sum(y^2)
view(Auto)
horsepower_num <- as.numeric(horspower)
horsepower_num <- as.numeric(horsepower)
library(readr)
Auto <- read_csv(“Auto.csv”)
View(Auto)
pairs(Auto)
pairs(mpg,origin,year,acceleration,weight,displacement,cylind ers)
attach(mpg)
pairs(Auto$mpg)
pairs(Auto\(mpg,Auto\)origin,Auto\(year,Auto\)acceleration,Auto\(w eight, Auto\)displacement)
attach(year)
attach(Auto)
?Auto
??Auto
view(Auto)
view(auto)
View(Auto)
pairs(Auto)
pairs(Auto\(mpg, Auto\)cylinders, Auto\(displacement, Auto\)weight)
fix(Auto)
Auto=na.omit(Auto)
attach(Auto)
pairs(Auto\(mpg, Auto\)cylinders)
view(Auto$mpg)
cylinders=as.factor(Cylinders)
cylinders=as.factor(Auto$cylinders)
pairs(Auto\(mpg, Auto\)cylinders)
mpg=as.factor(mpg)
pairs(Auto\(mpg, Auto\)cylinders)
plot(Auto$mpg)
plot(Auto\(mpg, Auto\)cylinders)
pairs(~ Auto\(mpg + Auto\)cylinders)
horsepower=as.factor(horsepower)
pairs(~ Auto\(mpg +Auto\)cylinders +Auto$horsepower)
pairs(~ Auto\(mpg + Auto\)cylinders + Auto$horsepower)
horsepower=as.factor(horsepower)
pairs(~Auto\(mpg + Auto\)horsepower, Auto) pairs(~Auto\(mpg + Auto\)horsepower)
Auto=na.omit(Auto)
dim(Auto)
NewAuto=na.omit(Auto)
View(NewAuto)
View(NewAuto)
str(Auto)
complete.cases(Auto)
Auto <- Auto[completed.cas]
Auto <- Auto[completed.cases(Auto),]
x <- Auto[complete.cases(Auto),]
str(x)
na.strings=‘?’
Auto\(x <- gsub("?",NA,Auto\)x, fixed = TRUE)
is.na(Auto)
Auto=read.csv(Auto, header=TRUE, na.strings = ‘?’, fill=TRUE)
Auto=read.csv(“Auto.csv”,header=T,na.strings =“?”) Auto=read.csv(“Auto.csv”,header=T,na.strings =“?”)
fix(Auto)
dim(Auto)
na.omit(Auto)
dim(Auto)
view(Auto)
Auto=na.omit(Auto)
fix(Auto)
dim(Auto)
view(Auto)
pairs(Auto)
pairs(~ Auto\(mpg + Auto\)cylinders + Auto\(horsepower + Auto\)weight + Auto\(acceleration + Auto\)origin + Auto\(year + Auto\)displacement)
cor( Auto\(mpg + Auto\)cylinders + Auto\(horsepower + Auto\)weight + Auto\(acceleration + Auto\)origin + Auto\(year + Auto\)displacement)
cor(Auto\(mpg, Auto\)cylinders, Auto\(horsepower, Auto\)weight, Auto\(acceleration, Auto\)origin, Auto\(year, Auto\)displacement)
cor(Auto\(mpg, Auto\)cylinders)
cor(Auto\(mpg, Auto\)displacement)
cor(Auto\(mpg, Auto\)horsepower)
Auto.cor = cor(Auto)
res <- cor.test(Auto\(mpg, Auto\)cylinders, Auto$displacement)
cor(x, use= “num”)
NoNameAuto <- select(Auto\(mpg, Auto\)cylinders, Auto\(displacement,Auto\)horsepower, Auto\(weight, Auto\)acceleration, Auto\(origin, Auto\)year)
head(NoNameAuto)
library(ISLR)
library(ISLR)
view(Auto)
NoNameAuto <- select(Auto\(mpg, Auto\)cylinders, Auto\(displacement,Auto\)horsepower, Auto\(weight, Auto\)acceleration, Auto\(origin, Auto\)year)
require(ggpubr)
require(tidyverse)
require(Hmisc)
require(corrplot)
cor(Auto[,unlist(lapply(Auto, is.numeric))])
