load(file="/Users/meganwilliams/Desktop/Dissertation/AllvarsWomen.rdata")
load(file="/Users/meganwilliams/Desktop/Dissertation/AllvarsMen.rdata")
library(effects)
library(interactions)
library(car)
library(rcompanion)
CVLTlog1 <- glm(PsychAggress ~ CVLtca + WRATtotal, data=AllvarsWomen,family = "binomial")
summary(CVLTlog1)
##
## Call:
## glm(formula = PsychAggress ~ CVLtca + WRATtotal, family = "binomial",
## data = AllvarsWomen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.3058 0.4192 0.4598 0.4995 0.7415
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.70042 1.01221 0.692 0.489
## CVLtca 0.01966 0.02323 0.846 0.397
## WRATtotal 0.02341 0.02504 0.935 0.350
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 227.67 on 330 degrees of freedom
## Residual deviance: 225.31 on 328 degrees of freedom
## AIC: 231.31
##
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog1))
CVLTlog3 <- glm(PsychAggress ~ (CVLtca + PovStat)^2 + Age + WRATtotal, data = AllvarsWomen, family = "binomial")
summary(CVLTlog3)
##
## Call:
## glm(formula = PsychAggress ~ (CVLtca + PovStat)^2 + Age + WRATtotal,
## family = "binomial", data = AllvarsWomen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.3421 0.4000 0.4507 0.5101 0.7210
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.23485 1.42677 0.865 0.387
## CVLtca 0.03105 0.02843 1.092 0.275
## PovStatBelow 1.05637 1.05699 0.999 0.318
## Age -0.01752 0.02036 -0.860 0.390
## WRATtotal 0.02389 0.02519 0.948 0.343
## CVLtca:PovStatBelow -0.04651 0.04813 -0.966 0.334
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 227.67 on 330 degrees of freedom
## Residual deviance: 223.40 on 325 degrees of freedom
## AIC: 235.4
##
## Number of Fisher Scoring iterations: 5
plot(allEffects(CVLTlog3))
# California Verbal Learning Test (Total Correct Trial A) - Physical Assault
CVLTlog1 <- glm(PhysAssault ~ CVLtca + WRATtotal, data=AllvarsWomen,family = "binomial")
summary(CVLTlog1)
##
## Call:
## glm(formula = PhysAssault ~ CVLtca + WRATtotal, family = "binomial",
## data = AllvarsWomen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.6633 -0.5717 -0.5326 -0.4715 2.3280
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.37539 1.11251 -3.034 0.00241 **
## CVLtca 0.00146 0.02135 0.068 0.94547
## WRATtotal 0.03400 0.02601 1.307 0.19114
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 263.18 on 330 degrees of freedom
## Residual deviance: 261.08 on 328 degrees of freedom
## AIC: 267.08
##
## Number of Fisher Scoring iterations: 4
#Plots
plot(allEffects(CVLTlog1))
CVLTlog3 <- glm(PhysAssault ~ (CVLtca + PovStat)^2 + Age + WRATtotal, data = AllvarsWomen, family = "binomial")
summary(CVLTlog3)
##
## Call:
## glm(formula = PhysAssault ~ (CVLtca + PovStat)^2 + Age + WRATtotal,
## family = "binomial", data = AllvarsWomen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.8688 -0.5913 -0.4849 -0.3839 2.5728
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.319618 1.542354 -1.504 0.1326
## CVLtca 0.006116 0.029249 0.209 0.8344
## PovStatBelow 1.134367 0.942278 1.204 0.2286
## Age -0.035971 0.019427 -1.852 0.0641 .
## WRATtotal 0.039962 0.027083 1.476 0.1401
## CVLtca:PovStatBelow -0.030697 0.041043 -0.748 0.4545
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 263.18 on 330 degrees of freedom
## Residual deviance: 253.62 on 325 degrees of freedom
## AIC: 265.62
##
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog3))
CVLTlog1 <- glm(PsychAggress ~ CVLfrl + WRATtotal, data=AllvarsWomen,family = "binomial")
summary(CVLTlog1)
