| Ville | Minimum | X1st.Qu | Median | Mean | X3rd.Qu | Max | NA.s |
|---|---|---|---|---|---|---|---|
| bordeaux | 1.9154062 | 51.33333 | 70.95833 | 70.70046 | 89.16369 | 169.5000 | NA |
| clermont | 1.7321429 | 54.12500 | 72.68750 | 72.06568 | 90.12500 | 178.5625 | 138 |
| grenoble | 0.4375000 | 35.51116 | 65.96875 | 65.82133 | 91.66518 | 185.8750 | NA |
| lehavre | 2.1250000 | 57.25000 | 70.62500 | 69.51529 | 82.12500 | 184.5000 | 59 |
| lille | 0.1666667 | 41.00000 | 59.00000 | 58.91898 | 74.75000 | 207.1250 | 239 |
| marseille | 3.1250000 | 54.75000 | 79.59742 | 77.44850 | 99.62500 | 185.6250 | 16 |
| nantes | 3.1250000 | 55.00000 | 70.37500 | 71.71581 | 87.62500 | 216.5000 | 71 |
| paris | 0.8592206 | 37.65048 | 57.72942 | 59.16113 | 77.16338 | 216.3857 | NA |
| rennes | 1.5625000 | 52.12500 | 65.93750 | 66.48971 | 80.25005 | 213.5625 | 17 |
| rouen | 1.2972346 | 46.96354 | 63.34375 | 63.70247 | 79.04688 | 178.6607 | NA |
| strasbourg | 0.0000000 | 36.75000 | 62.87500 | 64.30176 | 87.75000 | 206.5000 | 99 |
| toulouse | 1.6250000 | 57.31250 | 76.27500 | 76.08195 | 94.61250 | 180.9594 | NA |
## change year variable with numeric ordinal number
for (i in 1:length(villes)){
villes[[i]]$year<-as.numeric(villes[[i]]$annee)
}
# define model objects
tot <- matrix(NA, nrow = 12, ncol = 7)
colnames(tot) <- c("Ville","Coefficient_B0","B0_CI95_Low","B0_CI95_High", "Coefficient_B1","LB_CI95_Low","B1_CI95_High")
modtot<-list()
st_errb0<-c()
st_errb1<-c()
# Linear Model for Lag0
for(i in 1:length(villes)) {
modtot[[i]]<-gam(respi_tot~o3.x+o3.x:year+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours++Vacances,data=villes[[i]],family=quasipoisson)
est<-summary(modtot[[i]])
tot[i, 1] <- as.character(villes_name[[i]])
ll<-length(modtot[[i]]$coefficients)
tot[i, 2] <- modtot[[i]]$coefficients[2]
tot[i, 3] <- modtot[[i]]$coefficients[2]-(1.96*est$se[2])
tot[i, 4] <- modtot[[i]]$coefficients[2]+(1.96*est$se[2])
tot[i, 5] <- modtot[[i]]$coefficients[ll]
tot[i, 6] <- modtot[[i]]$coefficients[ll]-(1.96*est$se[ll])
tot[i, 7] <- modtot[[i]]$coefficients[ll]+(1.96*est$se[ll])
st_errb0[i]<- est$se[2]
st_errb1[i]<- est$se[ll]
}
# Linear Model for Lag1
# define model objects
tot_L1 <- matrix(NA, nrow = 12, ncol = 7)
colnames(tot_L1) <- c("Ville","Coefficient_B0","B0_CI95_Low","B0_CI95_High", "Coefficient_B1","LB_CI95_Low","B1_CI95_High")
modtot_L1<-list()
st_errb0_L1<-c()
st_errb1_L1<-c()
for(i in 1:length(villes)) {
modtot_L1[[i]]<-gam(respi_tot~o3_L1+o3_L1:year+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours++Vacances,data=villes[[i]],family=quasipoisson)
est<-summary(modtot_L1[[i]])
tot_L1[i, 1] <- as.character(villes_name[[i]])
ll<-length(modtot_L1[[i]]$coefficients)
