On a à la base 84 T et 85 BL (on a enlevé les 22 intermédiaires), dont respectivement 45 T et 44 BL ont les résultats du multimorphe. On avait donc 89 personnes ayant répondu au MM.
73 ont répondu au MM et avaient moins de 4 valeurs manquantes sur les autres variables nécessaires pour les modèles. C’est à dire les variables composant le score abandon :
PBI_soin_Mere , PBI_soin_Pere , CTQ_EN , CTQ_PN
et les variables composant le score intrusion :
PBI_control Pere , PBI control mere , CTQ_EA , CTQ_SA , CTQ_PA
Les scores Abandon et Intrusion utilisés ici ne sont pas les simples sommes , mais bien les première dimensions des ACPs faites à partir des “paniers” de variables présentés ci dessus. LEs résultats de ces ACP sont dans l’autre document Rpub en ligne.
on a importé les CSP données par Marion : 3 classes : 1(professions supérieures) , 2 (profession intermédiaires), 3 (retraité et chomage) On avait seulement 8 personnes dans la 3eme catégorie, on l’a regroupé avec la 2.
variable 1 | variable 2 | coeff de correlation | p-value | N |
---|---|---|---|---|
MM_Delai | Dim.Abandon | 0.14 | 0.2545 | 70 |
MM_Delai | Dim.Intrusion | 0.21 | 0.0779 | 70 |
MM_Succes | Dim.Abandon | -0.028 | 0.8201 | 70 |
MM_Succes | Dim.Intrusion | -0.42 | 0.0003 | 70 |
variable 1 | variable 2 | coeff de correlation | p-value | N |
---|---|---|---|---|
MM_Delai | Dim.Abandon | -0.27 | 0.1722 | 27 |
MM_Delai | Dim.Intrusion | 0.22 | 0.2780 | 26 |
MM_Succes | Dim.Abandon | -0.0038 | 0.9849 | 27 |
MM_Succes | Dim.Intrusion | -0.69 | 0.0001 | 26 |
variable 1 | variable 2 | coeff de correlation | p-value | N |
---|---|---|---|---|
MM_Delai | Dim.Abandon | 0.31 | 0.0402 | 43 |
MM_Delai | Dim.Intrusion | 0.055 | 0.7236 | 44 |
MM_Succes | Dim.Abandon | 0.085 | 0.5859 | 43 |
MM_Succes | Dim.Intrusion | -0.023 | 0.8822 | 44 |
Abandon puis Intrusion :
CHOIX FINAL : Evt_TS dans la Dim.intrusion
Voici le modèle final (modèle de régression linéaire ) modélisant le % de Succès au MM :
Call:
lm(formula = MM_Succes ~ age + sexe + CSP_bin2 + Dim.Intrusion +
Dim.Abandon * borderline, data = DBsi)
Residuals:
Min 1Q Median 3Q Max
-0.11564 -0.06130 0.01135 0.04962 0.10524
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.461248 0.125034 3.689 0.000493 ***
age 0.020635 0.008018 2.574 0.012600 *
sexe 0.060519 0.024739 2.446 0.017433 *
CSP_bin2 0.011803 0.019666 0.600 0.550707
Dim.Intrusion -0.031146 0.006262 -4.974 6e-06 ***
Dim.Abandon 0.029970 0.010188 2.942 0.004657 **
borderline -0.014169 0.022228 -0.637 0.526299
Dim.Abandon:borderline -0.031158 0.013836 -2.252 0.028063 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.06507 on 59 degrees of freedom
(22 observations deleted due to missingness)
Multiple R-squared: 0.4367, Adjusted R-squared: 0.3699
F-statistic: 6.535 on 7 and 59 DF, p-value: 1.018e-05
Voici le modèle final (modèle de régression linéaire ) modélisant le Délai au MM :
Call:
lm(formula = MM_Delai ~ age + sexe + CSP_bin2 + Dim.Intrusion +
Dim.Abandon * borderline, data = DBsi)
Residuals:
Min 1Q Median 3Q Max
-10.1771 -2.9367 -0.0382 3.2707 11.6718
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.90134 9.36091 4.049 0.000152 ***
age -0.50964 0.60031 -0.849 0.399332
sexe -1.83471 1.85214 -0.991 0.325931
CSP_bin2 4.52643 1.47236 3.074 0.003194 **
Dim.Intrusion 0.02866 0.46882 0.061 0.951456
Dim.Abandon 1.20010 0.76272 1.573 0.120964
borderline 2.96752 1.66414 1.783 0.079695 .