##
## Call:
## glm(formula = PsychAggress ~ CVLfrl + WRATtotal, family = "binomial",
## data = AllvarsWomen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4803 0.3862 0.4492 0.5159 0.7234
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.73329 1.00866 0.727 0.4672
## CVLfrl 0.09338 0.05545 1.684 0.0922 .
## WRATtotal 0.01937 0.02432 0.797 0.4256
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 227.67 on 330 degrees of freedom
## Residual deviance: 223.14 on 328 degrees of freedom
## AIC: 229.14
##
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog1))
CVLTlog3 <- glm(PsychAggress ~ (CVLfrl + PovStat)^2 + Age + WRATtotal, data = AllvarsWomen, family = "binomial")
summary(CVLTlog3)
##
## Call:
## glm(formula = PsychAggress ~ (CVLfrl + PovStat)^2 + Age + WRATtotal,
## family = "binomial", data = AllvarsWomen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4124 0.3775 0.4502 0.5191 0.7150
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.22364 1.41274 0.866 0.386
## CVLfrl 0.07865 0.06695 1.175 0.240
## PovStatBelow 0.03364 0.73070 0.046 0.963
## Age -0.01162 0.02054 -0.566 0.572
## WRATtotal 0.02142 0.02444 0.877 0.381
## CVLfrl:PovStatBelow 0.02167 0.11885 0.182 0.855
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 227.67 on 330 degrees of freedom
## Residual deviance: 222.53 on 325 degrees of freedom
## AIC: 234.53
##
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog3))
CVLTlog1 <- glm(PhysAssault ~ CVLfrl + WRATtotal, data=AllvarsWomen,family = "binomial")
summary(CVLTlog1)
##
## Call:
## glm(formula = PhysAssault ~ CVLfrl + WRATtotal, family = "binomial",
## data = AllvarsWomen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.6682 -0.5760 -0.5273 -0.4679 2.3326
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.36475 1.10909 -3.034 0.00242 **
## CVLfrl -0.01173 0.04804 -0.244 0.80707
## WRATtotal 0.03616 0.02546 1.420 0.15558
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 263.18 on 330 degrees of freedom
## Residual deviance: 261.03 on 328 degrees of freedom
## AIC: 267.03
##
## Number of Fisher Scoring iterations: 4
#Plots
plot(allEffects(CVLTlog1))
CVLTlog3 <- glm(PhysAssault ~ (CVLfrl + PovStat)^2 + Age + WRATtotal, data = AllvarsWomen, family = "binomial")
summary(CVLTlog3)
##
## Call:
## glm(formula = PhysAssault ~ (CVLfrl + PovStat)^2 + Age + WRATtotal,
## family = "binomial", data = AllvarsWomen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.0316 -0.5826 -0.4602 -0.3594 2.6101
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.28542 1.51173 -1.512 0.1306
## CVLfrl 0.03660 0.06460 0.567 0.5710
## PovStatBelow 1.72157 0.69636 2.472 0.0134 *
## Age -0.03992 0.01976 -2.020 0.0434 *
## WRATtotal 0.04048 0.02667 1.518 0.1290
## CVLfrl:PovStatBelow -0.20501 0.10056 -2.039 0.0415 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 263.18 on 330 degrees of freedom
## Residual deviance: 249.38 on 325 degrees of freedom
## AIC: 261.38
##
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog3))
interact_plot(model = CVLTlog3, pred = CVLfrl, modx = PovStat)
sim_slopes(CVLTlog3, pred = CVLfrl, modx = PovStat, centered = "all",jnplot = TRUE)
