I summarized plant species, structural environmental variables, and plant functional group data to the patches within each pasture for each year. Despite some seperation between speceis and functional groups, there is not a lot of explanation found in our environmental variables.
Summarizing by the patch instead of each transect helped with convergence issues for the species ordination, but does not really change much for the functional group ordination.
#Veg species ordination summarized by patch
EnvPatch <-
HRECVeg %>%
gather(VOR_Mean:MaxDead,LitMean:LitCover, key="species", value="cover") %>%
#filter(Use=="Heterogeneous" & Management != "PB") %>%
mutate(cover=as.numeric(cover)) %>%
group_by(Year, Pasture, TSF, Management, Patch, species) %>%
dplyr::summarise(Cover=round(mean(cover),5)) %>%
ungroup() %>%
spread(species,Cover)
#96 observations of 12 variables
EnvPatch2 <- EnvPatch %>%
unite("YearLoc", c("Year", "Pasture"), remove = F ) %>%
as_tibble()
FGPatch <-
HRECVeg %>%
gather(NatForb:Shrub, key="species", value="cover") %>%
#filter(Use=="Heterogeneous" & Management != "PB") %>%
mutate(cover=as.numeric(cover)) %>%
group_by(Year, Pasture, TSF, Management, Patch, species) %>%
dplyr::summarise(Cover=round(mean(cover),5)) %>%
ungroup() %>%
spread(species,Cover)
FGFine <- FGPatch %>% select(IntC3:IntLeg, NatC3:NatShrub)
FGMedium <- FGPatch %>% select(C3,C4, Forb:Shrub)
SpeciesPatch <-
HRECVeg %>%
gather(ACMI:VIAM, key="species", value="cover") %>%
#filter(Use=="Heterogeneous" & Management != "PB") %>%
mutate(cover=as.numeric(cover)) %>%
group_by(Year, Pasture, TSF, Management, Patch, species) %>%
dplyr::summarise(Cover=round(mean(cover),5)) %>%
ungroup() %>%
spread(species,Cover)
#96 observations of 105 variables
#relative abundance and filtering
SpeciesFull <- SpeciesPatch %>% select(ACMI:VIAM)
sum(SpeciesFull)
## [1] 6389.924
RelAbund<- round(colSums(SpeciesFull)/sum(SpeciesFull),5)*100
RAD <- as.data.frame(RelAbund)
RAD <- tibble::rownames_to_column(RAD, "Species")
sum(RAD$RelAbund)
## [1] 99.998
#RAD01 <- filter(RAD, RelAbund >= 0.01) #68 species
#sum(RAD01$RelAbund)
RAD05 <- filter(RAD, RelAbund >= 0.05) #42 species
sum(RAD05$RelAbund)
## [1] 99.359
PS05 <- SpeciesPatch %>%
select(ACMI, AGCR, AMPS, ARFR, ARLU, ASSY, BOGR, BRIN, BUNCH, CIAR, CIUN, COAR, DESO, DISP, ELIN, ELRE, ELTR, ERAS, GLLE, GRSQ, HEMA,
HEPA, HOJU, IVAX, LEDE, LOUN, MEOF, MESA, NAVI, PASM, POPR, PSAR, RUOC, SEDGE, SOAR, SPHE, SPPE, SYER, TAOF, THAR, TYLA, VIAM)
Intermediate wheatgrass (ELIN), Kentucky bluegrass (POPR), smooth brome (BRIN), alfalfa (MESA), crested wheatgrass (AGCR) make up >80% of the plant community across years at HREC. Inland saltgrass (DISP) is our most abundant native species on transects, and it is a warm season grass!
I think this is why people try to transform their plant data to downweight super abundant species?
#Euclidean
PS.MDSe <- metaMDS(PS05, k=3, trymax=50, distance="euclidean")
## Wisconsin double standardization
## Run 0 stress 0.13202
## Run 1 stress 0.1328803
## Run 2 stress 0.1329638
## Run 3 stress 0.1455798
## Run 4 stress 0.1328656
## Run 5 stress 0.1328831
## Run 6 stress 0.1320368
## ... Procrustes: rmse 0.004813867 max resid 0.03918211
## Run 7 stress 0.1320227
## ... Procrustes: rmse 0.000493184 max resid 0.002831365
## ... Similar to previous best
## Run 8 stress 0.14571
## Run 9 stress 0.1329082
## Run 10 stress 0.1320388
## ... Procrustes: rmse 0.002047648 max resid 0.01257797
## Run 11 stress 0.1473344
## Run 12 stress 0.1328599
## Run 13 stress 0.1328596
## Run 14 stress 0.1328889
## Run 15 stress 0.1328593
## Run 16 stress 0.1328956
## Run 17 stress 0.145635
## Run 18 stress 0.1333782
## Run 19 stress 0.1320164
## ... New best solution
## ... Procrustes: rmse 0.002597186 max resid 0.01417382
## Run 20 stress 0.1328584
## Run 21 stress 0.1329112
## Run 22 stress 0.1328607
## Run 23 stress 0.1320145
## ... New best solution
## ... Procrustes: rmse 0.0009550429 max resid 0.006558012
## ... Similar to previous best
## *** Solution reached
PS.MDSe #Stress 0.1320143