tot_L1[i, 2] <- modtot_L1[[i]]$coefficients[2]
tot_L1[i, 3] <- modtot_L1[[i]]$coefficients[2]-(1.96*est$se[2])
tot_L1[i, 4] <- modtot_L1[[i]]$coefficients[2]+(1.96*est$se[2])
tot_L1[i, 5] <- modtot_L1[[i]]$coefficients[ll]
tot_L1[i, 6] <- modtot_L1[[i]]$coefficients[ll]-(1.96*est$se[ll])
tot_L1[i, 7] <- modtot_L1[[i]]$coefficients[ll]+(1.96*est$se[ll])
st_errb0_L1[i]<- est$se[2]
st_errb1_L1[i]<- est$se[ll]
}
# Linear Model for Lag2
# define model objects
tot_L2 <- matrix(NA, nrow = 12, ncol = 7)
colnames(tot_L2) <- c("Ville","Coefficient_B0","B0_CI95_Low","B0_CI95_High", "Coefficient_B1","LB_CI95_Low","B1_CI95_High")
modtot_L2<-list()
st_errb0_L2<-c()
st_errb1_L2<-c()
for(i in 1:length(villes)) {
modtot_L2[[i]]<-gam(respi_tot~o3_L2+o3_L2:year+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours++Vacances,data=villes[[i]],family=quasipoisson)
est<-summary(modtot_L2[[i]])
tot_L2[i, 1] <- as.character(villes_name[[i]])
ll<-length(modtot_L2[[i]]$coefficients)
tot_L2[i, 2] <- modtot_L2[[i]]$coefficients[2]
tot_L2[i, 3] <- modtot_L2[[i]]$coefficients[2]-(1.96*est$se[2])
tot_L2[i, 4] <- modtot_L2[[i]]$coefficients[2]+(1.96*est$se[2])
tot_L2[i, 5] <- modtot_L2[[i]]$coefficients[ll]
tot_L2[i, 6] <- modtot_L2[[i]]$coefficients[ll]-(1.96*est$se[ll])
tot_L2[i, 7] <- modtot_L2[[i]]$coefficients[ll]+(1.96*est$se[ll])
st_errb0_L2[i]<- est$se[2]
st_errb1_L2[i]<- est$se[ll]
}
| Ville | Coefficient_B0 | B0_CI95_Low | B0_CI95_High | Coefficient_B1 | LB_CI95_Low | B1_CI95_High |
|---|---|---|---|---|---|---|
| bordeaux | 0.9983 | 0.9960 | 1.0006 | 1.0002 | 1.0001 | 1.0003 |
| clermont | 0.9984 | 0.9952 | 1.0015 | 1.0003 | 1.0002 | 1.0005 |
| grenoble | 0.9996 | 0.9972 | 1.0021 | 1.0003 | 1.0002 | 1.0005 |
| lehavre | 0.9994 | 0.9961 | 1.0028 | 1.0000 | 0.9998 | 1.0002 |
| lille | 1.0008 | 0.9993 | 1.0022 | 1.0001 | 1.0000 | 1.0001 |
| marseille | 0.9997 | 0.9982 | 1.0012 | 1.0002 | 1.0001 | 1.0002 |
| nantes | 1.0005 | 0.9979 | 1.0032 | 1.0003 | 1.0002 | 1.0004 |
| paris | 1.0001 | 0.9993 | 1.0009 | 1.0000 | 0.9999 | 1.0000 |
| rennes | 1.0004 | 0.9968 | 1.0039 | 1.0000 | 0.9998 | 1.0002 |
| rouen | 0.9989 | 0.9962 | 1.0015 | 1.0001 | 0.9999 | 1.0002 |
| strasbourg | 0.9984 | 0.9961 | 1.0006 | 1.0003 | 1.0002 | 1.0005 |
| toulouse | 0.9997 | 0.9972 | 1.0021 | 1.0002 | 1.0001 | 1.0003 |
| villes | Increase_2002 | Increase_2015 | Temp_change |
|---|---|---|---|
| bordeaux | 0.320 | 2.428 | 2.107 |
| clermont | 0.689 | 5.283 | 4.595 |
| grenoble | 0.623 | 4.771 | 4.148 |
| lehavre | -0.011 | -0.081 | -0.070 |
| lille | 0.122 | 0.920 | 0.798 |
| marseille | 0.347 | 2.636 | 2.288 |
| nantes | 0.610 | 4.668 | 4.058 |
| paris | -0.016 | -0.119 | -0.103 |
| rennes | 0.021 | 0.161 | 0.139 |