## Warning: Johnson-Neyman intervals are not available for factor moderators.
## SIMPLE SLOPES ANALYSIS
##
## Slope of CVLfrl when PovStat = Below:
##
## Est. S.E. z val. p
## ------- ------ -------- ------
## -0.17 0.08 -2.04 0.04
##
## Slope of CVLfrl when PovStat = Above:
##
## Est. S.E. z val. p
## ------ ------ -------- ------
## 0.04 0.06 0.57 0.57
CVLTlog1 <- glm(PsychAggress ~ CVLfrs + WRATtotal, data=AllvarsWomen,family = "binomial")
summary(CVLTlog1)
##
## Call:
## glm(formula = PsychAggress ~ CVLfrs + WRATtotal, family = "binomial",
## data = AllvarsWomen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.3490 0.4187 0.4608 0.4995 0.7633
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.79728 1.00493 0.793 0.428
## CVLfrs 0.04866 0.05574 0.873 0.383
## WRATtotal 0.02382 0.02471 0.964 0.335
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 227.67 on 330 degrees of freedom
## Residual deviance: 225.25 on 328 degrees of freedom
## AIC: 231.25
##
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog1))
## Model 3
CVLTlog3 <- glm(PsychAggress ~ (CVLfrs + PovStat)^2 + Age + WRATtotal, data = AllvarsWomen, family = "binomial")
summary(CVLTlog3)
##
## Call:
## glm(formula = PsychAggress ~ (CVLfrs + PovStat)^2 + Age + WRATtotal,
## family = "binomial", data = AllvarsWomen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.4293 0.4038 0.4557 0.5044 0.7446
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.44298 1.39951 1.031 0.303
## CVLfrs 0.05550 0.06667 0.832 0.405
## PovStatBelow 0.45016 0.77896 0.578 0.563
## Age -0.01719 0.02031 -0.847 0.397
## WRATtotal 0.02571 0.02476 1.039 0.299
## CVLfrs:PovStatBelow -0.05732 0.11752 -0.488 0.626
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 227.67 on 330 degrees of freedom
## Residual deviance: 224.08 on 325 degrees of freedom
## AIC: 236.08
##
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog3))
CVLTlog1 <- glm(PhysAssault ~ CVLfrs + WRATtotal, data=AllvarsWomen,family = "binomial")
summary(CVLTlog1)
##
## Call:
## glm(formula = PhysAssault ~ CVLfrs + WRATtotal, family = "binomial",
## data = AllvarsWomen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.6706 -0.5755 -0.5239 -0.4674 2.3152
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.37285 1.10917 -3.041 0.00236 **
## CVLfrs -0.01827 0.04934 -0.370 0.71120
## WRATtotal 0.03724 0.02566 1.451 0.14669
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 263.18 on 330 degrees of freedom
## Residual deviance: 260.95 on 328 degrees of freedom
## AIC: 266.95
##
## Number of Fisher Scoring iterations: 4
#Plots
plot(predictorEffect("CVLfrs",CVLTlog1))
CVLTlog3 <- glm(PhysAssault ~ (CVLfrs + PovStat)^2 + Age + WRATtotal, data = AllvarsWomen, family = "binomial")
summary(CVLTlog3)
##
## Call:
## glm(formula = PhysAssault ~ (CVLfrs + PovStat)^2 + Age + WRATtotal,
## family = "binomial", data = AllvarsWomen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.1221 -0.5833 -0.4566 -0.3435 2.7156
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.62705 1.54505 -1.700 0.0891 .
## CVLfrs 0.05396 0.06545 0.825 0.4096
## PovStatBelow 2.05736 0.70450 2.920 0.0035 **
## Age -0.03856 0.01959 -1.968 0.0491 *
## WRATtotal 0.04399 0.02738 1.607 0.1081
## CVLfrs:PovStatBelow -0.26429 0.10384 -2.545 0.0109 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 263.18 on 330 degrees of freedom
## Residual deviance: 246.84 on 325 degrees of freedom
## AIC: 258.84
##
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog3))
interact_plot(model = CVLTlog3, pred = CVLfrs, modx = PovStat)
sim_slopes(CVLTlog3, pred = CVLfrs,modx = PovStat, centered = "all",jnplot = TRUE)
