Descriptive Statistics for O3

Descriptive Statistics for o3
Ville Minimum X1st.Qu Median Mean X3rd.Qu Max NA.s
bordeaux 1.9154062 49.55208 69.45833 69.41858 88.12500 169.5000 NA
clermont 1.7321429 54.31250 72.48661 72.01823 89.87500 178.5625 144
grenoble 0.4375000 35.29129 65.78125 65.64074 91.66964 185.8750 NA
lehavre 2.1250000 56.68750 69.87500 69.16447 81.75000 184.5000 76
lille 0.1666667 41.00000 58.75000 58.65181 74.21250 207.1250 285
lyon 0.4375000 39.43799 64.94705 65.15421 89.04688 229.3750 8
marseille 3.1250000 54.31250 79.00000 77.03170 99.10938 195.0625 16
montpellier 7.5458333 61.66667 81.16250 81.22084 100.05417 200.8083 9
nancy 0.5000000 52.00000 68.25000 70.65748 87.37500 221.0000 170
nantes 1.1250000 52.93750 68.75000 70.20679 86.12500 216.5000 75
nice 14.5625000 60.50000 89.25000 87.41249 110.50000 206.3750 60
paris 0.8592206 36.77541 56.96864 58.49854 76.43874 216.3857 NA
rennes 1.5625000 50.75000 64.87500 65.52426 79.50000 213.5625 18
rouen 1.2972346 47.00000 63.15625 63.59236 78.75000 178.6607 16
strasbourg 0.0000000 36.62500 61.75000 63.87351 87.25000 206.5000 113
toulouse 1.6250000 56.33750 75.54063 75.36355 93.80938 180.9594 NA

Dose-Response Curves for o3 and Non-accidental Mortality, Basic Model

For Lag0, Lag1 and Lag2 exposure

Ville Coefficient_L0 L0_CI95_Low L0_CI95_High Coefficient_L1 L1_CI95_Low L1_CI95_High Coefficient_L2 L2_CI95_Low L2_CI95_High
bordeaux 0.99974 0.99786 1.00162 1.00011 0.99825 1.00198 0.99974 0.99790 1.00158
clermont 1.00158 0.99885 1.00431 1.00186 0.99910 1.00462 0.99946 0.99673 1.00220
grenoble 1.00117 0.99902 1.00333 0.99986 0.99769 1.00203 1.00022 0.99808 1.00237
lehavre 0.99887 0.99606 1.00168 1.00031 0.99752 1.00311 1.00113 0.99842 1.00385
lille 1.00085 0.99960 1.00209 1.00058 0.99935 1.00182 1.00059 0.99938 1.00181
lyon 1.00134 0.99992 1.00277 1.00050 0.99909 1.00192 1.00096 0.99956 1.00237
marseille 1.00107 0.99972 1.00242 1.00087 0.99954 1.00221 1.00012 0.99878 1.00147
montpellier 0.99973 0.99719 1.00227 1.00149 0.99894 1.00404 0.99992 0.99737 1.00248
nancy 1.00063 0.99847 1.00281 1.00147 0.99928 1.00366 1.00375 1.00156 1.00594
nantes 1.00376 1.00165 1.00587 1.00450 1.00240 1.00661 1.00258 1.00051 1.00465
nice 0.99948 0.99764 1.00133 0.99877 0.99691 1.00062 0.99835 0.99649 1.00022
paris 1.00009 0.99940 1.00078 1.00010 0.99942 1.00078 0.99952 0.99884 1.00019
rennes 0.99892 0.99589 1.00196 0.99779 0.99476 1.00083 0.99997 0.99697 1.00297
rouen 0.99930 0.99714 1.00147 0.99964 0.99750 1.00180 0.99942 0.99733 1.00152
strasbourg 1.00006 0.99810 1.00202 0.99790 0.99597 0.99983 0.99894 0.99701 1.00088
toulouse 1.00119 0.99903 1.00335 1.00104 0.99894 1.00315 1.00315 1.00102 1.00528

