Density Plots
Mixed Effect Models
Time to Check summary stats
| vars | n | mean | sd | min | max | range | se | |
|---|---|---|---|---|---|---|---|---|
| X1 | 1 | 3251 | 50.80683 | 254.3052 | 1 | 9300 | 9299 | 4.460122 |
## $exam_num
##
## Call:
## lm(formula = TimetoCheck ~ exam_num, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -62.9 -42.4 -27.1 0.6 9240.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 38.122 8.915 4.276 1.96e-05 ***
## exam_num2 21.196 12.319 1.721 0.0854 .
## exam_num3 5.268 12.456 0.423 0.6724
## exam_num4 25.784 13.158 1.960 0.0501 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 254.2 on 3247 degrees of freedom
## Multiple R-squared: 0.001717, Adjusted R-squared: 0.000795
## F-statistic: 1.862 on 3 and 3247 DF, p-value: 0.1338
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TimetoCheck ~ exam_num + Prediction_1 + (1 | ID)
## Data: df
##
## REML criterion at convergence: 24262.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.7369 -0.2862 -0.1197 0.1242 17.4014
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 1108 33.29
## Residual 5871 76.62
## Number of obs: 2082, groups: ID, 719
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 68.5547 8.9184 1905.9089 7.687 2.4e-14 ***
## exam_num2 -4.8669 4.5845 1607.3349 -1.062 0.288585
## exam_num3 -1.0969 4.8061 1628.8455 -0.228 0.819489
## exam_num4 7.5264 5.4315 1676.7877 1.386 0.166023
## Prediction_1 -0.4491 0.1154 1743.8112 -3.893 0.000103 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) exm_n2 exm_n3 exm_n4
## exam_num2 -0.202
## exam_num3 -0.397 0.514
## exam_num4 -0.096 0.473 0.423
## Predictin_1 -0.915 -0.087 0.140 -0.151
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TimetoCheck ~ PTQscore + (1 | ID)
## Data: df
##
## REML criterion at convergence: 9508.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -0.6241 -0.1703 -0.0991 -0.0309 18.2222
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 4882 69.87
## Residual 243194 493.15
## Number of obs: 624, groups: ID, 183
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 8.794 39.743 117.671 0.221 0.8253
## PTQscore 3.312 1.696 125.086 1.953 0.0531 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## PTQscore -0.857
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TimetoCheck ~ DEPscore + (1 | ID)
## Data: df
##
## REML criterion at convergence: 10040.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4869 -0.1340 -0.1166 -0.0872 17.9808
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 21494 146.6
## Residual 228588 478.1
## Number of obs: 659, groups: ID, 184
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 77.537 30.237 186.026 2.564 0.0111 *
## DEPscore 1.705 4.068 333.519 0.419 0.6754
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## DEPscore -0.698
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TimetoCheck ~ GADscore + (1 | ID)
## Data: df
##
## REML criterion at convergence: 10038.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4446 -0.1454 -0.0958 -0.0673 17.9748
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 20782 144.2
## Residual 228397 477.9
## Number of obs: 659, groups: ID, 184
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 53.877 30.661 187.868 1.757 0.0805 .
## GADscore 6.661 4.476 314.504 1.488 0.1377
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## GADscore -0.711
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TimetoCheck ~ Prediction_1 + (1 | ID)
## Data: df
##
## REML criterion at convergence: 24283.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.8171 -0.2903 -0.1140 0.1258 17.3809
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 1119 33.46
## Residual 5871 76.63
## Number of obs: 2082, groups: ID, 719
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 66.2029 8.1597 1810.1180 8.113 8.99e-16 ***
## Prediction_1 -0.4245 0.1104 1844.5937 -3.846 0.000124 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr)
## Predictin_1 -0.965
Interaction: Grade prediction * PTQ Score