##
## Call:
## metaMDS(comm = PS05, distance = "euclidean", k = 3, trymax = 50)
##
## global Multidimensional Scaling using monoMDS
##
## Data: wisconsin(PS05)
## Distance: euclidean
##
## Dimensions: 3
## Stress: 0.1320145
## Stress type 1, weak ties
## Two convergent solutions found after 23 tries
## Scaling: centring, PC rotation
## Species: expanded scores based on 'wisconsin(PS05)'
PS.cape <- capscale(PS05 ~ 1, metaMDSdist = "true", dist="euclidean")
## Wisconsin double standardization
summary(PS.cape) #through third axis: 0.49461; use euclidean
##
## Call:
## capscale(formula = PS05 ~ 1, distance = "euclidean", metaMDSdist = "true")
##
## Partitioning of squared Euclidean distance:
## Inertia Proportion
## Total 8.231 1
## Unconstrained 8.231 1
##
## Eigenvalues, and their contribution to the squared Euclidean distance
##
## Importance of components:
## MDS1 MDS2 MDS3 MDS4 MDS5 MDS6 MDS7
## Eigenvalue 1.9891 1.2730 0.80888 0.6058 0.43279 0.38528 0.28294
## Proportion Explained 0.2417 0.1547 0.09827 0.0736 0.05258 0.04681 0.03438
## Cumulative Proportion 0.2417 0.3963 0.49461 0.5682 0.62079 0.66760 0.70198
## MDS8 MDS9 MDS10 MDS11 MDS12 MDS13 MDS14
## Eigenvalue 0.26579 0.2535 0.23250 0.17023 0.15044 0.14007 0.13634
## Proportion Explained 0.03229 0.0308 0.02825 0.02068 0.01828 0.01702 0.01656
## Cumulative Proportion 0.73427 0.7651 0.79332 0.81400 0.83228 0.84930 0.86586
## MDS15 MDS16 MDS17 MDS18 MDS19 MDS20 MDS21
## Eigenvalue 0.1251 0.10659 0.09528 0.08953 0.08404 0.07325 0.063735
## Proportion Explained 0.0152 0.01295 0.01158 0.01088 0.01021 0.00890 0.007743
## Cumulative Proportion 0.8811 0.89401 0.90559 0.91647 0.92668 0.93558 0.943320
## MDS22 MDS23 MDS24 MDS25 MDS26 MDS27
## Eigenvalue 0.055670 0.052719 0.048926 0.04387 0.038015 0.031628
## Proportion Explained 0.006764 0.006405 0.005944 0.00533 0.004619 0.003843
## Cumulative Proportion 0.950084 0.956489 0.962433 0.96776 0.972382 0.976225
## MDS28 MDS29 MDS30 MDS31 MDS32 MDS33
## Eigenvalue 0.028659 0.025307 0.022463 0.020933 0.020118 0.016937
## Proportion Explained 0.003482 0.003075 0.002729 0.002543 0.002444 0.002058
## Cumulative Proportion 0.979706 0.982781 0.985510 0.988053 0.990498 0.992556
## MDS34 MDS35 MDS36 MDS37 MDS38 MDS39
## Eigenvalue 0.013857 0.011695 0.011161 0.008806 0.0058424 0.0052835
## Proportion Explained 0.001683 0.001421 0.001356 0.001070 0.0007098 0.0006419
## Cumulative Proportion 0.994239 0.995660 0.997016 0.998086 0.9987956 0.9994375
## MDS40 MDS41
## Eigenvalue 0.0032539 0.0013758
## Proportion Explained 0.0003953 0.0001672
## Cumulative Proportion 0.9998328 1.0000000
##
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores: 5.288007