Meta-Analysis results

## Call:  mvmeta(formula = y ~ 1, S = S, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0005      0.0002  2.2900    0.0220    0.0001    0.0010  *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0003
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 20.1426 (df = 15), p-value = 0.1665
## I-square statistic = 25.5%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   86.2777  -168.5554  -167.0103
## Call:  mvmeta(formula = y_L1 ~ 1, S = S_L1, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0004      0.0003  1.2443    0.2134   -0.0002    0.0011   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0009
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 32.0141 (df = 15), p-value = 0.0064
## I-square statistic = 53.1%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   81.5808  -159.1617  -157.6165
## Call:  mvmeta(formula = y_L2 ~ 1, S = S_L2, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0004      0.0003  1.2387    0.2154   -0.0002    0.0011   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0010
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 35.0240 (df = 15), p-value = 0.0024
## I-square statistic = 57.2%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   81.9869  -159.9737  -158.4285

Pooled Dose-Responses Curves For Basic Model

3 Periods Stratified analysis

For Lag0, Lag1 and Lag2 exposure

Meta-Analysis results

For Lag0

First Period:

## Call:  mvmeta(formula = y0105 ~ 1, S = S0105, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0002      0.0004  0.5466    0.5846   -0.0006    0.0010   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 13.7687 (df = 12), p-value = 0.3157
## I-square statistic = 12.8%
## 
## 13 studies, 13 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   63.0665  -122.1330  -121.0031

Second Period:

## Call:  mvmeta(formula = y0610 ~ 1, S = S0610, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0001      0.0004  0.3648    0.7152   -0.0006    0.0009   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 7.7568 (df = 15), p-value = 0.9332
## I-square statistic = 1.0%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   81.1900  -158.3800  -156.8348

Third Period:

## Call:  mvmeta(formula = y1115 ~ 1, S = S1115, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0002      0.0004  0.4839    0.6285   -0.0005    0.0009   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 19.6779 (df = 15), p-value = 0.1846
## I-square statistic = 23.8%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   76.7643  -149.5285  -147.9833

Results for Lag1

First Period:

## Call:  mvmeta(formula = y0105_L1 ~ 1, S = S0105_L1, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error        z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)   -0.0003      0.0004  -0.6470    0.5177   -0.0010    0.0005   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 8.7308 (df = 12), p-value = 0.7257
## I-square statistic = 1.0%
## 
## 13 studies, 13 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   65.6278  -127.2556  -126.1257

Second Period:

## Call:  mvmeta(formula = y0610_L1 ~ 1, S = S0610_L1, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0001      0.0004  0.3145    0.7531   -0.0007    0.0009   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0001
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 12.5025 (df = 15), p-value = 0.6407
## I-square statistic = 1.0%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   79.1123  -154.2245  -152.6794

Third Period:

## Call:  mvmeta(formula = y1115_L1 ~ 1, S = S1115_L1, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0003      0.0004  0.7910    0.4289   -0.0004    0.0010   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 7.4345 (df = 15), p-value = 0.9445
## I-square statistic = 1.0%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   82.9610  -161.9220  -160.3768

Results for Lag2

First Period:

## Call:  mvmeta(formula = y0105_L2 ~ 1, S = S0105_L2, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0000      0.0004  0.0538    0.9571   -0.0007    0.0008   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 11.5032 (df = 12), p-value = 0.4864
## I-square statistic = 1.0%
## 
## 13 studies, 13 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   64.4588  -124.9177  -123.7878

Second Period:

## Call:  mvmeta(formula = y0610_L2 ~ 1, S = S0610_L2, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error        z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)   -0.0005      0.0004  -1.3230    0.1858   -0.0013    0.0003   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 15.6452 (df = 15), p-value = 0.4060
## I-square statistic = 4.1%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   77.6320  -151.2640  -149.7188

Third Period:

## Call:  mvmeta(formula = y1115_L2 ~ 1, S = S1115_L2, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0003      0.0004  0.7066    0.4798   -0.0005    0.0011   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0005
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 17.8383 (df = 15), p-value = 0.2713
## I-square statistic = 15.9%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   77.8720  -151.7441  -150.1989

