Descriptive Statistics for O3

Descriptive Statistics for o3
Ville Minimum X1st.Qu Median Mean X3rd.Qu Max NA.s
bordeaux 1.9154062 49.55208 69.45833 69.41858 88.12500 169.5000 NA
clermont 1.7321429 54.31250 72.48661 72.01823 89.87500 178.5625 144
grenoble 0.4375000 35.29129 65.78125 65.64074 91.66964 185.8750 NA
lehavre 2.1250000 56.68750 69.87500 69.16447 81.75000 184.5000 76
lille 0.1666667 41.00000 58.75000 58.65181 74.21250 207.1250 285
lyon 0.4375000 39.43799 64.94705 65.15421 89.04688 229.3750 8
marseille 3.1250000 54.31250 79.00000 77.03170 99.10938 195.0625 16
montpellier 7.5458333 61.66667 81.16250 81.22084 100.05417 200.8083 9
nancy 0.5000000 52.00000 68.25000 70.65748 87.37500 221.0000 170
nantes 1.1250000 52.93750 68.75000 70.20679 86.12500 216.5000 75
nice 14.5625000 60.50000 89.25000 87.41249 110.50000 206.3750 60
paris 0.8592206 36.77541 56.96864 58.49854 76.43874 216.3857 NA
rennes 1.5625000 50.75000 64.87500 65.52426 79.50000 213.5625 18
rouen 1.2972346 47.00000 63.15625 63.59236 78.75000 178.6607 16
strasbourg 0.0000000 36.62500 61.75000 63.87351 87.25000 206.5000 113
toulouse 1.6250000 56.33750 75.54063 75.36355 93.80938 180.9594 NA

Dose-Response Curves for o3 and Non-accidental Mortality, Basic Model

For Lag0, Lag1 and Lag2 exposure

Ville Coefficient_L0 L0_CI95_Low L0_CI95_High Coefficient_L1 L1_CI95_Low L1_CI95_High Coefficient_L2 L2_CI95_Low L2_CI95_High
bordeaux 0.99743 0.99651 0.99834 0.99837 0.99746 0.99928 0.99897 0.99807 0.99987
clermont 0.99940 0.99815 1.00064 0.99921 0.99796 1.00047 1.00011 0.99887 1.00136
grenoble 0.99982 0.99885 1.00078 1.00009 0.99912 1.00107 1.00044 0.99947 1.00141
lehavre 0.99982 0.99848 1.00116 1.00003 0.99870 1.00136 0.99942 0.99812 1.00071
lille 1.00018 0.99952 1.00084 1.00028 0.99963 1.00094 0.99991 0.99927 1.00056
lyon 1.00055 0.99986 1.00124 1.00095 1.00026 1.00163 1.00121 1.00052 1.00189
marseille 1.00066 1.00000 1.00133 1.00075 1.00009 1.00141 1.00062 0.99996 1.00129
montpellier 1.00093 0.99974 1.00212 1.00176 1.00056 1.00295 1.00082 0.99962 1.00202
nancy 0.99951 0.99838 1.00064 1.00010 0.99897 1.00124 0.99992 0.99878 1.00106
nantes 0.99925 0.99826 1.00024 1.00007 0.99908 1.00106 0.99954 0.99856 1.00051
nice 1.00180 1.00090 1.00270 1.00197 1.00107 1.00287 1.00186 1.00096 1.00277
paris 1.00005 0.99966 1.00044 1.00022 0.99983 1.00060 1.00000 0.99962 1.00038
rennes 0.99989 0.99834 1.00144 0.99872 0.99716 1.00028 0.99825 0.99672 0.99978
rouen 0.99995 0.99893 1.00096 1.00024 0.99924 1.00125 1.00042 0.99944 1.00141
strasbourg 0.99975 0.99884 1.00066 1.00000 0.99910 1.00090 1.00004 0.99914 1.00095
toulouse 1.00039 0.99937 1.00141 1.00093 0.99993 1.00193 1.00113 1.00012 1.00213