## Warning: Johnson-Neyman intervals are not available for factor moderators.
## SIMPLE SLOPES ANALYSIS
##
## Slope of CVLfrs when PovStat = Below:
##
## Est. S.E. z val. p
## ------- ------ -------- ------
## -0.21 0.09 -2.44 0.01
##
## Slope of CVLfrs when PovStat = Above:
##
## Est. S.E. z val. p
## ------ ------ -------- ------
## 0.05 0.07 0.82 0.41
load(file="/Users/meganwilliams/Desktop/Dissertation/Allvars.rdata")
library(effects)
library(interactions)
library(car)
library(rcompanion)
CVLTlog1 <- glm(PsychAggress ~ CVLtca + WRATtotal, data=AllvarsMen,family = "binomial")
summary(CVLTlog1)
##
## Call:
## glm(formula = PsychAggress ~ CVLtca + WRATtotal, family = "binomial",
## data = AllvarsMen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.0301 0.5063 0.5755 0.6156 0.7730
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.798723 0.811071 0.985 0.325
## CVLtca 0.023950 0.020988 1.141 0.254
## WRATtotal 0.009861 0.019374 0.509 0.611
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 273.92 on 309 degrees of freedom
## Residual deviance: 271.77 on 307 degrees of freedom
## AIC: 277.77
##
## Number of Fisher Scoring iterations: 4
#Plots
plot(allEffects(CVLTlog1))
CVLTlog3 <- glm(PsychAggress ~ (CVLtca + PovStat)^2 + Age + WRATtotal, data = AllvarsMen, family = "binomial")
summary(CVLTlog3)
##
## Call:
## glm(formula = PsychAggress ~ (CVLtca + PovStat)^2 + Age + WRATtotal,
## family = "binomial", data = AllvarsMen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2863 0.4517 0.5401 0.6220 0.9852
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.23187 1.31908 0.934 0.350
## CVLtca 0.03582 0.02484 1.442 0.149
## PovStatBelow 1.41323 0.90600 1.560 0.119
## Age -0.02009 0.01814 -1.108 0.268
## WRATtotal 0.01428 0.01970 0.725 0.469
## CVLtca:PovStatBelow -0.05652 0.04932 -1.146 0.252
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 273.92 on 309 degrees of freedom
## Residual deviance: 266.67 on 304 degrees of freedom
## AIC: 278.67
##
## Number of Fisher Scoring iterations: 4
plot(allEffects(CVLTlog3))
# California Verbal Learning Test (Total Correct Trial A) - Physical Assault
CVLTlog1 <- glm(PhysAssault ~ CVLtca + WRATtotal, data=AllvarsMen,family = "binomial")
summary(CVLTlog1)
##
## Call:
## glm(formula = PhysAssault ~ CVLtca + WRATtotal, family = "binomial",
## data = AllvarsMen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.5664 -0.5055 -0.4840 -0.4537 2.2332
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.97690 0.97190 -2.034 0.0419 *
## CVLtca 0.01956 0.02484 0.788 0.4309
## WRATtotal -0.01025 0.02310 -0.444 0.6572
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 218.58 on 309 degrees of freedom
## Residual deviance: 217.91 on 307 degrees of freedom
## AIC: 223.91
##
## Number of Fisher Scoring iterations: 4
#Plots
plot(allEffects(CVLTlog1))
CVLTlog3 <- glm(PhysAssault ~ (CVLtca + PovStat)^2 + Age + WRATtotal, data = AllvarsMen, family = "binomial")
summary(CVLTlog3)
##
## Call:
## glm(formula = PhysAssault ~ (CVLtca + PovStat)^2 + Age + WRATtotal,
## family = "binomial", data = AllvarsMen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.8662 -0.5126 -0.4469 -0.3872 2.3745
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.530550 1.583204 -0.335 0.738
## CVLtca -0.001519 0.031198 -0.049 0.961
## PovStatBelow -0.428512 1.030214 -0.416 0.677
## Age -0.031025 0.020947 -1.481 0.139
## WRATtotal -0.005073 0.023931 -0.212 0.832
## CVLtca:PovStatBelow 0.051337 0.051496 0.997 0.319
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 218.58 on 309 degrees of freedom
## Residual deviance: 212.28 on 304 degrees of freedom
## AIC: 224.28
##
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog3))
CVLTlog1 <- glm(PsychAggress ~ CVLfrl + WRATtotal, data=AllvarsMen,family = "binomial")
summary(CVLTlog1)
##
## Call:
## glm(formula = PsychAggress ~ CVLfrl + WRATtotal, family = "binomial",
## data = AllvarsMen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.1158 0.4350 0.5547 0.6375 0.7875
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.898413 0.814265 1.103 0.2699
## CVLfrl 0.115531 0.053391 2.164 0.0305 *
## WRATtotal 0.004929 0.019202 0.257 0.7974
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 273.92 on 309 degrees of freedom
## Residual deviance: 268.21 on 307 degrees of freedom
## AIC: 274.21
##
## Number of Fisher Scoring iterations: 4
#Plots
plot(allEffects(CVLTlog1))
CVLTlog3 <- glm(PsychAggress ~ (CVLfrl + PovStat)^2 + Age + WRATtotal, data = AllvarsMen, family = "binomial")
summary(CVLTlog3)
##
## Call:
## glm(formula = PsychAggress ~ (CVLfrl + PovStat)^2 + Age + WRATtotal,
## family = "binomial", data = AllvarsMen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2511 0.4018 0.5502 0.6573 0.8892
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.345967 1.287352 1.046 0.2958