| rouen | 0.155 | 1.172 | 1.017 |
| strasbourg | 0.644 | 4.936 | 4.292 |
| toulouse | 0.342 | 2.595 | 2.253 |
| Ville | Coefficient_B0 | B0_CI95_Low | B0_CI95_High | Coefficient_B1 | LB_CI95_Low | B1_CI95_High |
|---|---|---|---|---|---|---|
| bordeaux | 0.9983 | 0.9960 | 1.0006 | 1.0002 | 1.0001 | 1.0003 |
| clermont | 0.9984 | 0.9952 | 1.0015 | 1.0003 | 1.0002 | 1.0005 |
| grenoble | 0.9996 | 0.9972 | 1.0021 | 1.0003 | 1.0002 | 1.0005 |
| lehavre | 0.9994 | 0.9961 | 1.0028 | 1.0000 | 0.9998 | 1.0002 |
| lille | 1.0008 | 0.9993 | 1.0022 | 1.0001 | 1.0000 | 1.0001 |
| marseille | 0.9997 | 0.9982 | 1.0012 | 1.0002 | 1.0001 | 1.0002 |
| nantes | 1.0005 | 0.9979 | 1.0032 | 1.0003 | 1.0002 | 1.0004 |
| paris | 1.0001 | 0.9993 | 1.0009 | 1.0000 | 0.9999 | 1.0000 |
| rennes | 1.0004 | 0.9968 | 1.0039 | 1.0000 | 0.9998 | 1.0002 |
| rouen | 0.9989 | 0.9962 | 1.0015 | 1.0001 | 0.9999 | 1.0002 |
| strasbourg | 0.9984 | 0.9961 | 1.0006 | 1.0003 | 1.0002 | 1.0005 |
| toulouse | 0.9997 | 0.9972 | 1.0021 | 1.0002 | 1.0001 | 1.0003 |
| villes | Increase_2002 | Increase_2015 | Temp_change |
|---|---|---|---|
| bordeaux | 0.326 | 2.468 | 2.142 |
| clermont | 0.698 | 5.358 | 4.660 |
| grenoble | 0.503 | 3.833 | 3.331 |
| lehavre | -0.046 | -0.346 | -0.300 |
| lille | 0.113 | 0.851 | 0.738 |
| marseille | 0.361 | 2.742 | 2.380 |
| nantes | 0.614 | 4.695 | 4.081 |
| paris | -0.001 | -0.010 | -0.009 |
| rennes | 0.002 | 0.017 | 0.015 |
| rouen | 0.165 | 1.245 | 1.080 |
| strasbourg | 0.643 | 4.927 | 4.284 |
| toulouse | 0.317 | 2.405 | 2.087 |
| Ville | Coefficient_B0 | B0_CI95_Low | B0_CI95_High | Coefficient_B1 | LB_CI95_Low | B1_CI95_High |
|---|---|---|---|---|---|---|
| bordeaux | 0.9983 | 0.9960 | 1.0006 | 1.0002 | 1.0001 | 1.0003 |
| clermont | 0.9984 | 0.9952 | 1.0015 | 1.0003 | 1.0002 | 1.0005 |
| grenoble | 0.9996 | 0.9972 | 1.0021 | 1.0003 | 1.0002 | 1.0005 |
| lehavre | 0.9994 | 0.9961 | 1.0028 | 1.0000 | 0.9998 | 1.0002 |
| lille | 1.0008 | 0.9993 | 1.0022 | 1.0001 | 1.0000 | 1.0001 |
| marseille | 0.9997 | 0.9982 | 1.0012 | 1.0002 | 1.0001 | 1.0002 |
| nantes | 1.0005 | 0.9979 | 1.0032 | 1.0003 | 1.0002 | 1.0004 |
| paris | 1.0001 | 0.9993 | 1.0009 | 1.0000 | 0.9999 | 1.0000 |
| rennes | 1.0004 | 0.9968 | 1.0039 | 1.0000 | 0.9998 | 1.0002 |
| rouen | 0.9989 | 0.9962 | 1.0015 | 1.0001 | 0.9999 | 1.0002 |
| strasbourg | 0.9984 | 0.9961 | 1.0006 | 1.0003 | 1.0002 | 1.0005 |
| toulouse | 0.9997 | 0.9972 | 1.0021 | 1.0002 | 1.0001 | 1.0003 |
| villes | Increase_2002 | Increase_2015 | Temp_change |
|---|---|---|---|
| bordeaux | 0.302 | 2.290 | 1.987 |
| clermont | 0.696 | 5.347 | 4.651 |
| grenoble | 0.507 | 3.869 | 3.361 |
| lehavre | -0.118 | -0.879 | -0.762 |
| lille | 0.112 | 0.840 | 0.729 |