Table of results: change in mortality risk per 10 μg/m3 increase in PM10 for 3 time periods, with Temporal Change expressed in percentage points

####Results for Lag0

Period 1
Period 2
Period 3
Temporal Change (%)
villes Period1 P1_CI95_Low P1_CI95_High Period2 P2_CI95_Low P2_CI95_High Period3 P3_CI95_Low P3_CI95_High Temp_Change1_2 Temp_Change2_3
bordeaux 0.994 0.959 1.031 1.002 0.963 1.043 0.987 0.954 1.022 0.798 -1.492
clermont 1.017 0.963 1.076 1.002 0.949 1.058 1.012 0.967 1.061 -1.514 1.007
grenoble 0.969 0.931 1.007 0.997 0.955 1.040 1.042 1.003 1.083 2.850 4.485
lehavre 0.956 0.909 1.006 1.033 0.974 1.095 0.975 0.926 1.028 7.652 -5.721
lille 0.998 0.973 1.022 0.996 0.971 1.022 1.024 1.001 1.048 -0.199 2.828
lyon NA NA NA 1.007 0.978 1.037 1.010 0.984 1.037 NA 0.303
marseille 1.016 0.992 1.040 1.018 0.991 1.046 0.985 0.961 1.009 0.203 -3.305
montpellier 1.013 0.969 1.060 1.002 0.952 1.053 0.955 0.910 1.003 -1.108 -4.696
nancy NA NA NA 1.010 0.968 1.055 0.990 0.951 1.030 NA -2.000
nantes 1.046 1.005 1.088 1.002 0.960 1.047 0.996 0.959 1.035 -4.403 -0.599
nice NA NA NA 1.005 0.968 1.044 0.970 0.935 1.008 NA -3.457
paris 1.004 0.992 1.016 1.001 0.987 1.014 1.001 0.989 1.013 -0.301 0.000
rennes 0.999 0.946 1.055 0.964 0.904 1.027 1.019 0.962 1.081 -3.532 5.551
rouen 1.001 0.962 1.042 0.985 0.943 1.029 1.002 0.965 1.041 -1.589 1.689
strasbourg 0.986 0.948 1.024 1.010 0.973 1.049 1.012 0.977 1.048 2.395 0.202
toulouse 0.991 0.951 1.033 0.969 0.930 1.009 1.013 0.974 1.054 -2.253 4.458
Period1 Period2 Period3 change12 change23
1.000187 1.000148 1.000143 -0.0386372 -0.0056923

####Results for Lag1

Period 1
Period 2
Period 3
Temporal Change (%)
villes Period1 P1_CI95_Low P1_CI95_High Period2 P2_CI95_Low P2_CI95_High Period3 P3_CI95_Low P3_CI95_High Temp_Change1_2 Temp_Change2_3
bordeaux 0.978 0.944 1.014 1.015 0.976 1.055 1.002 0.969 1.037 3.687 -1.311
clermont 0.983 0.930 1.041 1.028 0.973 1.085 1.014 0.969 1.063 4.525 -1.430
grenoble 1.000 0.961 1.041 0.981 0.941 1.023 0.989 0.951 1.028 -1.882 0.788
lehavre 0.992 0.943 1.044 1.016 0.960 1.075 0.999 0.948 1.052 2.410 -1.713
lille 0.995 0.970 1.020 0.984 0.960 1.009 1.018 0.995 1.041 -1.089 3.404
lyon NA NA NA 0.997 0.969 1.025 1.004 0.978 1.030 NA 0.700
marseille 1.000 0.976 1.023 1.007 0.981 1.035 1.003 0.978 1.027 0.702 -0.402
montpellier 1.018 0.973 1.065 1.031 0.980 1.085 1.003 0.956 1.053 1.332 -2.848
nancy NA NA NA 0.996 0.955 1.040 0.996 0.957 1.037 NA 0.000
nantes 1.044 1.003 1.085 1.004 0.961 1.049 1.008 0.970 1.047 -3.993 0.402
nice NA NA NA 0.992 0.955 1.030 0.974 0.939 1.012 NA -1.770
paris 0.998 0.986 1.009 1.009 0.997 1.022 1.007 0.996 1.019 1.104 -0.202
rennes 0.990 0.937 1.046 0.952 0.895 1.014 0.997 0.940 1.057 -3.787 4.482
rouen 0.993 0.955 1.034 0.990 0.948 1.033 0.995 0.958 1.034 -0.297 0.496
strasbourg 0.976 0.940 1.013 0.976 0.941 1.012 0.984 0.951 1.018 0.000 0.784
toulouse 0.996 0.956 1.037 1.000 0.962 1.040 0.986 0.948 1.025 0.399 -1.390