##
##
## Species scores
##
## MDS1 MDS2 MDS3 MDS4 MDS5 MDS6
## ACMI 0.12644 -0.0682646 0.003117 0.1134500 -0.064662 -0.0370309
## AGCR -0.38467 0.3520831 0.991555 -0.9936746 0.029225 0.0479233
## AMPS 0.15915 -0.1114155 -0.006072 0.0444722 0.077674 -0.1223066
## ARFR 0.15891 -0.0232596 -0.019883 0.0193909 0.035016 0.0079395
## ARLU 0.26411 -0.0266081 -0.002343 -0.0302531 -0.239009 0.0024125
## ASSY 0.18408 -0.0394445 -0.081952 -0.0542122 -0.026740 -0.0596683
## BOGR 0.06985 0.0150526 -0.036369 0.0199861 -0.101919 0.0747819
## BRIN -0.15105 0.0435066 0.705271 0.6296708 -0.228407 -0.6708321
## BUNCH 0.03114 0.0284917 -0.121779 -0.0390006 0.009261 0.0893624
## CIAR 0.05941 0.0110498 -0.104533 -0.0931664 0.146411 -0.0029377
## CIUN 0.03652 0.1607450 0.122424 -0.0589331 -0.048959 -0.0018704
## COAR -0.01162 -0.1171744 0.190781 0.0949442 0.478595 -0.3325773
## DESO -0.02484 0.0084502 -0.150720 -0.0423971 0.123724 -0.0886967
## DISP 0.28989 -0.0007556 -0.045051 0.0411204 -0.308482 0.0166295
## ELIN -2.12588 0.1587268 -0.626879 -0.1636673 -0.309034 -0.1847789
## ELRE 0.02006 0.2326015 -0.514967 -0.1266967 0.347234 -0.0418806
## ELTR 0.16729 -0.2071671 -0.107340 0.1711176 -0.189095 0.3829351
## ERAS 0.05802 0.0523034 -0.021207 0.0581710 -0.068599 0.0632220
## GLLE 0.12771 -0.0627331 -0.059524 -0.0418309 -0.022600 -0.0454268
## GRSQ 0.14467 -0.0732837 -0.027061 0.0004904 0.032030 -0.0403419
## HEMA 0.11342 -0.0443905 -0.057818 -0.0600386 0.022132 -0.0243095
## HEPA 0.05655 0.0075101 -0.027024 -0.0149337 -0.019472 0.0073997
## HOJU 0.38740 -0.0583795 -0.017237 -0.0828067 -0.292606 0.1056127
## IVAX 0.19062 -0.0356724 -0.043126 0.0201226 -0.219728 0.0301051
## LEDE 0.04677 -0.0362996 -0.087791 0.0532297 0.187843 0.0202382
## LOUN 0.06810 -0.0874974 -0.038087 0.0676352 0.126566 -0.0593465
## MEOF -0.05655 -0.1355871 0.057304 -0.0772354 0.028454 -0.1035977
## MESA -0.12419 1.7794953 0.112843 0.4642593 0.163183 0.2648716
## NAVI -0.10634 -0.0107588 0.029799 -0.0582801 -0.155811 -0.1417225
## PASM 0.25325 -0.1351863 -0.002284 -0.0045167 -0.339485 0.0216695
## POPR -1.11888 -0.7862413 0.601820 0.5025336 0.208207 0.5527162
## PSAR 0.11016 -0.0890219 0.042420 -0.1028372 0.169479 0.2038352
## RUOC 0.08893 0.0021333 0.019544 -0.0848334 -0.013651 0.0551014
## SEDGE 0.10775 -0.0124286 -0.031599 -0.0504675 -0.027289 -0.0158125
## SOAR 0.15944 0.0341379 -0.159465 -0.0827863 0.056362 -0.0235792
## SPHE 0.26111 -0.1018917 -0.050636 0.0807331 -0.130843 0.1410647
## SPPE 0.13236 -0.0191687 -0.047301 -0.1351729 0.070195 -0.0008228
## SYER 0.14898 -0.0774394 -0.047143 0.0041029 0.008555 -0.0376441
## TAOF -0.06818 -0.3552390 -0.215866 -0.0096230 0.514258 -0.1426986
## THAR 0.03641 -0.0508835 -0.053167 -0.0116396 -0.013854 0.0428898
## TYLA 0.04676 -0.0107399 -0.020570 -0.0198954 -0.011093 0.0077053
## VIAM 0.06694 -0.1093553 -0.052085 0.0534682 -0.003062 0.0394662
##
##
## Site scores (weighted sums of species scores)
##
## MDS1 MDS2 MDS3 MDS4 MDS5 MDS6
## 1 -0.15159 0.458397 1.0376504 -1.275761 -0.20759 0.0898347
## 2 -0.09811 0.687661 1.2642355 -0.377423 0.12435 0.3839851
## 3 0.24123 0.553989 0.9895951 -0.740891 -0.20676 0.3790377
## 4 0.16574 0.928786 0.5566126 -0.366808 0.11483 0.7983300
## 5 -0.65022 0.287706 0.1056744 -0.590429 -0.02650 0.5169005
## 6 -0.52060 0.298742 -0.0856328 -0.028574 -0.74152 -0.6264917
## 7 -0.76657 0.670850 0.0437947 -0.470465 -0.37880 0.2567427
## 8 -1.11353 0.087073 -0.1690959 0.221404 -0.42472 0.4238102
## 9 0.67111 0.126255 -0.2107580 -0.007277 -0.37491 -0.0433253
## 10 0.74477 0.006885 -0.4308218 -0.331223 -0.16594 0.1628879
## 11 0.71267 0.214288 -0.3055547 -0.066129 -0.34500 0.0679113
## 12 -0.21803 0.922201 0.4987497 1.198830 0.26333 0.8628096
## 13 0.11214 1.395868 0.3692280 0.880001 -0.05411 0.1160795
## 14 0.43615 0.801724 -0.0630379 0.579181 -0.80704 -0.3248379
## 15 -0.54768 1.039056 -0.4653226 0.441744 -0.71783 -0.5087258
## 16 0.82916 0.336429 0.0863337 -0.217432 -1.23313 0.0250003
## 17 0.44647 0.849968 0.1288913 0.401270 -0.07347 -0.4347603
## 18 -1.28559 -0.750302 -0.5533766 0.159249 -0.38611 1.4072169
## 19 0.79743 0.206182 -0.2173242 0.065067 -0.84327 0.0834914
## 20 -0.21126 -0.492810 -0.4871208 -0.001099 -0.42617 1.3661650
## 21 -0.30478 1.218969 0.0219175 1.033877 -0.14206 0.3601239
## 22 -0.03121 1.088340 0.3177822 1.184174 -0.24184 -0.1461526
## 23 0.13616 0.663681 0.3034256 1.009479 -0.36410 -0.2278251
## 24 0.61033 0.486767 -0.1541323 0.436219 -0.45234 0.5360519
## 25 -0.06219 0.282649 1.4060591 -1.357889 0.20442 -0.8261243
## 26 0.04097 -0.068239 0.9448534 -1.040823 0.46461 0.7152944
## 27 -0.04399 0.242462 1.1467146 -0.021090 0.41579 -0.6536352
## 28 0.07296 0.087392 1.0703225 -0.803003 0.25120 0.6515779
## 29 -0.69872 0.107486 0.1467432 -1.010668 -0.24337 -0.1182188
## 30 -0.98071 -0.023859 -0.2615577 -0.359913 -0.15467 0.2000893
## 31 -0.38536 -0.244115 -0.2248944 -0.027843 -0.54812 -0.7467465
## 32 -0.84928 0.096942 -0.5170714 -0.212588 -0.39491 -0.7288076
## 33 0.69748 -0.112490 -0.4131802 -0.156721 -0.05501 -0.1342000
## 34 0.70744 -0.174982 -0.4900288 -0.530062 0.27019 -0.2514902
## 35 0.61866 -0.341836 -0.2483573 -0.139839 0.25680 -0.0195974
## 36 0.27860 0.174908 0.1618751 0.614287 0.57936 0.2236110
## 37 -0.33691 -0.409895 0.5582544 0.484846 0.48269 0.5421018
## 38 0.69730 -0.348722 0.0351722 -0.034769 -1.25428 0.1933544
## 39 0.39354 -0.461837 0.0009796 0.264222 -0.75658 -0.1667649
## 40 -0.41707 -0.337397 0.1324703 0.410443 0.25350 -0.1263260
## 41 0.29155 -0.481303 0.3908298 0.613172 1.05210 -1.3224060
## 42 0.69089 -0.302312 -0.1494571 -0.042721 -0.36357 -0.2924761
## 43 -0.23868 1.748975 -1.1538868 0.126892 0.38740 0.4062767
## 44 0.18724 0.937988 -1.2658876 -0.385081 0.64291 0.3527838
## 45 -0.34036 -0.359746 -0.4236622 0.160917 0.91541 0.0217029
## 46 0.41330 -0.548485 -0.2128335 0.389032 -0.29104 1.2750354
## 47 -0.26217 -0.612240 -0.1016482 0.430202 0.88896 0.1170542
## 48 -0.33931 -0.346500 0.4932568 0.992881 0.21564 -0.1427589
## 49 -0.09061 0.437552 0.3428641 -0.553253 0.01415 -0.5974028
## 50 0.09115 0.077072 0.4382180 -0.833798 0.24737 0.2054264
## 51 -0.16330 0.123289 0.3385511 -0.295866 0.52160 -0.5293901
## 52 0.28204 0.294908 0.7372853 -0.733026 0.53672 0.3269978
## 53 -0.55793 -0.274617 0.1401189 -1.061478 0.23451 0.2026847
## 54 -0.55173 -0.342057 -0.2091544 -0.264791 -0.02228 -0.0212220
## 55 -0.59861 -0.430781 -0.3487061 -0.201876 0.07493 -0.9901971
## 56 -0.33583 -0.339292 -0.0419307 -0.019136 -0.27492 -0.3409974
## 57 0.78151 -0.202906 -0.4709810 -0.419154 -0.10505 -0.1260308
## 58 0.69982 -0.234586 -0.4838223 -0.435432 0.15874 -0.3432935
## 59 0.74668 -0.339013 -0.3689683 -0.387860 0.02387 -0.0185165
## 60 0.19888 0.114159 -0.1445568 0.467104 0.72114 -0.1106267
## 61 0.08459 -0.339845 0.6667101 0.313635 0.06681 -0.7234842
## 62 0.75088 -0.349164 -0.0874204 -0.263883 -0.99625 0.0008369
## 63 0.61603 -0.410889 -0.1619159 0.003039 -0.79190 -0.1547065
## 64 -0.42002 -0.551907 -0.1039204 0.398592 0.33489 -0.2666892
## 65 0.40660 -0.431987 0.0401524 0.271926 0.72386 -0.6502251
## 66 0.63757 -0.434129 -0.3117394 -0.165722 0.50039 -0.4434773
## 67 -0.08376 0.589348 -1.3672226 -0.496727 0.81292 -0.3482097
## 68 0.05414 0.665999 -1.2713647 -0.503868 0.68068 -0.1489830
## 69 -0.27170 -0.532677 -0.6979583 -0.160770 0.80467 -0.1894052
## 70 0.53057 -0.566291 -0.2816691 0.175795 -0.24320 0.7120866
## 71 -0.00148 -0.503491 -0.0988437 0.307524 0.14317 -0.1210372
## 72 -0.33977 -0.669316 -0.2297912 0.263964 0.55316 0.0080775
## 73 -0.07314 -0.055474 0.3536795 -0.255289 0.35116 0.4827306
## 74 -0.25250 0.455637 0.5800062 0.683744 0.11415 -0.4550252
## 75 -0.42575 -0.241571 