| marseille | 0.354 | 2.684 | 2.330 |
| nantes | 0.665 | 5.100 | 4.435 |
| paris | -0.009 | -0.069 | -0.060 |
| rennes | 0.012 | 0.089 | 0.077 |
| rouen | 0.152 | 1.148 | 0.996 |
| strasbourg | 0.673 | 5.160 | 4.487 |
| toulouse | 0.332 | 2.519 | 2.186 |
## Increase_2002 Increase_2015 Temp_change
## intrcpt 0.3174538 2.40565 2.088196
## Increase_2002 Increase_2015 Temp_change
## intrcpt 0.3059602 2.3178 2.01184
## Increase_2002 Increase_2015 Temp_change
## intrcpt 0.3068711 2.324763 2.017892
# Non-Linear Model for Lag0
for(i in 1:length(villes)) {
year[[i]] <- onebasis(villes[[i]]$year,"ns",knots=c(4,7,11))
yr<-year[[i]]
nl_modtot[[i]]<-gam(respi_tot~o3+o3:yr+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours++Vacances,data=villes[[i]],family=quasipoisson)
est<-summary(nl_modtot[[i]])
nl_coeffB0[i,1] <- as.character(villes_name[[i]])
nl_coeffB1[i,1] <- as.character(villes_name[[i]])
ll<-length(nl_modtot[[i]]$coefficients)
nl_coeffB0[i, 2] <- nl_modtot[[i]]$coefficients[2]
nl_coeffB0[i, 3] <- nl_modtot[[i]]$coefficients[2]-(1.96*est$se[2])
nl_coeffB0[i, 4] <- nl_modtot[[i]]$coefficients[2]+(1.96*est$se[2])
nl_coeffB1[i, 2] <- nl_modtot[[i]]$coefficients[ll-3]
nl_coeffB1[i, 3] <- nl_modtot[[i]]$coefficients[ll-3]-(1.96*est$se[ll-3])
nl_coeffB1[i, 4] <- nl_modtot[[i]]$coefficients[ll-3]+(1.96*est$se[ll-3])
nl_coeffB1[i, 5] <- nl_modtot[[i]]$coefficients[ll-2]
nl_coeffB1[i, 6] <- nl_modtot[[i]]$coefficients[ll-2]-(1.96*est$se[ll-2])
nl_coeffB1[i, 7] <- nl_modtot[[i]]$coefficients[ll-2]+(1.96*est$se[ll-2])
nl_coeffB1[i, 8] <- nl_modtot[[i]]$coefficients[ll-1]
nl_coeffB1[i, 9] <- nl_modtot[[i]]$coefficients[ll-1]-(1.96*est$se[ll-1])
nl_coeffB1[i, 10] <- nl_modtot[[i]]$coefficients[ll]+(1.96*est$se[ll-1])
nl_coeffB1[i, 11] <- nl_modtot[[i]]$coefficients[ll]
nl_coeffB1[i, 12] <- nl_modtot[[i]]$coefficients[ll]-(1.96*est$se[ll])
nl_coeffB1[i, 13] <- nl_modtot[[i]]$coefficients[ll]+(1.96*est$se[ll])
# nl_st_errb0[i]<- est$se[2]
# nl_st_errb11[i]<- est$se[ll-3]
# nl_st_errb12[i]<- est$se[ll-2]
# nl_st_errb13[i]<- est$se[ll-1]
# nl_st_errb14[i]<- est$se[ll]
pred_nnlin[[i]]<-crosspred(yr,nl_modtot[[i]],cen=0)
y_nl[i,] <- pred_nnlin[[i]]$coef
S_nl[[i]] <- pred_nnlin[[i]]$vcov
}
# Non-Linear Model for Lag1
for(i in 1:length(villes)) {
year[[i]] <- onebasis(villes[[i]]$year,"ns",knots=c(4,7,11))
yr<-year[[i]]
nl_modtot_L1[[i]]<-gam(respi_tot~o3_L1+o3_L1:yr+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours++Vacances,data=villes[[i]],family=quasipoisson)
est<-summary(nl_modtot_L1[[i]])
nl_coeffB0_L1[i,1] <- as.character(villes_name[[i]])
nl_coeffB1_L1[i,1] <- as.character(villes_name[[i]])
ll<-length(nl_modtot_L1[[i]]$coefficients)
