Density Plots
Mixed Effect Models

Density Plots

Time to Check summary stats

vars n mean sd min max range se
X1 1 3251 50.80683 254.3052 1 9300 9299 4.460122










## $exam_num

## 
## Call:
## lm(formula = TimetoCheck ~ exam_num, data = df)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -62.9  -42.4  -27.1    0.6 9240.7 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   38.122      8.915   4.276 1.96e-05 ***
## exam_num2     21.196     12.319   1.721   0.0854 .  
## exam_num3      5.268     12.456   0.423   0.6724    
## exam_num4     25.784     13.158   1.960   0.0501 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 254.2 on 3247 degrees of freedom
## Multiple R-squared:  0.001717,   Adjusted R-squared:  0.000795 
## F-statistic: 1.862 on 3 and 3247 DF,  p-value: 0.1338

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TimetoCheck ~ exam_num + Prediction_1 + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 24262.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7369 -0.2862 -0.1197  0.1242 17.4014 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1108     33.29   
##  Residual             5871     76.62   
## Number of obs: 2082, groups:  ID, 719
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    68.5547     8.9184 1905.9089   7.687  2.4e-14 ***
## exam_num2      -4.8669     4.5845 1607.3349  -1.062 0.288585    
## exam_num3      -1.0969     4.8061 1628.8455  -0.228 0.819489    
## exam_num4       7.5264     5.4315 1676.7877   1.386 0.166023    
## Prediction_1   -0.4491     0.1154 1743.8112  -3.893 0.000103 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) exm_n2 exm_n3 exm_n4
## exam_num2   -0.202                     
## exam_num3   -0.397  0.514              
## exam_num4   -0.096  0.473  0.423       
## Predictin_1 -0.915 -0.087  0.140 -0.151


Mixed Effect Models


PTQ

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TimetoCheck ~ PTQscore + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 9508.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -0.6241 -0.1703 -0.0991 -0.0309 18.2222 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)   4882    69.87  
##  Residual             243194   493.15  
## Number of obs: 624, groups:  ID, 183
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)  
## (Intercept)    8.794     39.743 117.671   0.221   0.8253  
## PTQscore       3.312      1.696 125.086   1.953   0.0531 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr)
## PTQscore -0.857


PHQ

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TimetoCheck ~ DEPscore + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 10040.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4869 -0.1340 -0.1166 -0.0872 17.9808 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  21494   146.6   
##  Residual             228588   478.1   
## Number of obs: 659, groups:  ID, 184
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)  
## (Intercept)   77.537     30.237 186.026   2.564   0.0111 *
## DEPscore       1.705      4.068 333.519   0.419   0.6754  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr)
## DEPscore -0.698


GAD

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TimetoCheck ~ GADscore + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 10038.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.4446 -0.1454 -0.0958 -0.0673 17.9748 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept)  20782   144.2   
##  Residual             228397   477.9   
## Number of obs: 659, groups:  ID, 184
## 
## Fixed effects:
##             Estimate Std. Error      df t value Pr(>|t|)  
## (Intercept)   53.877     30.661 187.868   1.757   0.0805 .
## GADscore       6.661      4.476 314.504   1.488   0.1377  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##          (Intr)
## GADscore -0.711


Grade Predictions

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TimetoCheck ~ Prediction_1 + (1 | ID)
##    Data: df
## 
## REML criterion at convergence: 24283.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8171 -0.2903 -0.1140  0.1258 17.3809 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  ID       (Intercept) 1119     33.46   
##  Residual             5871     76.63   
## Number of obs: 2082, groups:  ID, 719
## 
## Fixed effects:
##               Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)    66.2029     8.1597 1810.1180   8.113 8.99e-16 ***
## Prediction_1   -0.4245     0.1104 1844.5937  -3.846 0.000124 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr)
## Predictin_1 -0.965


Interaction: Grade prediction * PTQ Score