lm.fit=lm(Auto\(mpg∼Auto\)cylinders+Auto\(displacement+Auto\)hors epower+Auto\(weight+Auto\)weight+Auto\(acceleration+Auto\)year+Au to$origin ,data=Auto )
summary (lm.fit)
lm.fit=lm(Auto\(mpg∼Auto\)cylinders+Auto\(displacement+Auto\)hors epower+Auto\(weight+Auto\)weight+Auto\(acceleration+Auto\)year+Au to$origin ,data=Auto ) summary (lm.fit)
lm.fit=lm(Auto\(mpg ~ Auto\)cylinders+Auto\(displacement+Auto\)horsepower+Auto\(weight+ Auto\)weight+Auto\(acceleration+Auto\)year+Auto$origin ,data=Auto )
summary(lm.fit)
summary(lm.fit)
plot(lm.fit)
plot(lm.fit)
plot(lm.fit)
summary (lm(medv∼lstat*mpg ,data=Auto))
summary (lm(medv∼lstat*mpg ,data=Auto))
lm.fit=lm(medv∼lstat , data=Auto)
attach(Auto)
lm.fit=lm(medv∼lstat)
lm.fit=lm(medv~lstat , data=Auto)
attach(Auto)
lm.fit=lm(medv~lstat)
lm.fit
lstat
lm.fit=lm(medv∼lstat , data=Auto)
attach(Auto)
view(Auto)
View(Auto)
lm.fit=lm(medv∼lstat , data=Auto)
lm.fit=lm(medv∼lstat , data=Auto.csv)
lm.fit=lm(medv~lstat , data=Auto)
library(readr)
Auto <- read_csv(“Auto.csv”)
View(Auto)
summary(lm.fit)
summary(lm.fit)
Auto=read.csv(“Auto.csv”,header=T,na.strings =“?”)
fix(Auto)
dim(Auto)
na.omit(Auto)
dim(Auto)
view(Auto)
Auto=na.omit(Auto)
fix(Auto)
dim(Auto)
view(Auto)
install.packages(“ISLR”)
Rdata <- readRDS(“~/R/win-library/4.0/ISLR/data/Rdata.rds”)
view(carseats)
data(carseats)
attach(carseats)
attach(Carseats)
library(ISLR)
force(Carseats)
attach(Carseats)
lm.fit=lm(medv∼lstat)
lm.fit=lm(medv~lstat)
lm.fit=lm(medv~lstat)
lm.fit=lm(medv~lstat , data=Carseats
attach(Carseats)
lm.fit=lm(medv~lstat)
lm.fit=lm(medv~lstat, data=Carseats)
attach (Carseats)
lm.fit=lm(medv~lstat)
View(Carseats)
fit2=lm(medv~.,Carseats)
library(ISLR)
names(Carseats)
?Carseats
plot=(medv~lstat, Carseats)
plot(medv~lstat,Carseats)
library(MASS)
names(Carseats)
fix(Carseats)
lm.fit=lm(Sales~lstat+Price+Urban+US ,data=Carseats)
lm.fit=lm(Sales~Price+Urban+US ,data=Carseats)
summary(lm.fit)
plot(lm.fit)
lm.fit=lm(Sales~Urban, Data=Carseats)
summary(Carseats)
pairs(Carseats)
lm.fit=lm(Sales~Urban+Advertising, Data=Carseats)
lm.fit=lm(Sales~Urban+Advertising ,data=Carseats)
summary(lm.fit)
lm.fit=lm(Sales~Urban+Advertising+Income+CompPrice+Population +Age+ShelveLoc+Education ,data=Carseats)
summary(lm.fit)
lm.fit=lm(Sales~Urban+Education+Population+CompPrice ,data=Carseats)
lm.fit=lm(Sales~Urban+Education+Population+CompPrice ,data=Carseats)
summary(lm.fit)
plot(lm.fit)
plot(lm.fit)
set.seed(1)
x <- 1:100
sum(x^2)
y <- 5 * x + rnorm(100, sd = 0.1)
sum(y^2)
fit.Y <- lm(y ~ x + 0)
fit.X <- lm(x ~ y + 0)
summary(fit.Y)
summary(fit.X)
y <- 100:1
sum(y^2)
summary(fit.X)
summary(fit.Y)
par(mfrow = c(2, 2))
plot(log(Auto\(displacement), Auto\)mpg)
plot(sqrt(Auto\(mpg), Auto\)weight)
plot((Auto\(acceleration)^2, Auto\)year)
fit2 <- lm(mpg ~ . - name, data = Auto)
summary(fit2)
plot(fit2)