####Results for Lag2

Period 1
Period 2
Period 3
Temporal Change (%)
villes Period1 P1_CI95_Low P1_CI95_High Period2 P2_CI95_Low P2_CI95_High Period3 P3_CI95_Low P3_CI95_High Temp_Change1_2 Temp_Change2_3
bordeaux 1.002 0.968 1.038 0.976 0.939 1.014 1.013 0.979 1.048 -2.572 3.680
clermont 0.926 0.875 0.980 0.997 0.945 1.051 1.011 0.966 1.059 7.111 1.406
grenoble 0.992 0.953 1.033 0.986 0.946 1.028 0.998 0.961 1.036 -0.593 1.190
lehavre 1.018 0.969 1.068 1.025 0.969 1.083 0.990 0.942 1.042 0.715 -3.527
lille 0.999 0.976 1.023 0.981 0.958 1.006 1.029 1.006 1.053 -1.782 4.825
lyon NA NA NA 0.981 0.954 1.009 1.014 0.989 1.041 NA 3.292
marseille 0.995 0.971 1.018 1.019 0.992 1.047 0.988 0.964 1.012 2.417 -3.111
montpellier 1.013 0.968 1.060 1.010 0.960 1.062 0.987 0.941 1.037 -0.303 -2.297
nancy NA NA NA 1.039 0.995 1.083 1.041 1.000 1.084 NA 0.208
nantes 1.028 0.988 1.069 0.992 0.950 1.037 0.988 0.952 1.026 -3.636 -0.396
nice NA NA NA 0.985 0.948 1.023 0.985 0.949 1.023 NA 0.000
paris 1.000 0.989 1.011 0.990 0.978 1.003 1.003 0.992 1.015 -0.995 1.295
rennes 1.020 0.967 1.077 1.028 0.967 1.093 0.973 0.919 1.030 0.819 -5.503
rouen 0.991 0.955 1.028 0.981 0.940 1.023 0.990 0.953 1.028 -0.986 0.887
strasbourg 1.002 0.965 1.041 0.996 0.960 1.034 0.973 0.941 1.007 -0.599 -2.265
toulouse 1.015 0.974 1.057 1.021 0.982 1.063 1.014 0.974 1.055 0.611 -0.712

Metanalysis of the results

Pooled Dose-Responses Curves

L0

L1

L2

Doses-Response Curves by cities

Bordeaux

Lag 0

Lag1

Lag2

Clermont-Ferrand

Lag 0

Lag 1

Lag 2

Grenoble

Lag 0

Lag 1

Lag 2

Le Havre

Lag 0

Lag 1

Lag 2

Lille

Lag 0

Lag 1

Lag 2

Lyon

Lag 0

Lag 1

Lag 2

Marseille

Lag 0

Lag 1

Lag 2

Montpellier

Lag 0

Lag 1

Lag 2

Nancy

Lag 0

Lag 1

Lag 2

Nantes

Lag 0

Lag 1

Lag 2

Nice

Lag 0

Lag 1

Lag 2

Paris

Lag 0

Lag 1

Lag 2

Rennes

Lag 0

Lag 1

Lag 2

Rouen

Lag 0

Lag 1

Lag 2

Strasbourg

Lag 0

Lag 1

Lag 2

Toulouse

Lag 0

Lag 1

Lag 2