## CVLfrl 0.104609 0.061822 1.692 0.0906 .
## PovStatBelow 0.418750 0.613346 0.683 0.4948
## Age -0.015575 0.018090 -0.861 0.3893
## WRATtotal 0.009933 0.019492 0.510 0.6103
## CVLfrl:PovStatBelow 0.025877 0.128988 0.201 0.8410
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 273.92 on 309 degrees of freedom
## Residual deviance: 265.01 on 304 degrees of freedom
## AIC: 277.01
##
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog3))
CVLTlog1 <- glm(PhysAssault ~ CVLfrl + WRATtotal, data=AllvarsMen,family = "binomial")
summary(CVLTlog1)
##
## Call:
## glm(formula = PhysAssault ~ CVLfrl + WRATtotal, family = "binomial",
## data = AllvarsMen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.6572 -0.5144 -0.4763 -0.4233 2.2608
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.84009 0.95850 -1.920 0.0549 .
## CVLfrl 0.07936 0.05874 1.351 0.1767
## WRATtotal -0.01476 0.02321 -0.636 0.5248
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 218.58 on 309 degrees of freedom
## Residual deviance: 216.70 on 307 degrees of freedom
## AIC: 222.7
##
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog1))
CVLTlog3 <- glm(PhysAssault ~ (CVLfrl + PovStat)^2 + Age + WRATtotal, data = AllvarsMen, family = "binomial")
summary(CVLTlog3)
##
## Call:
## glm(formula = PhysAssault ~ (CVLfrl + PovStat)^2 + Age + WRATtotal,
## family = "binomial", data = AllvarsMen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.9270 -0.5090 -0.4437 -0.3861 2.3657
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.700367 1.527841 -0.458 0.647
## CVLfrl 0.030961 0.072110 0.429 0.668
## PovStatBelow -0.020526 0.762861 -0.027 0.979
## Age -0.027406 0.021034 -1.303 0.193
## WRATtotal -0.009513 0.024058 -0.395 0.693
## CVLfrl:PovStatBelow 0.096139 0.118420 0.812 0.417
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 218.58 on 309 degrees of freedom
## Residual deviance: 211.99 on 304 degrees of freedom
## AIC: 223.99
##
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog3))
interact_plot(model = CVLTlog3, pred = CVLfrl, modx = PovStat)
sim_slopes(CVLTlog3, pred = CVLfrl, modx = PovStat, centered = "all",jnplot = TRUE)
## Warning: Johnson-Neyman intervals are not available for factor moderators.
## SIMPLE SLOPES ANALYSIS
##
## Slope of CVLfrl when PovStat = Below:
##
## Est. S.E. z val. p
## ------ ------ -------- ------
## 0.13 0.10 1.26 0.21
##
## Slope of CVLfrl when PovStat = Above:
##
## Est. S.E. z val. p
## ------ ------ -------- ------
## 0.03 0.07 0.43 0.67
CVLTlog1 <- glm(PsychAggress ~ CVLfrs + WRATtotal, data=AllvarsMen,family = "binomial")
summary(CVLTlog1)
##
## Call:
## glm(formula = PsychAggress ~ CVLfrs + WRATtotal, family = "binomial",
## data = AllvarsMen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.1108 0.4675 0.5601 0.6326 0.8022
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.870072 0.809092 1.075 0.2822