0.5298223 0.895638 0.33514 -0.5373145
## 76 0.13481 0.084828 0.6538414 0.216897 0.71214 0.4995876
## 77 -1.10001 -0.285113 -0.2761483 0.052865 -0.74737 -0.4454416
## 78 -1.35290 -0.044195 -0.7364622 -0.307632 -1.18174 -1.0561565
## 79 -1.03055 0.042372 0.1410260 -1.267775 -0.63116 -0.1149520
## 80 -0.36596 -0.619150 0.2116055 0.408965 0.16309 0.2357191
## 81 0.64615 -0.215063 -0.2839807 -0.271083 -0.10440 -0.5037618
## 82 0.61487 -0.374499 -0.1515904 -0.120859 -0.10739 0.0188625
## 83 0.63996 -0.225582 0.0074461 0.012350 -0.59662 -0.4492852
## 84 0.07482 0.355451 0.0834080 0.658211 0.48220 0.4699095
## 85 0.53839 -0.492956 0.1773421 -0.045449 -0.49991 0.4062411
## 86 0.40916 -0.486831 0.0436257 0.241769 -0.99517 -0.0806322
## 87 -0.05442 -0.593066 0.8751137 0.526201 0.32038 -0.2934964
## 88 -0.58486 -0.535630 0.3471671 0.494696 -0.04932 -0.3302537
## 89 0.56453 -0.583302 -0.1980090 -0.085404 0.44861 0.1093732
## 90 0.07119 0.731578 -1.1413701 -0.171485 0.94445 0.1797912
## 91 0.32621 -0.402307 0.3604030 0.485236 0.53874 -1.3460555
## 92 0.08013 0.377028 -0.9832655 -0.366747 0.93350 -0.0792979
## 93 0.28482 -0.771061 0.1348122 0.500173 -0.42297 1.4100533
## 94 -0.38613 -0.671123 0.2104271 0.628513 -0.37396 0.3361879
## 95 -1.19204 -0.592609 -0.3775737 0.319189 -0.49126 0.2985595
## 96 -0.17186 -0.798289 -0.1920398 -0.138531 1.02898 1.2188521
Euclidean has the best stress values and proportion explained through third axis. I’m using the metaMDS for initial plotting to avoid the scaling issues with capscale
Patch.fit1 <- envfit(PS.MDSe ~ TSF + Management + BGCover + GCover + LitCover + LitMean +
MaxDead + MaxLive + VOR_Mean, data = EnvPatch2, choices = c(1:3), perm=499,
strata=EnvPatch2$YearLoc)
Patch.fit1 #BGCov meets 0.05 criteria; VOR_Mean has 0.072
##
## ***VECTORS
##
## NMDS1 NMDS2 NMDS3 r2 Pr(>r)
## BGCover 0.26083 -0.95599 -0.13437 0.0743 0.032 *
## GCover -0.99080 0.07846 0.11029 0.0176 0.824
## LitCover -0.23600 0.96749 0.09095 0.0066 0.662
## LitMean -0.71749 0.29932 -0.62898 0.0131 0.758
## MaxDead -0.10183 -0.95399 0.28200 0.0293 0.818
## MaxLive 0.07754 -0.14079 0.98700 0.1857 0.490
## VOR_Mean -0.12322 0.01477 0.99227 0.1663 0.050 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks: strata
## Permutation: free
## Number of permutations: 499
##
## ***FACTORS:
##
## Centroids:
## NMDS1 NMDS2 NMDS3
## TSF2yr3yr 0.0177 -0.0578 -0.0003
## TSF1yr2yr 0.0051 -0.0333 -0.0035
## TSF3yr4yr -0.0787 -0.0591 -0.0572
## TSFRB 0.0173 -0.0028 -0.0001
## TSFUnburned -0.0069 0.0477 0.0115
## ManagementCattle 0.0507 0.0261 -0.0014
## ManagementSheep -0.0507 -0.0261 0.0014
##
## Goodness of fit:
## r2 Pr(>r)
## TSF 0.0633 0.222
## Management 0.0830 1.000
## Blocks: strata
## Permutation: free
## Number of permutations: 499
#whittle down to signficant variable (BGCover) and friend who is depending on the run (VOR)
Patch.fit2 <- envfit(PS.MDSe ~ BGCover + VOR_Mean, data = EnvPatch2, choices = c(1:3), perm=499,
strata=EnvPatch2$YearLoc)
Patch.fit2
##
## ***VECTORS
##
## NMDS1 NMDS2 NMDS3 r2 Pr(>r)
## BGCover 0.26083 -0.95599 -0.13437 0.0743 0.048 *
## VOR_Mean -0.12322 0.01477 0.99227 0.1663 0.080 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks: strata
## Permutation: free
## Number of permutations: 499
So…not a whole lot happening here. I do think it is interesting that the very abundant species are essentially located in the middle of the first axis (MESA, POPR, BRIN, AGCR) or left of it (ELIN).
The large cluster of species opposite of VOR makes it seem like TSF should be significant. The r2 (0.0632) and Pr (0.236) are not great.
