Dissertation Analyses for ABOVE Poverty Status Only

load(file="/Users/meganwilliams/Desktop/Dissertation/AllvarsAbove.rdata")
load(file="/Users/meganwilliams/Desktop/Dissertation/AllvarsBelow.rdata")
library(effects)
library(interactions)
library(rcompanion)
library(car)

Trail Making Test Part A - Psychological Aggression

Model 1

TMTAlog1 <- glm(PsychAggress ~ TrailsA + WRATtotal, data=AllvarsAbove,family = "binomial")
summary(TMTAlog1)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsA + WRATtotal, family = "binomial", 
##     data = AllvarsAbove)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0801   0.5046   0.5323   0.5679   1.0320  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  1.172084   0.786682   1.490   0.1362  
## TrailsA     -0.005289   0.003022  -1.750   0.0801 .
## WRATtotal    0.018251   0.017263   1.057   0.2904  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 364.97  on 439  degrees of freedom
## Residual deviance: 360.60  on 437  degrees of freedom
## AIC: 366.6
## 
## Number of Fisher Scoring iterations: 4
confint(TMTAlog1)
##                   2.5 %      97.5 %
## (Intercept) -0.33213279 2.768378934
## TrailsA     -0.01120548 0.001165937
## WRATtotal   -0.01638549 0.051607639
exp(cbind(OR = coef(TMTAlog1), confint(TMTAlog1)))
##                    OR     2.5 %    97.5 %
## (Intercept) 3.2287142 0.7173921 15.932785
## TrailsA     0.9947251 0.9888571  1.001167
## WRATtotal   1.0184190 0.9837480  1.052963
#Plots
plot(predictorEffect("TrailsA",TMTAlog1))

Model 3

TMTAlog3 <- glm(PsychAggress ~ (TrailsA + Sex)^2 + Age + WRATtotal, data = AllvarsAbove,family = "binomial")
summary(TMTAlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (TrailsA + Sex)^2 + Age + WRATtotal, 
##     family = "binomial", data = AllvarsAbove)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3655   0.4105   0.5040   0.5985   0.9513  
## 
## Coefficients:
##                  Estimate Std. Error z value Pr(>|z|)   
## (Intercept)     2.9930072  1.1102929   2.696  0.00702 **
## TrailsA        -0.0040619  0.0045052  -0.902  0.36726   
## SexMen         -0.5078855  0.3783352  -1.342  0.17946   
## Age            -0.0334762  0.0156375  -2.141  0.03229 * 
## WRATtotal       0.0193238  0.0173756   1.112  0.26609   
## TrailsA:SexMen -0.0002016  0.0061890  -0.033  0.97401   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 364.97  on 439  degrees of freedom
## Residual deviance: 352.11  on 434  degrees of freedom
## AIC: 364.11
## 
## Number of Fisher Scoring iterations: 4
confint(TMTAlog3)
##                      2.5 %       97.5 %
## (Intercept)     0.85903566  5.223517800
## TrailsA        -0.01277002  0.006535673
## SexMen         -1.26023672  0.232998521
## Age            -0.06461079 -0.003114333
## WRATtotal      -0.01547552  0.052932372
## TrailsA:SexMen -0.01317673  0.012361259
exp(cbind(OR = coef(TMTAlog3), confint(TMTAlog3)))
##                        OR     2.5 %      97.5 %
## (Intercept)    19.9455725 2.3608829 185.5858911
## TrailsA         0.9959463 0.9873112   1.0065571
## SexMen          0.6017667 0.2835869   1.2623796
## Age             0.9670779 0.9374323   0.9968905
## WRATtotal       1.0195117 0.9846436   1.0543583
## TrailsA:SexMen  0.9997984 0.9869097   1.0124380
##Plots
plot(predictorEffect("TrailsA",TMTAlog3))

Trail Making Test Part A - Physical Assault

Model 1

TMTAlog1 <- glm(PhysAssault ~ TrailsA + WRATtotal, data=AllvarsAbove,family = "binomial")
summary(TMTAlog1)
## 
## Call:
## glm(formula = PhysAssault ~ TrailsA + WRATtotal, family = "binomial", 
##     data = AllvarsAbove)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.5187  -0.4890  -0.4719  -0.4475   2.3056  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -2.340965   1.102107  -2.124   0.0337 *
## TrailsA     -0.005850   0.008008  -0.731   0.4651  
## WRATtotal    0.008710   0.022294   0.391   0.6960  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 294.76  on 439  degrees of freedom
## Residual deviance: 293.60  on 437  degrees of freedom
## AIC: 299.6
## 
## Number of Fisher Scoring iterations: 5
confint(TMTAlog1)
##                   2.5 %       97.5 %
## (Intercept) -4.54856926 -0.141627889
## TrailsA     -0.02802721  0.004892201
## WRATtotal   -0.03405135  0.053952056
exp(cbind(OR = coef(TMTAlog1), confint(TMTAlog1)))
##                     OR      2.5 %    97.5 %
## (Intercept) 0.09623472 0.01058233 0.8679442
## TrailsA     0.99416716 0.97236191 1.0049042
## WRATtotal   1.00874764 0.96652187 1.0554340
##Plots
plot(predictorEffect("TrailsA",TMTAlog1))