nl_coeffB0_L1[i, 2] <- nl_modtot_L1[[i]]$coefficients[2]
nl_coeffB0_L1[i, 3] <- nl_modtot_L1[[i]]$coefficients[2]-(1.96*est$se[2])
nl_coeffB0_L1[i, 4] <- nl_modtot_L1[[i]]$coefficients[2]+(1.96*est$se[2])
nl_coeffB1_L1[i, 2] <- nl_modtot_L1[[i]]$coefficients[ll-3]
nl_coeffB1_L1[i, 3] <- nl_modtot_L1[[i]]$coefficients[ll-3]-(1.96*est$se[ll-3])
nl_coeffB1_L1[i, 4] <- nl_modtot_L1[[i]]$coefficients[ll-3]+(1.96*est$se[ll-3])
nl_coeffB1_L1[i, 5] <- nl_modtot_L1[[i]]$coefficients[ll-2]
nl_coeffB1_L1[i, 6] <- nl_modtot_L1[[i]]$coefficients[ll-2]-(1.96*est$se[ll-2])
nl_coeffB1_L1[i, 7] <- nl_modtot_L1[[i]]$coefficients[ll-2]+(1.96*est$se[ll-2])
nl_coeffB1_L1[i, 8] <- nl_modtot_L1[[i]]$coefficients[ll-1]
nl_coeffB1_L1[i, 9] <- nl_modtot_L1[[i]]$coefficients[ll-1]-(1.96*est$se[ll-1])
nl_coeffB1_L1[i, 10] <- nl_modtot_L1[[i]]$coefficients[ll]+(1.96*est$se[ll-1])
nl_coeffB1_L1[i, 11] <- nl_modtot_L1[[i]]$coefficients[ll]
nl_coeffB1_L1[i, 12] <- nl_modtot_L1[[i]]$coefficients[ll]-(1.96*est$se[ll])
nl_coeffB1_L1[i, 13] <- nl_modtot_L1[[i]]$coefficients[ll]+(1.96*est$se[ll])
pred_nnlin_L1[[i]]<-crosspred(yr,nl_modtot_L1[[i]],cen=0)
y_nl_L1[i,] <- pred_nnlin_L1[[i]]$coef
S_nl_L1[[i]] <- pred_nnlin_L1[[i]]$vcov
}
# Non-Linear Model for Lag2
for(i in 1:length(villes)) {
year[[i]] <- onebasis(villes[[i]]$year,"ns",knots=c(4,7,11))
yr<-year[[i]]
nl_modtot_L2[[i]]<-gam(respi_tot~o3_L2+o3_L2:yr+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours++Vacances,data=villes[[i]],family=quasipoisson)
est<-summary(nl_modtot_L2[[i]])
nl_coeffB0_L2[i,1] <- as.character(villes_name[[i]])
nl_coeffB1_L2[i,1] <- as.character(villes_name[[i]])
ll<-length(nl_modtot_L2[[i]]$coefficients)
nl_coeffB0_L2[i, 2] <- nl_modtot_L2[[i]]$coefficients[2]
nl_coeffB0_L2[i, 3] <- nl_modtot_L2[[i]]$coefficients[2]-(1.96*est$se[2])
nl_coeffB0_L2[i, 4] <- nl_modtot_L2[[i]]$coefficients[2]+(1.96*est$se[2])
nl_coeffB1_L2[i, 2] <- nl_modtot_L2[[i]]$coefficients[ll-3]
nl_coeffB1_L2[i, 3] <- nl_modtot_L2[[i]]$coefficients[ll-3]-(1.96*est$se[ll-3])
nl_coeffB1_L2[i, 4] <- nl_modtot_L2[[i]]$coefficients[ll-3]+(1.96*est$se[ll-3])
nl_coeffB1_L2[i, 5] <- nl_modtot_L2[[i]]$coefficients[ll-2]
nl_coeffB1_L2[i, 6] <- nl_modtot_L2[[i]]$coefficients[ll-2]-(1.96*est$se[ll-2])
nl_coeffB1_L2[i, 7] <- nl_modtot_L2[[i]]$coefficients[ll-2]+(1.96*est$se[ll-2])
nl_coeffB1_L2[i, 8] <- nl_modtot_L2[[i]]$coefficients[ll-1]
nl_coeffB1_L2[i, 9] <- nl_modtot_L2[[i]]$coefficients[ll-1]-(1.96*est$se[ll-1])
nl_coeffB1_L2[i, 10] <- nl_modtot_L2[[i]]$coefficients[ll]+(1.96*est$se[ll-1])
nl_coeffB1_L2[i, 11] <- nl_modtot_L2[[i]]$coefficients[ll]
nl_coeffB1_L2[i, 12] <- nl_modtot_L2[[i]]$coefficients[ll]-(1.96*est$se[ll])
nl_coeffB1_L2[i, 13] <- nl_modtot_L2[[i]]$coefficients[ll]+(1.96*est$se[ll])
