0.0513 .
## WRATtotal      0.0123918  0.0182173   0.680   0.4964  
## CVLtca:SexMen  0.0007613  0.0359432   0.021   0.9831  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 364.97  on 439  degrees of freedom
## Residual deviance: 350.63  on 434  degrees of freedom
## AIC: 362.63
## 
## Number of Fisher Scoring iterations: 5
plot(allEffects(CVLTlog3))

# California Verbal Learning Test (Total Correct Trial A) - Physical Assault

Model 1

CVLTlog1 <- glm(PhysAssault ~ CVLtca + WRATtotal, data=AllvarsAbove,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PhysAssault ~ CVLtca + WRATtotal, family = "binomial", 
##     data = AllvarsAbove)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.5796  -0.4892  -0.4590  -0.4320   2.3069  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -2.818964   0.980504  -2.875  0.00404 **
## CVLtca       0.018953   0.021210   0.894  0.37154   
## WRATtotal    0.006229   0.022748   0.274  0.78422   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 294.76  on 439  degrees of freedom
## Residual deviance: 293.58  on 437  degrees of freedom
## AIC: 299.58
## 
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog1))

Model 3

CVLTlog3 <- glm(PhysAssault ~ (CVLtca+ Sex)^2 + Age + WRATtotal, data = AllvarsAbove, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (CVLtca + Sex)^2 + Age + WRATtotal, 
##     family = "binomial", data = AllvarsAbove)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7226  -0.5031  -0.4457  -0.3885   2.3330  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)
## (Intercept)   -1.486627   1.403384  -1.059    0.289
## CVLtca         0.018580   0.029036   0.640    0.522
## SexMen         0.340582   0.906276   0.376    0.707
## Age           -0.029445   0.018039  -1.632    0.103
## WRATtotal      0.008575   0.023284   0.368    0.713
## CVLtca:SexMen -0.023791   0.040248  -0.591    0.554
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 294.76  on 439  degrees of freedom
## Residual deviance: 290.26  on 434  degrees of freedom
## AIC: 302.26
## 
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog3))

California Verbal Learning Test (Long Delayed Free Recall) - Psychological Aggression

Model 1

CVLTlog1 <- glm(PsychAggress ~ CVLfrl + WRATtotal, data=AllvarsAbove,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PsychAggress ~ CVLfrl + WRATtotal, family = "binomial", 
##     data = AllvarsAbove)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4003   0.4209   0.5199   0.6068   0.7869  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept) 0.742408   0.760634   0.976   0.3290   
## CVLfrl      0.113331   0.043699   2.593   0.0095 **
## WRATtotal   0.009687   0.017763   0.545   0.5855   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 364.97  on 439  degrees of freedom
## Residual deviance: 356.31  on 437  degrees of freedom
## AIC: 362.31
## 
## Number of Fisher Scoring iterations: 4
#Plots
plot(allEffects(CVLTlog1))

Model 3

CVLTlog3 <- glm(PsychAggress ~ (CVLfrl+ Sex)^2 + Age + WRATtotal, data = AllvarsAbove, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (CVLfrl + Sex)^2 + Age + WRATtotal, 
##     family = "binomial", data = AllvarsAbove)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4504   0.3865   0.4966   0.6068   0.9344  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    2.47538    1.15102   2.151   0.0315 *
## CVLfrl         0.07398    0.06562   1.127   0.2596  
## SexMen        -0.53086    0.52325  -1.015   0.3103  
## Age           -0.02972    0.01586  -1.873   0.0610 .
## WRATtotal      0.01343    0.01789   0.750   0.4530  
## CVLfrl:SexMen  0.01987    0.08817   0.225   0.8217  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 364.97  on 439  degrees of freedom
## Residual deviance: 350.26  on 434  degrees of freedom
## AIC: 362.26
## 
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog3))

California Verbal Learning Test (Long Delayed Free Recall) - Physical Assault

Model 1

CVLTlog1 <- glm(PhysAssault ~ CVLfrl + WRATtotal, data=AllvarsAbove,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PhysAssault ~ CVLfrl + WRATtotal, family = "binomial", 
##     data = AllvarsAbove)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6363  -0.4950  -0.4512  -0.4086   2.3173  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -2.707485   0.973345  -2.782  0.00541 **
## CVLfrl       0.072661   0.047440   1.532  0.12562   
## WRATtotal    0.002516   0.022625   0.111  0.91144   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 294.76  on 439  degrees of freedom
## Residual deviance: 292.02  on 437  degrees of freedom
## AIC: 298.02
## 
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog1))