Meta-Analysis results

## Call:  mvmeta(formula = y ~ 1, S = S, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error        z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)   -0.0000      0.0002  -0.0823    0.9344   -0.0005    0.0004   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0008
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 59.2263 (df = 15), p-value = 0.0000
## I-square statistic = 74.7%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   89.2319  -174.4638  -172.9186
## Call:  mvmeta(formula = y_L1 ~ 1, S = S_L1, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0003      0.0002  1.2916    0.1965   -0.0001    0.0007   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0007
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 50.8945 (df = 15), p-value = 0.0000
## I-square statistic = 70.5%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   89.6090  -175.2180  -173.6729
## Call:  mvmeta(formula = y_L2 ~ 1, S = S_L2, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0002      0.0002  1.1519    0.2494   -0.0002    0.0006   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0006
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 46.3598 (df = 15), p-value = 0.0000
## I-square statistic = 67.6%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   90.8851  -177.7701  -176.2249

Pooled Dose-Responses Curves For Basic Model

3 Periods Stratified analysis

For Lag0, Lag1 and Lag2 exposure

Meta-Analysis results

For Lag0

First Period:

## Call:  mvmeta(formula = y0105 ~ 1, S = S0105, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error        z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)   -0.0001      0.0002  -0.3391    0.7345   -0.0004    0.0003   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 11.0857 (df = 12), p-value = 0.5216
## I-square statistic = 1.0%
## 
## 13 studies, 13 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   74.5670  -145.1340  -144.0041

Second Period:

## Call:  mvmeta(formula = y0610 ~ 1, S = S0610, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0002      0.0002  1.0016    0.3166   -0.0002    0.0006   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 14.7259 (df = 15), p-value = 0.4713
## I-square statistic = 1.0%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   89.9780  -175.9561  -174.4109

Third Period:

## Call:  mvmeta(formula = y1115 ~ 1, S = S1115, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0002      0.0002  1.2342    0.2171   -0.0001    0.0006   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 14.1297 (df = 15), p-value = 0.5157
## I-square statistic = 1.0%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   89.9178  -175.8357  -174.2905

Results for Lag1

First Period:

## Call:  mvmeta(formula = y0105_L1 ~ 1, S = S0105_L1, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0004      0.0002  2.1899    0.0285    0.0000    0.0008  *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 10.1559 (df = 12), p-value = 0.6023
## I-square statistic = 1.0%
## 
## 13 studies, 13 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   75.0786  -146.1573  -145.0274

Second Period:

## Call:  mvmeta(formula = y0610_L1 ~ 1, S = S0610_L1, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0005      0.0002  2.4698    0.0135    0.0001    0.0009  *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0003
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 18.8540 (df = 15), p-value = 0.2204
## I-square statistic = 20.4%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   88.2454  -172.4909  -170.9457

Third Period:

## Call:  mvmeta(formula = y1115_L1 ~ 1, S = S1115_L1, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0004      0.0002  1.5280    0.1265   -0.0001    0.0008   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0004
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 21.0928 (df = 15), p-value = 0.1339
## I-square statistic = 28.9%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   86.6397  -169.2795  -167.7343

Results for Lag2

First Period:

## Call:  mvmeta(formula = y0105_L2 ~ 1, S = S0105_L2, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0002      0.0002  1.3517    0.1765   -0.0001    0.0006   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 9.8436 (df = 12), p-value = 0.6297
## I-square statistic = 1.0%
## 
## 13 studies, 13 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   75.4312  -146.8624  -145.7326

Second Period:

## Call:  mvmeta(formula = y0610_L2 ~ 1, S = S0610_L2, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0004      0.0002  2.0265    0.0427    0.0000    0.0007  *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0000
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 10.6282 (df = 15), p-value = 0.7785
## I-square statistic = 1.0%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   92.3361  -180.6722  -179.1270

Third Period:

## Call:  mvmeta(formula = y1115_L2 ~ 1, S = S1115_L2, method = "ml")
## 
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
## 
## Fixed-effects coefficients
##              Estimate  Std. Error       z  Pr(>|z|)  95%ci.lb  95%ci.ub   
## (Intercept)    0.0004      0.0003  1.3953    0.1629   -0.0002    0.0010   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Between-study random-effects (co)variance components
##   Std. Dev
##     0.0007
## 
## Univariate Cochran Q-test for heterogeneity:
## Q = 26.9777 (df = 15), p-value = 0.0289
## I-square statistic = 44.4%
## 
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
##    logLik        AIC        BIC  
##   84.7155  -165.4310  -163.8859