Dim.Abandon:borderline -2.23515 1.03587 -2.158 0.035029 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.872 on 59 degrees of freedom
(22 observations deleted due to missingness)
Multiple R-squared: 0.2655, Adjusted R-squared: 0.1783
F-statistic: 3.046 on 7 and 59 DF, p-value: 0.008358
L’imputation ne change pas les résultats du modèle MM_Succes, et deteriore même un peu la qualité du modèle MM_Delai. Je suis donc d’avis qu’on ne fasse pas d’imputation, cela enlève un angle d’attaque sur notre article.
EVt_TS : d’un point de vue statistique, il a y + de cohérence à le mettre dans le score Intrusion. Les modèles ne sont que renfocrés dans leur qualités, et les effets sont légèrement + significatifs.
Call:
lm(formula = MM_Succes ~ Dim.Intrusion + Dim.Abandon, data = DBsi)
Residuals:
Min 1Q Median 3Q Max
-0.193875 -0.057218 0.002809 0.064022 0.126149
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.832027 0.008738 95.217 < 2e-16 ***
Dim.Intrusion -0.027411 0.006413 -4.275 6.3e-05 ***
Dim.Abandon 0.011876 0.006637 1.790 0.0781 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.07258 on 66 degrees of freedom
(20 observations deleted due to missingness)
Multiple R-squared: 0.2174, Adjusted R-squared: 0.1937
F-statistic: 9.169 on 2 and 66 DF, p-value: 0.0003063
Call:
lm(formula = MM_Succes ~ age + sexe + CSP_bin2 + Dim.Intrusion +
Dim.Abandon, data = DBsi)
Residuals:
Min 1Q Median 3Q Max
-0.150471 -0.049074 0.008872 0.056280 0.101926
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.453972 0.128064 3.545 0.000761 ***
age 0.020806 0.008193 2.540 0.013663 *
sexe 0.043119 0.024244 1.779 0.080305 .
CSP_bin2 0.013484 0.020271 0.665 0.508445
Dim.Intrusion -0.028939 0.005994 -4.828 9.63e-06 ***
Dim.Abandon 0.009682 0.006215 1.558 0.124438
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.06722 on 61 degrees of freedom
(22 observations deleted due to missingness)
Multiple R-squared: 0.3786, Adjusted R-squared: 0.3276
F-statistic: 7.432 on 5 and 61 DF, p-value: 1.69e-05
Call:
lm(formula = MM_Succes ~ age + sexe + CSP_bin2 + Dim.Intrusion +
Dim.Abandon + borderline, data = DBsi)
Residuals:
Min 1Q Median 3Q Max
-0.15341 -0.05390 0.01181 0.05257 0.10688
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.440442 0.128853 3.418 0.00114 **
age 0.021864 0.008267 2.645 0.01042 *
sexe 0.049164 0.025028 1.964 0.05412 .
CSP_bin2 0.012184 0.020322 0.600 0.55105
Dim.Intrusion -0.027301 0.006226 -4.385 4.75e-05 ***
Dim.Abandon 0.012898 0.007033 1.834 0.07161 .
borderline -0.022180 0.022674 -0.978 0.33188
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.06725 on 60 degrees of freedom
(22 observations deleted due to missingness)
Multiple R-squared: 0.3883, Adjusted R-squared: 0.3272
F-statistic: 6.349 on 6 and 60 DF, p-value: 3.261e-05
% de Succès au MM :
Call:
lm(formula = MM_Succes ~ age + sexe + CSP_bin2 + Dim.Intrusion *
borderline + Dim.Abandon * borderline, data = DBsi)
Residuals:
Min 1Q Median 3Q Max
-0.122878 -0.042461 0.004129 0.053541 0.116145
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.468566 0.120378 3.892 0.000259 ***
age 0.020152 0.007720 2.610 0.011489 *
sexe 0.066129 0.023926 2.764 0.007642 **
CSP_bin2 0.007400 0.019018 0.389 0.698619
Dim.Intrusion -0.007235 0.011694 -0.619 0.538538
borderline -0.009731 0.021474 -0.453 0.652119
Dim.Abandon 0.015593 0.011508 1.355 0.180681
Dim.Intrusion:borderline -0.032523 0.013630 -2.386 0.020309 *
borderline:Dim.Abandon -0.016908 0.014594 -1.159 0.251388
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.06263 on 58 degrees of freedom
(22 observations deleted due to missingness)
Multiple R-squared: 0.4871, Adjusted R-squared: 0.4164
F-statistic: 6.885 on 8 and 58 DF, p-value: 2.487e-06
Délai moyen au MM :
Call:
lm(formula = MM_Delai ~ age + sexe + CSP_bin2 + Dim.Intrusion *
borderline + Dim.Abandon * borderline, data = DBsi)
Residuals:
Min 1Q Median 3Q Max
-10.9738 -2.6994 -0.2573 2.4100 11.3481
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.3667 9.0334 4.136 0.000115 ***
age -0.4744 0.5793 -0.819 0.416244
sexe -2.2446 1.7955 -1.250 0.216273
CSP_bin2 4.8481 1.4271 3.397 0.001236 **
Dim.Intrusion -1.7182 0.8775 -1.958 0.055044 .