#Euclidean
FG.MDSe <- metaMDS(FGFine, k=3, trymax=50, distance="euclidean")
## Square root transformation
## Wisconsin double standardization
## Run 0 stress 0.07572115
## Run 1 stress 0.07572108
## ... New best solution
## ... Procrustes: rmse 8.12194e-06 max resid 4.671346e-05
## ... Similar to previous best
## Run 2 stress 0.07571917
## ... New best solution
## ... Procrustes: rmse 0.0005329933 max resid 0.003192418
## ... Similar to previous best
## Run 3 stress 0.07572037
## ... Procrustes: rmse 0.0004653725 max resid 0.002890482
## ... Similar to previous best
## Run 4 stress 0.07572208
## ... Procrustes: rmse 0.0002748559 max resid 0.002098554
## ... Similar to previous best
## Run 5 stress 0.07571878
## ... New best solution
## ... Procrustes: rmse 0.0001540209 max resid 0.001034023
## ... Similar to previous best
## Run 6 stress 0.07572016
## ... Procrustes: rmse 0.0002990332 max resid 0.001762028
## ... Similar to previous best
## Run 7 stress 0.09971441
## Run 8 stress 0.07572034
## ... Procrustes: rmse 0.0003163903 max resid 0.00180625
## ... Similar to previous best
## Run 9 stress 0.07571901
## ... Procrustes: rmse 0.0001027765 max resid 0.0006800022
## ... Similar to previous best
## Run 10 stress 0.075722
## ... Procrustes: rmse 0.0004466495 max resid 0.002653793
## ... Similar to previous best
## Run 11 stress 0.07571899
## ... Procrustes: rmse 0.000115765 max resid 0.0008104507
## ... Similar to previous best
## Run 12 stress 0.09971441
## Run 13 stress 0.07572002
## ... Procrustes: rmse 0.0002991935 max resid 0.002080397
## ... Similar to previous best
## Run 14 stress 0.07572023
## ... Procrustes: rmse 0.0003245865 max resid 0.002234769
## ... Similar to previous best
## Run 15 stress 0.07571921
## ... Procrustes: rmse 0.0001648208 max resid 0.001315295
## ... Similar to previous best
## Run 16 stress 0.07571911
## ... Procrustes: rmse 0.0001413546 max resid 0.0009322189
## ... Similar to previous best
## Run 17 stress 0.101092
## Run 18 stress 0.07572032
## ... Procrustes: rmse 0.0003134508 max resid 0.001816179
## ... Similar to previous best
## Run 19 stress 0.1010923
## Run 20 stress 0.07572018
## ... Procrustes: rmse 0.0002999798 max resid 0.001854704
## ... Similar to previous best
## *** Solution reached
FG.MDSe #Stress 0.07571887
##
## Call:
## metaMDS(comm = FGFine, distance = "euclidean", k = 3, trymax = 50)
##
## global Multidimensional Scaling using monoMDS
##
## Data: wisconsin(sqrt(FGFine))
## Distance: euclidean
##
## Dimensions: 3
## Stress: 0.07571878
## Stress type 1, weak ties
## Two convergent solutions found after 20 tries
## Scaling: centring, PC rotation
## Species: expanded scores based on 'wisconsin(sqrt(FGFine))'
FG.cape <- capscale(FGFine ~ 1, metaMDSdist = "true", dist="euclidean")
## Square root transformation
## Wisconsin double standardization
summary(FG.cape) #through third axis: 0.8068; use euclidean
##
## Call:
## capscale(formula = FGFine ~ 1, distance = "euclidean", metaMDSdist = "true")
##
## Partitioning of squared Euclidean distance:
## Inertia Proportion
## Total 6.31 1
## Unconstrained 6.31 1
##
## Eigenvalues, and their contribution to the squared Euclidean distance
##
## Importance of components:
## MDS1 MDS2 MDS3 MDS4 MDS5 MDS6 MDS7
## Eigenvalue 3.0698 1.1432 0.8782 0.50264 0.31509 0.22516 0.17613
## Proportion Explained 0.4865 0.1812 0.1392 0.07966 0.04993 0.03568 0.02791
## Cumulative Proportion 0.4865 0.6676 0.8068 0.88647 0.93640 0.97209 1.00000
##
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores: 4.948125