Table of results: change in mortality risk per 10 μg/m3 increase in PM10 for 3 time periods, with Temporal Change expressed in percentage points

####Results for Lag0

Period 1
Period 2
Period 3
Temporal Change (%)
villes Period1 P1_CI95_Low P1_CI95_High Period2 P2_CI95_Low P2_CI95_High Period3 P3_CI95_Low P3_CI95_High Temp_Change1_2 Temp_Change2_3
bordeaux 0.988 0.972 1.005 0.990 0.971 1.008 0.988 0.970 1.006 0.198 -0.198
clermont 0.990 0.968 1.012 0.995 0.970 1.020 0.986 0.964 1.009 0.496 -0.891
grenoble 1.007 0.990 1.024 0.999 0.981 1.017 0.990 0.970 1.009 -0.802 -0.895
lehavre 0.990 0.966 1.014 0.999 0.973 1.025 1.009 0.983 1.035 0.895 1.004
lille 1.006 0.994 1.018 1.004 0.991 1.017 1.002 0.988 1.015 -0.201 -0.201
lyon NA NA NA 1.004 0.991 1.018 1.007 0.994 1.021 NA 0.302
marseille 1.002 0.991 1.013 1.006 0.994 1.019 1.002 0.989 1.016 0.402 -0.402
montpellier 1.013 0.993 1.033 1.011 0.989 1.035 0.997 0.972 1.022 -0.202 -1.406
nancy NA NA NA 0.989 0.968 1.011 0.989 0.967 1.012 NA 0.000
nantes 0.994 0.976 1.013 1.011 0.991 1.031 0.989 0.970 1.008 1.704 -2.200
nice NA NA NA 1.018 1.001 1.037 1.002 0.982 1.022 NA -1.616
paris 1.000 0.994 1.005 1.001 0.995 1.008 1.006 1.000 1.013 0.100 0.502
rennes 0.987 0.959 1.015 0.993 0.962 1.024 1.020 0.991 1.050 0.594 2.718
rouen 0.987 0.969 1.005 1.016 0.996 1.037 1.006 0.987 1.025 2.904 -1.011
strasbourg 0.993 0.976 1.010 0.987 0.970 1.004 1.003 0.985 1.021 -0.594 1.592
toulouse 1.007 0.990 1.025 0.995 0.976 1.014 1.013 0.992 1.034 -1.201 1.807
Period1 Period2 Period3 change12 change23
0.9999365 1.000192 1.00021 0.2558002 0.0184794

####Results for Lag1

Period 1
Period 2
Period 3
Temporal Change (%)
villes Period1 P1_CI95_Low P1_CI95_High Period2 P2_CI95_Low P2_CI95_High Period3 P3_CI95_Low P3_CI95_High Temp_Change1_2 Temp_Change2_3
bordeaux 1.007 0.991 1.024 0.996 0.978 1.014 0.989 0.971 1.007 -1.102 -0.695
clermont 0.990 0.968 1.012 0.980 0.956 1.004 0.996 0.973 1.020 -0.985 1.581
grenoble 1.003 0.986 1.020 1.011 0.994 1.029 0.992 0.972 1.011 0.806 -1.903
lehavre 1.002 0.977 1.027 0.991 0.967 1.017 1.014 0.988 1.040 -1.096 2.306
lille 1.007 0.995 1.019 1.000 0.987 1.012 0.996 0.982 1.009 -0.702 -0.399
lyon NA NA NA 1.010 0.997 1.023 1.012 0.999 1.026 NA 0.202
marseille 1.003 0.992 1.014 1.013 1.001 1.026 0.993 0.979 1.006 1.008 -2.006
montpellier 1.011 0.992 1.031 1.011 0.989 1.035 1.027 1.002 1.053 0.000 1.631
nancy NA NA NA 1.009 0.987 1.033 0.992 0.969 1.015 NA -1.701
nantes 0.997 0.978 1.016 1.019 0.999 1.039 1.008 0.988 1.027 2.218 -1.115
nice NA NA NA 1.006 0.988 1.024 1.008 0.988 1.028 NA 0.201
paris 1.003 0.998 1.009 1.009 1.003 1.015 1.007 1.000 1.013 0.604 -0.202
rennes 0.984 0.957 1.012 0.991 0.961 1.022 0.985 0.956 1.014 0.691 -0.593
rouen 1.010 0.991 1.028 1.003 0.984 1.022 1.013 0.994 1.031 -0.705 1.008
strasbourg 1.001 0.984 1.017 0.987 0.971 1.004 1.006 0.988 1.023 -1.392 1.893
toulouse 1.023 1.006 1.041 1.001 0.983 1.019 1.020 1.000 1.041 -2.227 1.920