borderline 2.6433 1.6115 1.640 0.106351
Dim.Abandon 2.2504 0.8636 2.606 0.011629 *
Dim.Intrusion:borderline 2.3760 1.0228 2.323 0.023708 *
borderline:Dim.Abandon -3.2762 1.0952 -2.991 0.004072 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.7 on 58 degrees of freedom
(22 observations deleted due to missingness)
Multiple R-squared: 0.328, Adjusted R-squared: 0.2353
F-statistic: 3.539 on 8 and 58 DF, p-value: 0.002128
% de Succès au MM :
Call:
lm(formula = MM_Succes ~ age + sexe + CSP_bin2 + poly(Dim.Intrusion,
2) * borderline + poly(Dim.Abandon, 2) * borderline, data = DBsi[which(!is.na(DBsi$Dim.Abandon) &
!is.na(DBsi$Dim.Intrusion)), ])
Residuals:
Min 1Q Median 3Q Max
-0.127233 -0.038965 0.001864 0.050848 0.116081
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.459735 0.129955 3.538 0.000838 ***
age 0.020607 0.008297 2.484 0.016143 *
sexe 0.065940 0.025431 2.593 0.012221 *
CSP_bin2 0.004134 0.021025 0.197 0.844877
poly(Dim.Intrusion, 2)1 -0.126327 0.320107 -0.395 0.694663
poly(Dim.Intrusion, 2)2 -0.067786 0.307890 -0.220 0.826574
borderline -0.006151 0.031208 -0.197 0.844496
poly(Dim.Abandon, 2)1 0.133211 0.228736 0.582 0.562735
poly(Dim.Abandon, 2)2 -0.058790 0.171976 -0.342 0.733792
poly(Dim.Intrusion, 2)1:borderline -0.363580 0.343668 -1.058 0.294793
poly(Dim.Intrusion, 2)2:borderline 0.045266 0.326387 0.139 0.890211
borderline:poly(Dim.Abandon, 2)1 -0.186034 0.301465 -0.617 0.539761
borderline:poly(Dim.Abandon, 2)2 0.090985 0.223995 0.406 0.686207
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.06469 on 54 degrees of freedom
(2 observations deleted due to missingness)
Multiple R-squared: 0.4905, Adjusted R-squared: 0.3773
F-statistic: 4.332 on 12 and 54 DF, p-value: 8.601e-05
Délai moyen au MM :
Call:
lm(formula = MM_Delai ~ age + sexe + CSP_bin2 + poly(Dim.Intrusion,
2) * borderline + poly(Dim.Abandon, 2) * borderline, data = DBsi[which(!is.na(DBsi$Dim.Abandon) &
!is.na(DBsi$Dim.Intrusion)), ])
Residuals:
Min 1Q Median 3Q Max
-9.8853 -2.7825 -0.1436 2.4266 11.1162
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 40.3853 9.0891 4.443 4.44e-05 ***
age -0.7156 0.5803 -1.233 0.222859
sexe -1.4869 1.7787 -0.836 0.406850
CSP_bin2 5.4886 1.4705 3.733 0.000457 ***
poly(Dim.Intrusion, 2)1 -52.3065 22.3885 -2.336 0.023216 *
poly(Dim.Intrusion, 2)2 -32.9893 21.5340 -1.532 0.131370
borderline 6.4017 2.1827 2.933 0.004919 **
poly(Dim.Abandon, 2)1 36.5236 15.9980 2.283 0.026391 *
poly(Dim.Abandon, 2)2 8.1343 12.0281 0.676 0.501757
poly(Dim.Intrusion, 2)1:borderline 52.0757 24.0364 2.167 0.034702 *
poly(Dim.Intrusion, 2)2:borderline 45.6602 22.8277 2.000 0.050517 .
borderline:poly(Dim.Abandon, 2)1 -71.4246 21.0847 -3.388 0.001323 **
borderline:poly(Dim.Abandon, 2)2 14.0350 15.6664 0.896 0.374301
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.525 on 54 degrees of freedom
(2 observations deleted due to missingness)
Multiple R-squared: 0.4201, Adjusted R-squared: 0.2913
F-statistic: 3.261 on 12 and 54 DF, p-value: 0.001395