pred_nnlin_L2[[i]]<-crosspred(yr,nl_modtot_L2[[i]],cen=0)
y_nl_L2[i,] <- pred_nnlin_L2[[i]]$coef
S_nl_L2[[i]] <- pred_nnlin_L2[[i]]$vcov
}
## Call: mvmeta(formula = y_nl ~ 1, S = S_nl, method = "ml")
##
## Multivariate random-effects meta-analysis
## Dimension: 4
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## y1 -0.0014 0.0007 -2.1596 0.0308 -0.0028 -0.0001 *
## y2 0.0005 0.0006 0.8023 0.4224 -0.0007 0.0016
## y3 0.0008 0.0011 0.7522 0.4519 -0.0013 0.0029
## y4 0.0041 0.0009 4.5968 0.0000 0.0023 0.0058 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Structure: General positive-definite
## Std. Dev Corr
## y1 0.0017 y1 y2 y3
## y2 0.0012 -0.17685
## y3 0.0026 -0.20308 0.87793
## y4 0.0025 0.63583 0.06172 0.38011
##
## Multivariate Cochran Q-test for heterogeneity:
## Q = 126.5203 (df = 44), p-value = 0.0000
## I-square statistic = 65.2%
##
## 12 studies, 48 observations, 4 fixed and 10 random-effects parameters
## logLik AIC BIC
## 219.1554 -410.3108 -384.1140
## Call: mvmeta(formula = y_nl_L1 ~ 1, S = S_nl_L1, method = "ml")
##
## Multivariate random-effects meta-analysis
## Dimension: 4
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## y1 -0.0012 0.0004 -2.6510 0.0080 -0.0020 -0.0003 **
## y2 0.0003 0.0005 0.5105 0.6097 -0.0007 0.0012
## y3 0.0005 0.0008 0.6361 0.5247 -0.0010 0.0020
## y4 0.0030 0.0006 4.6781 0.0000 0.0017 0.0042 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Structure: General positive-definite
## Std. Dev Corr
## y1 0.0010 y1 y2 y3
## y2 0.0013 0.09163
## y3 0.0019 -0.27064 0.82487
## y4 0.0018 0.46127 -0.03728 0.20091
##
## Multivariate Cochran Q-test for heterogeneity:
## Q = 137.7102 (df = 44), p-value = 0.0000
## I-square statistic = 68.0%
##
## 12 studies, 48 observations, 4 fixed and 10 random-effects parameters
## logLik AIC BIC
## 234.4894 -440.9788 -414.7819
## Call: mvmeta(formula = y_nl_L2 ~ 1, S = S_nl_L2, method = "ml")
##
## Multivariate random-effects meta-analysis
## Dimension: 4
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## y1 -0.0013 0.0005 -2.7671 0.0057 -0.0022 -0.0004 **
## y2 0.0004 0.0005 0.7653 0.4441 -0.0007 0.0015
## y3 0.0006 0.0009 0.6914 0.4893 -0.0011 0.0023
## y4 0.0028 0.0007 4.0365 0.0001 0.0015 0.0042 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Structure: General positive-definite
## Std. Dev Corr
## y1 0.0011 y1 y2 y3
## y2 0.0015 0.12040
## y3 0.0023 -0.27852 0.81554
## y4 0.0020 0.61429 -0.07473 0.02831
##
## Multivariate Cochran Q-test for heterogeneity:
## Q = 152.6785 (df = 44), p-value = 0.0000
## I-square statistic = 71.2%
##
## 12 studies, 48 observations, 4 fixed and 10 random-effects parameters
## logLik AIC BIC
## 231.3374 -434.6748 -408.4780