Model 3

CVLTlog3 <- glm(PhysAssault ~ (CVLfrl+ Sex)^2 + Age + WRATtotal, data = AllvarsAbove, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (CVLfrl + Sex)^2 + Age + WRATtotal, 
##     family = "binomial", data = AllvarsAbove)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7630  -0.5032  -0.4405  -0.3858   2.3471  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)
## (Intercept)   -1.52577    1.35802  -1.124    0.261
## CVLfrl         0.07042    0.06478   1.087    0.277
## SexMen         0.18718    0.66620   0.281    0.779
## Age           -0.02616    0.01812  -1.444    0.149
## WRATtotal      0.00452    0.02301   0.196    0.844
## CVLfrl:SexMen -0.04843    0.09133  -0.530    0.596
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 294.76  on 439  degrees of freedom
## Residual deviance: 289.49  on 434  degrees of freedom
## AIC: 301.49
## 
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog3))

California Verbal Learning Test (Short Delayed Free Recall) - Psychological Aggression

Model 1

CVLTlog1 <- glm(PsychAggress ~ CVLfrs + WRATtotal, data=AllvarsAbove,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PsychAggress ~ CVLfrs + WRATtotal, family = "binomial", 
##     data = AllvarsAbove)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3156   0.4519   0.5293   0.6016   0.8042  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  0.75276    0.75622   0.995   0.3195  
## CVLfrs       0.08828    0.04281   2.062   0.0392 *
## WRATtotal    0.01218    0.01774   0.687   0.4922  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 364.97  on 439  degrees of freedom
## Residual deviance: 358.95  on 437  degrees of freedom
## AIC: 364.95
## 
## Number of Fisher Scoring iterations: 4
#Plots
plot(allEffects(CVLTlog1))

## Model 3

CVLTlog3 <- glm(PsychAggress ~ (CVLfrs+ Sex)^2 + Age + WRATtotal, data = AllvarsAbove, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (CVLfrs + Sex)^2 + Age + WRATtotal, 
##     family = "binomial", data = AllvarsAbove)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4678   0.3990   0.5008   0.6064   0.9031  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    2.531784   1.138140   2.224   0.0261 *
## CVLfrs         0.056237   0.065400   0.860   0.3898  
## SexMen        -0.489336   0.530495  -0.922   0.3563  
## Age           -0.031403   0.015934  -1.971   0.0488 *
## WRATtotal      0.016390   0.017816   0.920   0.3576  
## CVLfrs:SexMen  0.004025   0.086054   0.047   0.9627  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 364.97  on 439  degrees of freedom
## Residual deviance: 352.00  on 434  degrees of freedom
## AIC: 364
## 
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog3))

California Verbal Learning Test (Short Delayed Free Recall) - Physical Assault

Model 1

CVLTlog1 <- glm(PhysAssault ~ CVLfrs + WRATtotal, data=AllvarsAbove,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PhysAssault ~ CVLfrs + WRATtotal, family = "binomial", 
##     data = AllvarsAbove)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6111  -0.4998  -0.4531  -0.4104   2.3138  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -2.732895   0.975864  -2.800   0.0051 **
## CVLfrs       0.069568   0.047768   1.456   0.1453   
## WRATtotal    0.003442   0.022561   0.153   0.8787   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 294.76  on 439  degrees of freedom
## Residual deviance: 292.24  on 437  degrees of freedom
## AIC: 298.24
## 
## Number of Fisher Scoring iterations: 5
#Plots
plot(predictorEffect("CVLfrs",CVLTlog1))

