Density Plots
Mixed Effect Models

Density Plots

Time to Check summary stats

vars n mean sd min max range se
X1 1 3264 48.26072 585.2739 0 30114 30114 10.24434










## $exam_num

## 
## Call:
## lm(formula = TimetoCheck ~ exam_num, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
##   -78.8   -53.5   -29.4   -20.0 30035.2 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   27.022     20.435   1.322   0.1861  
## exam_num2     51.774     28.265   1.832   0.0671 .
## exam_num3      5.334     28.602   0.186   0.8521  
## exam_num4     26.440     30.218   0.875   0.3817  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 585.2 on 3260 degrees of freedom
## Multiple R-squared:  0.00129,    Adjusted R-squared:  0.0003712 
## F-statistic: 1.404 on 3 and 3260 DF,  p-value: 0.2397

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TimetoCheck ~ exam_num + Prediction_1 + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 33101.6
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -0.105 -0.065 -0.035 -0.020 45.234 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)    155.8  12.48  
##  Residual             440975.6 664.06  
## Number of obs: 2093, groups:  ID, 719
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)    -6.3802    68.9899 1891.1632  -0.092    0.926
## exam_num2      34.8231    38.8139 1818.9175   0.897    0.370
## exam_num3       2.1819    40.6418 1855.9218   0.054    0.957
## exam_num4      -0.4156    45.7013 1905.0188  -0.009    0.993
## Prediction_1    0.4100     0.8763 1693.6453   0.468    0.640
## 
## Correlation of Fixed Effects:
##             (Intr) exm_n2 exm_n3 exm_n4
## exam_num2   -0.250                     
## exam_num3   -0.421  0.510              
## exam_num4   -0.142  0.469  0.422       
## Predictin_1 -0.910 -0.061  0.142 -0.129


Mixed Effect Models


PTQ

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TimetoCheck ~ PTQscore + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 9508.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -0.6241 -0.1703 -0.0991 -0.0309 18.2222 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)   4882    69.87  
##  Residual             243194   493.15  
## Number of obs: 624, groups:  ID, 183
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)  
## (Intercept)    8.794     39.743 117.671   0.221   0.8253  
## PTQscore       3.312      1.696 125.086   1.953   0.0531 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr)
## PTQscore -0.857


PHQ

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TimetoCheck ~ DEPscore + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 10040.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4869 -0.1340 -0.1166 -0.0872 17.9808 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  21494   146.6   
##  Residual             228588   478.1   
## Number of obs: 659, groups:  ID, 184
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)  
## (Intercept)   77.537     30.237 186.026   2.564   0.0111 *
## DEPscore       1.705      4.068 333.519   0.419   0.6754  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr)
## DEPscore -0.698


GAD

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TimetoCheck ~ GADscore + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 10038.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4446 -0.1454 -0.0958 -0.0673 17.9748 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  20782   144.2   
##  Residual             228397   477.9   
## Number of obs: 659, groups:  ID, 184
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)  
## (Intercept)   53.877     30.661 187.868   1.757   0.0805 .
## GADscore       6.661      4.476 314.504   1.488   0.1377  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr)
## GADscore -0.711


Grade Predictions

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TimetoCheck ~ Prediction_1 + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 33130.1
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -0.076 -0.055 -0.046 -0.030 45.288 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)    133.1  11.54  
##  Residual             440612.9 663.79  
## Number of obs: 2093, groups:  ID, 719
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)
## (Intercept)    -0.4648    62.3759 1776.1967  -0.007    0.994
## Prediction_1    0.4843     0.8437 1767.7698   0.574    0.566
## 
## Correlation of Fixed Effects:
##             (Intr)
## Predictin_1 -0.973


Interaction: Grade prediction * PTQ Score