##
##
## Species scores
##
## MDS1 MDS2 MDS3 MDS4 MDS5 MDS6
## IntC3 -2.5271 -0.29574 -0.9972 0.15169 -0.04934 -0.10608
## IntForb -0.2570 -1.49254 0.8368 -0.36618 -0.18512 0.05774
## IntLeg -1.2822 1.20961 0.9193 -0.44439 0.24483 0.04102
## NatC3 1.2442 0.22121 -0.8424 -0.84671 -0.20415 0.31250
## NatC4 1.1146 0.20280 -0.1847 -0.07024 0.16637 -0.74590
## NatForb 0.5836 0.08325 -0.1591 0.57495 0.53015 0.44586
## NatLeg 0.7230 -0.49246 0.1532 0.35484 0.31834 -0.05029
## NatShrub 0.4011 0.56387 0.2741 0.64604 -0.82108 0.04514
##
##
## Site scores (weighted sums of species scores)
##
## MDS1 MDS2 MDS3 MDS4 MDS5 MDS6
## 1 -0.357114 0.58683 -0.46103 0.4659040 0.86043 0.974682
## 2 -0.545204 0.74033 0.03669 0.1011135 0.72536 0.472427
## 3 0.265373 0.68855 0.13042 0.5908626 -1.23259 0.678552
## 4 -0.276448 1.02792 0.18916 -0.1897130 0.88961 0.716042
## 5 -0.395027 0.20235 0.27199 0.5148036 -1.14186 0.028855
## 6 -0.597516 0.62292 -0.65031 -0.2637010 0.08869 0.218621
## 7 -0.770318 0.78030 -0.22092 -0.0433457 0.36889 -0.876631
## 8 -1.004303 0.55878 -0.61794 0.1741706 0.16386 -0.461612
## 9 0.528507 0.37955 0.08723 0.2164612 -0.19098 -0.180268
## 10 0.647493 0.19645 0.16238 0.0416178 -0.26508 -0.002929
## 11 0.589568 0.42359 0.41009 0.6793952 -0.54232 -0.188810
## 12 -0.308487 1.04506 0.35453 0.4896962 -0.16183 -0.130419
## 13 0.006249 0.89274 0.47789 0.3418032 -0.01666 -0.731627
## 14 0.372132 0.76015 0.16457 0.4199637 -0.03915 -0.823261
## 15 -0.391719 0.83214 -0.10096 -0.0261141 0.67013 -0.386277
## 16 0.567297 0.56901 -0.26817 -0.8453727 0.24750 -0.568502
## 17 0.114716 0.46562 0.31325 0.0426515 0.92775 0.876507
## 18 -0.256524 -0.22895 -1.59145 0.0797095 -0.35638 0.530061
## 19 0.613942 0.58673 0.09373 0.2988155 -0.95109 0.331682
## 20 0.269800 0.13076 -1.19599 -0.4930833 -0.16642 0.611331
## 21 -0.770913 1.12806 0.35134 -0.2658412 0.66969 -0.033458
## 22 0.150269 0.96636 0.25410 0.6188012 -1.83489 0.615426
## 23 0.250905 0.88227 0.14839 0.9479413 -1.28906 0.482546
## 24 0.465285 0.84537 0.11266 0.7418691 0.39462 0.340769
## 25 -0.648345 -0.56374 0.26633 -0.3337501 -0.52780 -0.286958
## 26 0.175303 -0.27901 0.37842 -0.1598478 0.22051 -0.719519
## 27 -0.526015 -0.29939 0.67108 -0.4698127 -0.24438 -0.031310
## 28 0.034840 0.03117 0.20427 -0.5115259 0.11536 0.834922
## 29 -0.451595 -0.05626 -0.21292 0.1535391 0.10745 -0.885238
## 30 -0.835208 -0.11332 -0.15943 -0.1344416 -0.30390 -0.445808
## 31 -0.332284 -0.35156 -0.59094 -0.4986868 -0.62146 0.121284
## 32 -0.805726 -0.17222 -0.30187 0.0432348 -0.23115 -0.327598
## 33 0.632064 -0.11456 -0.21796 -0.4156311 0.16693 -0.523509
## 34 0.657677 -0.56548 0.37632 0.1653398 0.49704 -1.036245
## 35 0.582495 -0.38501 0.08138 0.4377648 0.73067 -0.483674
## 36 -0.057357 0.29848 0.59146 -0.0117889 0.76730 0.672032
## 37 -0.512115 -0.29710 0.33913 -0.1187699 -0.06073 0.147467
## 38 0.790388 0.25601 -0.68454 -0.6013173 0.15911 -1.212812
## 39 0.611212 -0.33279 -0.45881 -0.2336973 0.07310 -0.455676
## 40 -0.252194 -0.59644 0.32607 -0.1006006 -0.18527 -0.866606
## 41 0.062108 -1.11761 0.47536 -0.0861326 -0.25242 0.516923
## 42 0.607357 -0.26670 -0.34958 -0.4606184 0.02378 0.434486
## 43 -0.411012 0.60464 0.84230 -0.6847256 0.30655 -0.286631
## 44 -0.022955 0.39064 0.31041 -1.0730828 -0.11106 0.129968
## 45 -0.243734 -0.83097 0.46063 0.0850857 -0.10110 0.046842
## 46 0.742217 0.06125 -0.57212 -1.4451991 -0.55240 0.104366
## 47 -0.211613 -0.80995 0.49311 0.1078189 -0.04551 -0.010828
## 48 -0.149683 -0.36975 0.11399 -0.2863427 -0.12923 0.359630
## 49 -0.572095 0.37603 0.67358 -0.6213268 0.08058 0.007678
## 50 0.053076 0.18462 0.35037 -0.4609749 0.25291 -0.356391
## 51 -0.478110 -0.29480 0.58785 -0.3058963 -0.10746 0.134811
## 52 0.228649 0.22933 0.50311 0.2108024 -0.11157 -0.405197
## 53 -0.375622 -0.44167 -0.14207 0.2522366 0.04530 0.283387
## 54 -0.396666 -0.25138 0.13615 0.2691815 0.25493 -0.020908
## 55 -0.656382 -0.63575 -0.20015 -0.2557811 -0.67489 -0.274590
## 56 -0.329956 -0.29417 -0.44017 -0.5439841 -0.55140 0.386949
## 57 0.739684 -0.19944 -0.12518 0.1690036 0.67473 -0.111795
## 58 0.618524 -0.37356 0.31273 0.7813285 0.32410 -0.466973
## 59 0.764446 -0.21989 0.11622 0.7637539 0.35454 0.033158
## 60 0.022770 -0.02439 