Model 3

CVLTlog3 <- glm(PhysAssault ~ (CVLfrs+ Sex)^2 + Age + WRATtotal, data = AllvarsAbove, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (CVLfrs + Sex)^2 + Age + WRATtotal, 
##     family = "binomial", data = AllvarsAbove)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7829  -0.4950  -0.4378  -0.3848   2.4051  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)
## (Intercept)   -1.61622    1.36403  -1.185    0.236
## CVLfrs         0.08683    0.06546   1.326    0.185
## SexMen         0.44674    0.67518   0.662    0.508
## Age           -0.02697    0.01812  -1.489    0.137
## WRATtotal      0.00486    0.02294   0.212    0.832
## CVLfrs:SexMen -0.09116    0.09247  -0.986    0.324
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 294.76  on 439  degrees of freedom
## Residual deviance: 288.90  on 434  degrees of freedom
## AIC: 300.9
## 
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog3))

interact_plot(model = CVLTlog3, pred = CVLfrs, modx = Sex)

sim_slopes(CVLTlog3, pred = CVLfrs, modx = Sex, centered = "all",jnplot = TRUE)
## Warning: Johnson-Neyman intervals are not available for factor moderators.
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of CVLfrs when Sex = Men: 
## 
##    Est.   S.E.   z val.      p
## ------- ------ -------- ------
##   -0.00   0.07    -0.06   0.95
## 
## Slope of CVLfrs when Sex = Women: 
## 
##   Est.   S.E.   z val.      p
## ------ ------ -------- ------
##   0.09   0.07     1.33   0.18

Dissertation Analyses with BELOW poverty only

California Verbal Learning Test (Total Correct Trial A) - Psychological Aggression

Model 1

CVLTlog1 <- glm(PsychAggress ~ CVLtca + WRATtotal, data=AllvarsBelow,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PsychAggress ~ CVLtca + WRATtotal, family = "binomial", 
##     data = AllvarsBelow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2673   0.4235   0.4614   0.5056   0.6954  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  0.91828    1.18352   0.776    0.438
## CVLtca      -0.01284    0.02924  -0.439    0.661
## WRATtotal    0.03436    0.02964   1.159    0.246
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 138.84  on 200  degrees of freedom
## Residual deviance: 137.52  on 198  degrees of freedom
## AIC: 143.52
## 
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog1))

Model 3

CVLTlog3 <- glm(PsychAggress ~ (CVLtca+ Sex)^2 + Age + WRATtotal, data = AllvarsBelow, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (CVLtca + Sex)^2 + Age + WRATtotal, 
##     family = "binomial", data = AllvarsBelow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3394   0.4061   0.4595   0.5064   0.7244  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)
## (Intercept)    0.276875   1.912048   0.145    0.885
## CVLtca        -0.009534   0.040709  -0.234    0.815
## SexMen        -0.106957   1.196148  -0.089    0.929
## Age            0.016335   0.026950   0.606    0.544
## WRATtotal      0.033866   0.029523   1.147    0.251
## CVLtca:SexMen -0.008788   0.059301  -0.148    0.882
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 138.84  on 200  degrees of freedom
## Residual deviance: 136.83  on 195  degrees of freedom
## AIC: 148.83
## 
## Number of Fisher Scoring iterations: 5
plot(allEffects(CVLTlog3))

# California Verbal Learning Test (Total Correct Trial A) - Physical Assault

Model 1

CVLTlog1 <- glm(PhysAssault ~ CVLtca + WRATtotal, data=AllvarsBelow,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PhysAssault ~ CVLtca + WRATtotal, family = "binomial", 
##     data = AllvarsBelow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7292  -0.6421  -0.5960  -0.5212   2.1066  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -2.90150    1.18870  -2.441   0.0147 *
## CVLtca       0.01012    0.02408   0.420   0.6743  
## WRATtotal    0.02632    0.02778   0.947   0.3435  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 182.73  on 200  degrees of freedom
## Residual deviance: 181.32  on 198  degrees of freedom
## AIC: 187.32
## 
## Number of Fisher Scoring iterations: 4
#Plots
plot(allEffects(CVLTlog1))