## CVLfrs 0.095899 0.052147 1.839 0.0659 .
## WRATtotal 0.007047 0.019083 0.369 0.7119
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 273.92 on 309 degrees of freedom
## Residual deviance: 269.62 on 307 degrees of freedom
## AIC: 275.62
##
## Number of Fisher Scoring iterations: 4
#Plots
plot(allEffects(CVLTlog1))
## Model 3
CVLTlog3 <- glm(PsychAggress ~ (CVLfrs + PovStat)^2 + Age + WRATtotal, data = AllvarsMen, family = "binomial")
summary(CVLTlog3)
##
## Call:
## glm(formula = PsychAggress ~ (CVLfrs + PovStat)^2 + Age + WRATtotal,
## family = "binomial", data = AllvarsMen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.2917 0.4332 0.5516 0.6529 0.8583
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.44271 1.30139 1.109 0.268
## CVLfrs 0.07414 0.05948 1.247 0.213
## PovStatBelow 0.24603 0.65458 0.376 0.707
## Age -0.01674 0.01825 -0.917 0.359
## WRATtotal 0.01191 0.01941 0.614 0.539
## CVLfrs:PovStatBelow 0.05746 0.12912 0.445 0.656
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 273.92 on 309 degrees of freedom
## Residual deviance: 266.38 on 304 degrees of freedom
## AIC: 278.38
##
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog3))
CVLTlog1 <- glm(PhysAssault ~ CVLfrs + WRATtotal, data=AllvarsMen,family = "binomial")
summary(CVLTlog1)
##
## Call:
## glm(formula = PhysAssault ~ CVLfrs + WRATtotal, family = "binomial",
## data = AllvarsMen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.5624 -0.5090 -0.4835 -0.4522 2.1895
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.884761 0.962994 -1.957 0.0503 .
## CVLfrs 0.045359 0.058779 0.772 0.4403
## WRATtotal -0.009693 0.022981 -0.422 0.6732
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 218.58 on 309 degrees of freedom
## Residual deviance: 217.94 on 307 degrees of freedom
## AIC: 223.94
##
## Number of Fisher Scoring iterations: 4
#Plots
plot(predictorEffect("CVLfrs",CVLTlog1))
CVLTlog3 <- glm(PhysAssault ~ (CVLfrs + PovStat)^2 + Age + WRATtotal, data = AllvarsMen, family = "binomial")
summary(CVLTlog3)
##
## Call:
## glm(formula = PhysAssault ~ (CVLfrs + PovStat)^2 + Age + WRATtotal,
## family = "binomial", data = AllvarsMen)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.8423 -0.5184 -0.4502 -0.3896 2.3706
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.578499 1.542806 -0.375 0.708
## CVLfrs -0.001410 0.072291 -0.020 0.984
## PovStatBelow 0.037239 0.778933 0.048 0.962
## Age -0.030677 0.021082 -1.455 0.146
## WRATtotal -0.004841 0.023977 -0.202 0.840
## CVLfrs:PovStatBelow 0.080411 0.121807 0.660 0.509
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 218.58 on 309 degrees of freedom
## Residual deviance: 213.13 on 304 degrees of freedom
## AIC: 225.13
##
## Number of Fisher Scoring iterations: 5
#Plots
plot(allEffects(CVLTlog3))
interact_plot(model = CVLTlog3, pred = CVLfrs,modx = PovStat)
sim_slopes(CVLTlog3, pred = CVLfrs,modx = PovStat, centered = "all",jnplot = TRUE)
## Warning: Johnson-Neyman intervals are not available for factor moderators.
## SIMPLE SLOPES ANALYSIS
##
## Slope of CVLfrs when PovStat = Below:
##
## Est. S.E. z val. p
## ------ ------ -------- ------
## 0.08 0.10 0.76 0.45
##
## Slope of CVLfrs when PovStat = Above:
##
## Est. S.E. z val. p
## ------- ------ -------- ------
## -0.00 0.07 -0.02 0.98