####Results for Lag2

Period 1
Period 2
Period 3
Temporal Change (%)
villes Period1 P1_CI95_Low P1_CI95_High Period2 P2_CI95_Low P2_CI95_High Period3 P3_CI95_Low P3_CI95_High Temp_Change1_2 Temp_Change2_3
bordeaux 1.005 0.989 1.021 1.004 0.986 1.022 1.009 0.992 1.027 -0.100 0.503
clermont 1.010 0.988 1.034 1.002 0.978 1.027 0.984 0.962 1.007 -0.805 -1.787
grenoble 1.008 0.991 1.025 1.000 0.982 1.018 1.010 0.991 1.030 -0.803 1.005
lehavre 1.005 0.981 1.028 0.988 0.964 1.014 0.998 0.973 1.022 -1.694 0.993
lille 0.993 0.982 1.005 1.001 0.988 1.013 1.000 0.987 1.014 0.798 -0.100
lyon NA NA NA 1.004 0.991 1.017 1.024 1.010 1.038 NA 2.028
marseille 1.009 0.998 1.020 1.003 0.991 1.016 0.989 0.976 1.003 -0.604 -1.394
montpellier 1.008 0.988 1.028 1.001 0.978 1.024 1.013 0.988 1.039 -0.703 1.208
nancy NA NA NA 1.000 0.978 1.022 1.002 0.979 1.025 NA 0.200
nantes 1.006 0.987 1.024 1.006 0.987 1.026 0.995 0.977 1.014 0.000 -1.101
nice NA NA NA 1.000 0.983 1.018 1.005 0.985 1.025 NA 0.501
paris 1.002 0.996 1.007 1.005 0.999 1.012 1.005 0.999 1.012 0.301 0.000
rennes 0.981 0.954 1.009 0.986 0.957 1.016 0.971 0.945 1.000 0.492 -1.468
rouen 0.993 0.975 1.010 1.024 1.005 1.044 1.015 0.996 1.034 3.127 -0.918
strasbourg 1.001 0.984 1.017 0.995 0.978 1.012 1.002 0.984 1.020 -0.599 0.699
toulouse 1.012 0.994 1.029 1.016 0.997 1.035 1.020 1.000 1.041 0.406 0.407

Metanalysis of the results

Pooled Dose-Responses Curves

L0

L1

L2

Doses-Response Curves by cities

Bordeaux

Lag 0

Lag1

Lag2

Clermont-Ferrand

Lag 0

Lag 1

Lag 2

Grenoble

Lag 0

Lag 1

Lag 2

Le Havre

Lag 0

Lag 1

Lag 2

Lille

Lag 0

Lag 1

Lag 2

Lyon

Lag 0

Lag 1

Lag 2

Marseille

Lag 0

Lag 1

Lag 2

Montpellier

Lag 0

Lag 1

Lag 2

Nancy

Lag 0

Lag 1

Lag 2

Nantes

Lag 0

Lag 1

Lag 2

Nice

Lag 0

Lag 1

Lag 2

Paris

Lag 0

Lag 1

Lag 2

Rennes

Lag 0

Lag 1

Lag 2

Rouen

Lag 0

Lag 1

Lag 2

Strasbourg

Lag 0

Lag 1

Lag 2

Toulouse

Lag 0

Lag 1

Lag 2