Model 3

CVLTlog3 <- glm(PhysAssault ~ (CVLtca+ Sex)^2 + Age + WRATtotal, data = AllvarsBelow, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (CVLtca + Sex)^2 + Age + WRATtotal, 
##     family = "binomial", data = AllvarsBelow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.9000  -0.6539  -0.5612  -0.4375   2.1442  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)   -0.52191    1.67744  -0.311   0.7557  
## CVLtca        -0.02242    0.03124  -0.718   0.4729  
## SexMen        -1.27295    1.05422  -1.207   0.2272  
## Age           -0.03792    0.02277  -1.665   0.0958 .
## WRATtotal      0.02551    0.02830   0.901   0.3674  
## CVLtca:SexMen  0.06326    0.05215   1.213   0.2251  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 182.73  on 200  degrees of freedom
## Residual deviance: 176.93  on 195  degrees of freedom
## AIC: 188.93
## 
## Number of Fisher Scoring iterations: 4
#Plots
plot(allEffects(CVLTlog3))

California Verbal Learning Test (Long Delayed Free Recall) - Psychological Aggression

Model 1

CVLTlog1 <- glm(PsychAggress ~ CVLfrl + WRATtotal, data=AllvarsBelow,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PsychAggress ~ CVLfrl + WRATtotal, family = "binomial", 
##     data = AllvarsBelow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4434   0.3578   0.4502   0.5184   0.7398  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  0.73185    1.17374   0.624   0.5329  
## CVLfrl       0.12423    0.07527   1.651   0.0988 .
## WRATtotal    0.01844    0.02899   0.636   0.5246  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 138.84  on 200  degrees of freedom
## Residual deviance: 134.89  on 198  degrees of freedom
## AIC: 140.89
## 
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog1))

Model 3

CVLTlog3 <- glm(PsychAggress ~ (CVLfrl+ Sex)^2 + Age + WRATtotal, data = AllvarsBelow, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (CVLfrl + Sex)^2 + Age + WRATtotal, 
##     family = "binomial", data = AllvarsBelow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5186   0.3419   0.4265   0.5325   0.8206  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)
## (Intercept)   -0.83371    1.86750  -0.446    0.655
## CVLfrl         0.14211    0.10523   1.350    0.177
## SexMen        -0.15128    0.81191  -0.186    0.852
## Age            0.03429    0.02750   1.247    0.212
## WRATtotal      0.01814    0.02938   0.618    0.537
## CVLfrl:SexMen  0.03051    0.15570   0.196    0.845
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 138.84  on 200  degrees of freedom
## Residual deviance: 133.27  on 195  degrees of freedom
## AIC: 145.27
## 
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog3))

California Verbal Learning Test (Long Delayed Free Recall) - Physical Assault

Model 1

CVLTlog1 <- glm(PhysAssault ~ CVLfrl + WRATtotal, data=AllvarsBelow,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PhysAssault ~ CVLfrl + WRATtotal, family = "binomial", 
##     data = AllvarsBelow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7444  -0.6407  -0.5953  -0.5233   2.1386  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -2.80966    1.17376  -2.394   0.0167 *
## CVLfrl      -0.02692    0.05866  -0.459   0.6463  
## WRATtotal    0.03208    0.02766   1.160   0.2462  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 182.73  on 200  degrees of freedom
## Residual deviance: 181.28  on 198  degrees of freedom
## AIC: 187.28
## 
## Number of Fisher Scoring iterations: 4
#Plots
plot(allEffects(CVLTlog1))

Model 3

CVLTlog3 <- glm(PhysAssault ~ (CVLfrl+ Sex)^2 + Age + WRATtotal, data = AllvarsBelow, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (CVLfrl + Sex)^2 + Age + WRATtotal, 
##     family = "binomial", data = AllvarsBelow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.0049  -0.6387  -0.5181  -0.3858   2.1749  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    0.19316    1.67095   0.116   0.9080  
## CVLfrl        -0.16839    0.08335  -2.020   0.0433 *
## SexMen        -1.50028    0.77978  -1.924   0.0544 .
## Age           -0.04475    0.02324  -1.925   0.0542 .
## WRATtotal      0.02768    0.02851   0.971   0.3317  
## CVLfrl:SexMen  0.24968    0.12567   1.987   0.0469 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 182.73  on 200  degrees of freedom
## Residual deviance: 173.20  on 195  degrees of freedom
## AIC: 185.2
## 
## Number of Fisher Scoring iterations: 4
#Plots
plot(allEffects(CVLTlog3))

California Verbal Learning Test (Short Delayed Free Recall) - Psychological Aggression