0.58405 0.2057717 0.76099 0.808060
## 61 -0.032236 -0.39501 -0.22278 0.5163822 0.40941 -0.022173
## 62 0.842248 0.12145 -0.44023 0.0800579 -0.50124 -0.615023
## 63 0.699403 -0.08490 -0.35725 0.1628761 0.65355 -0.075130
## 64 -0.440174 -0.84969 -0.10068 0.3189483 -0.19757 0.325068
## 65 0.304675 -0.69961 0.39678 -0.1423494 0.04805 -0.112693
## 66 0.601466 -0.23011 0.30710 0.6468034 -0.84319 0.740075
## 67 -0.401684 -0.15468 0.69780 -0.6369172 -0.19425 0.197754
## 68 -0.048541 0.10281 0.41996 -0.7267747 -0.04992 -0.559267
## 69 -0.090070 -0.83257 0.32868 0.4714792 0.25320 0.416123
## 70 0.759685 -0.12971 -0.44068 -0.6914910 -0.03250 0.205497
## 71 0.277811 -0.37013 -0.20967 0.0849285 0.25783 0.257372
## 72 -0.058157 -0.76381 -0.03586 0.2860720 0.05053 0.455594
## 73 0.214260 0.18640 0.36597 0.0059924 -0.63251 -1.036512
## 74 -0.562985 0.12230 0.65133 -0.4233989 0.06050 0.031877
## 75 -0.527253 -0.53943 0.53715 -0.3908452 -0.39428 -0.065972
## 76 0.177174 0.09926 0.83977 0.0000452 -0.47573 -0.199511
## 77 -0.800377 0.04549 -0.72415 0.5145081 0.16587 -0.054712
## 78 -1.113169 -0.02603 -1.11235 0.3533705 -0.33138 -0.760466
## 79 -0.687955 0.14864 -0.76537 0.6317634 0.36335 -0.178997
## 80 -0.102940 -0.34529 -0.37896 -0.2579027 -0.29365 -0.772572
## 81 0.611800 -0.44395 0.03690 0.2760517 0.57245 -0.299994
## 82 0.710009 0.11996 0.16927 1.3067016 -0.53060 -0.353477
## 83 0.539241 0.05845 -0.46966 -0.2145677 0.33758 -0.106991
## 84 -0.002918 0.29133 0.69297 0.2760247 1.03160 0.344866
## 85 0.665675 -0.12839 -0.81664 -0.1981758 0.22483 0.924909
## 86 0.588723 0.08477 -0.66088 -0.1538094 0.34070 -0.525367
## 87 -0.302930 -0.56524 -0.12508 0.3473579 0.09955 0.698175
## 88 -0.589107 -0.74754 -0.68313 0.5210784 -0.26994 -0.299275
## 89 0.705603 -0.40634 0.01809 -0.0399329 0.43300 0.495029
## 90 -0.136537 0.07662 0.47009 -1.1775177 -0.38500 0.604371
## 91 -0.146116 -0.54600 0.51905 -0.0013364 0.12620 0.628137
## 92 0.075184 -0.11116 0.57359 -0.5036493 0.11362 -0.137164
## 93 0.623493 0.42872 -0.90638 -1.2225134 -0.26997 0.548071
## 94 0.079737 0.15321 -0.80323 -0.3737587 -0.01241 0.728669
## 95 -0.702100 -0.04632 -1.20560 1.1251337 0.47465 0.022203
## 96 0.046956 -0.88164 0.24385 0.7600295 0.47536 0.244100
FG.fit1 <- envfit(FG.MDSe ~ TSF + Management + BGCover + GCover + LitCover + LitMean +
MaxDead + MaxLive + VOR_Mean, data = EnvPatch2, choices = c(1:3), perm=499,
strata=EnvPatch2$YearLoc)
FG.fit1
##
## ***VECTORS
##
## NMDS1 NMDS2 NMDS3 r2 Pr(>r)
## BGCover 0.42428 -0.88407 0.19598 0.0336 0.482
## GCover -0.99072 0.13383 0.02380 0.0360 0.692
## LitCover 0.04751 0.59234 0.80429 0.0867 0.102
## LitMean -0.16146 0.38361 0.90927 0.0967 0.150
## MaxDead 0.08529 -0.05216 0.99499 0.0948 0.048 *
## MaxLive 0.11977 -0.84856 -0.51537 0.1279 0.986
## VOR_Mean -0.14117 -0.87112 -0.47033 0.0745 0.956
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks: strata
## Permutation: free
## Number of permutations: 499
##
## ***FACTORS:
##
## Centroids:
## NMDS1 NMDS2 NMDS3
## TSF2yr3yr 0.0540 -0.0467 0.0148
## TSF1yr2yr 0.0174 -0.0314 -0.0158
## TSF3yr4yr -0.1077 -0.0579 0.0365
## TSFRB 0.0139 -0.0074 -0.0075
## TSFUnburned -0.0181 0.0458 0.0018
## ManagementCattle 0.0395 0.0118 -0.0411
## ManagementSheep -0.0395 -0.0118 0.0411
##
## Goodness of fit:
## r2 Pr(>r)
## TSF 0.0624 0.192
## Management 0.0715 1.000
## Blocks: strata
## Permutation: free
## Number of permutations: 499
#MaxDead and LitCover are the only two even trending significantly
FG.fit2 <- envfit(FG.MDSe ~ LitCover + MaxDead, data = EnvPatch2, choices = c(1:3), perm=499,
strata=EnvPatch2$YearLoc)
FG.fit2
##
## ***VECTORS
##
## NMDS1 NMDS2 NMDS3 r2 Pr(>r)
## LitCover 0.047506 0.592340 0.804290 0.0867 0.094 .
## MaxDead 0.085292 -0.052160 0.994990 0.0948 0.066 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Blocks: strata
## Permutation: free
## Number of permutations: 499