Model 1

CVLTlog1 <- glm(PsychAggress ~ CVLfrs + WRATtotal, data=AllvarsBelow,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PsychAggress ~ CVLfrs + WRATtotal, family = "binomial", 
##     data = AllvarsBelow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3371   0.4044   0.4552   0.5180   0.7467  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept)  0.82216    1.17052   0.702    0.482
## CVLfrs       0.06801    0.07692   0.884    0.377
## WRATtotal    0.02233    0.02964   0.753    0.451
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 138.84  on 200  degrees of freedom
## Residual deviance: 136.93  on 198  degrees of freedom
## AIC: 142.93
## 
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog1))

## Model 3

CVLTlog3 <- glm(PsychAggress ~ (CVLfrs+ Sex)^2 + Age + WRATtotal, data = AllvarsBelow, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (CVLfrs + Sex)^2 + Age + WRATtotal, 
##     family = "binomial", data = AllvarsBelow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4362   0.3778   0.4486   0.5047   0.8287  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)
## (Intercept)    0.10442    1.83295   0.057    0.955
## CVLfrs         0.02889    0.10307   0.280    0.779
## SexMen        -0.74874    0.87410  -0.857    0.392
## Age            0.02557    0.02708   0.944    0.345
## WRATtotal      0.01972    0.02978   0.662    0.508
## CVLfrs:SexMen  0.12553    0.15333   0.819    0.413
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 138.84  on 200  degrees of freedom
## Residual deviance: 135.29  on 195  degrees of freedom
## AIC: 147.29
## 
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog3))

California Verbal Learning Test (Short Delayed Free Recall) - Physical Assault

Model 1

CVLTlog1 <- glm(PhysAssault ~ CVLfrs + WRATtotal, data=AllvarsBelow,family = "binomial")
summary(CVLTlog1)
## 
## Call:
## glm(formula = PhysAssault ~ CVLfrs + WRATtotal, family = "binomial", 
##     data = AllvarsBelow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8317  -0.6331  -0.5689  -0.4919   2.2313  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -2.83417    1.17905  -2.404   0.0162 *
## CVLfrs      -0.07762    0.06309  -1.230   0.2185  
## WRATtotal    0.03901    0.02822   1.382   0.1668  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 182.73  on 200  degrees of freedom
## Residual deviance: 179.96  on 198  degrees of freedom
## AIC: 185.96
## 
## Number of Fisher Scoring iterations: 4
#Plots
plot(predictorEffect("CVLfrs",CVLTlog1))

Model 3

CVLTlog3 <- glm(PhysAssault ~ (CVLfrs+ Sex)^2 + Age + WRATtotal, data = AllvarsBelow, family = "binomial")
summary(CVLTlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (CVLfrs + Sex)^2 + Age + WRATtotal, 
##     family = "binomial", data = AllvarsBelow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.1084  -0.6542  -0.4930  -0.3764   2.2062  
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    0.06716    1.66175   0.040   0.9678  
## CVLfrs        -0.21219    0.08705  -2.438   0.0148 *
## SexMen        -1.44714    0.78934  -1.833   0.0668 .
## Age           -0.04602    0.02316  -1.987   0.0469 *
## WRATtotal      0.03678    0.02946   1.248   0.2119  
## CVLfrs:SexMen  0.24123    0.13008   1.854   0.0637 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 182.73  on 200  degrees of freedom
## Residual deviance: 171.81  on 195  degrees of freedom
## AIC: 183.81
## 
## Number of Fisher Scoring iterations: 4
#Plots
plot(allEffects(CVLTlog3))

interact_plot(model = CVLTlog3, pred = CVLfrs, modx = Sex)

sim_slopes(CVLTlog3, pred = CVLfrs, modx = Sex, centered = "all",jnplot = TRUE)
## Warning: Johnson-Neyman intervals are not available for factor moderators.
## SIMPLE SLOPES ANALYSIS 
## 
## Slope of CVLfrs when Sex = Men: 
## 
##   Est.   S.E.   z val.      p
## ------ ------ -------- ------
##   0.03   0.10     0.28   0.78
## 
## Slope of CVLfrs when Sex = Women: 
## 
##    Est.   S.E.   z val.      p
## ------- ------ -------- ------
##   -0.21   0.09    -2.44   0.01