Model 3

TMTAlog3 <- glm(PhysAssault ~ (TrailsA + Sex)^2+ Age + WRATtotal, data = AllvarsAbove,family = "binomial")
summary(TMTAlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (TrailsA + Sex)^2 + Age + WRATtotal, 
##     family = "binomial", data = AllvarsAbove)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6248  -0.5114  -0.4489  -0.3928   2.3962  
## 
## Coefficients:
##                  Estimate Std. Error z value Pr(>|z|)  
## (Intercept)    -1.0742213  1.3213434  -0.813   0.4162  
## TrailsA        -0.0001742  0.0075143  -0.023   0.9815  
## SexMen          0.1000549  0.5913044   0.169   0.8656  
## Age            -0.0296540  0.0180052  -1.647   0.0996 .
## WRATtotal       0.0090076  0.0224890   0.401   0.6888  
## TrailsA:SexMen -0.0085098  0.0158933  -0.535   0.5924  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 294.76  on 439  degrees of freedom
## Residual deviance: 290.11  on 434  degrees of freedom
## AIC: 302.11
## 
## Number of Fisher Scoring iterations: 6
confint(TMTAlog3)
##                      2.5 %     97.5 %
## (Intercept)    -3.72730583 1.48515517
## TrailsA        -0.02354824 0.01075608
## SexMen         -0.97314538 1.46060644
## Age            -0.06559716 0.00527444
## WRATtotal      -0.03396644 0.05475529
## TrailsA:SexMen -0.05005641 0.02032774
exp(cbind(OR = coef(TMTAlog3), confint(TMTAlog3)))
##                       OR      2.5 %   97.5 %
## (Intercept)    0.3415636 0.02405756 4.415651
## TrailsA        0.9998258 0.97672685 1.010814
## SexMen         1.1052316 0.37789255 4.308572
## Age            0.9707813 0.93650805 1.005288
## WRATtotal      1.0090483 0.96660394 1.056282
## TrailsA:SexMen 0.9915264 0.95117577 1.020536
##Plots
plot(predictorEffect("TrailsA",TMTAlog3))

Dissertation Analyses for Below Poverty Status Only

Trail Making Test Part A - Psychological Aggression

Model 1

TMTAlog1 <- glm(PsychAggress ~ TrailsA + WRATtotal, data=AllvarsBelow,family = "binomial")
summary(TMTAlog1)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsA + WRATtotal, family = "binomial", 
##     data = AllvarsBelow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2647   0.4142   0.4504   0.4919   0.7646  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept)  1.374233   1.217421   1.129    0.259
## TrailsA     -0.010943   0.007194  -1.521    0.128
## WRATtotal    0.027453   0.028223   0.973    0.331
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 138.84  on 200  degrees of freedom
## Residual deviance: 135.38  on 198  degrees of freedom
## AIC: 141.38
## 
## Number of Fisher Scoring iterations: 5
confint(TMTAlog1)
##                   2.5 %      97.5 %
## (Intercept) -0.91116570 3.919603591
## TrailsA     -0.02922441 0.003631947
## WRATtotal   -0.03005160 0.081824090
exp(cbind(OR = coef(TMTAlog1), confint(TMTAlog1)))
##                    OR     2.5 %    97.5 %
## (Intercept) 3.9520436 0.4020553 50.380470
## TrailsA     0.9891167 0.9711985  1.003639
## WRATtotal   1.0278334 0.9703955  1.085265
#Plots
plot(predictorEffect("TrailsA",TMTAlog1))

Model 3

TMTAlog3 <- glm(PsychAggress ~ (TrailsA + Sex)^2 + Age + WRATtotal, data = AllvarsBelow,family = "binomial")
summary(TMTAlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (TrailsA + Sex)^2 + Age + WRATtotal, 
##     family = "binomial", data = AllvarsBelow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3555   0.4077   0.4526   0.4836   0.7682  
## 
## Coefficients:
##                 Estimate Std. Error z value Pr(>|z|)
## (Intercept)     0.339088   1.827805   0.186    0.853
## TrailsA         0.001425   0.024599   0.058    0.954
## SexMen          0.367246   0.988110   0.372    0.710
## Age             0.015088   0.026943   0.560    0.575
## WRATtotal       0.027821   0.028601   0.973    0.331
## TrailsA:SexMen -0.013850   0.026246  -0.528    0.598
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 138.84  on 200  degrees of freedom
## Residual deviance: 134.57  on 195  degrees of freedom
## AIC: 146.57
## 
## Number of Fisher Scoring iterations: 5
confint(TMTAlog3)
##                      2.5 %     97.5 %
## (Intercept)    -3.27485622 3.95473969
## TrailsA        -0.03875560 0.06118787
## SexMen         -1.44992009 2.49289961
## Age            -0.03722866 0.06927010
## WRATtotal      -0.03010322 0.08325467
## TrailsA:SexMen -0.07637437 0.02982834
exp(cbind(OR = coef(TMTAlog3), confint(TMTAlog3)))
##                      OR      2.5 %    97.5 %
## (Intercept)    1.403667 0.03782231 52.182108
## TrailsA        1.001426 0.96198579  1.063099
## SexMen         1.443752 0.23458903 12.096300
## Age            1.015202 0.96345580  1.071726
## WRATtotal      1.028212 0.97034537  1.086819
## TrailsA:SexMen 0.986245 0.92646930  1.030278
##Plots
plot(predictorEffect("TrailsA",TMTAlog3))

Trail Making Test Part A - Physical Assault

Model 1

TMTAlog1 <- glm(PhysAssault ~ TrailsA + WRATtotal, data=AllvarsBelow,family = "binomial")
summary(TMTAlog1)
## 
## Call:
## glm(formula = PhysAssault ~ TrailsA + WRATtotal, family = "binomial", 
##     data = AllvarsBelow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7857  -0.6575  -0.5837  -0.4567   2.1998  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.82119    1.39270  -1.308    0.191
## TrailsA     -0.02388    0.01756  -1.360    0.174
## WRATtotal    0.02372    0.02789   0.851    0.395
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 182.73  on 200  degrees of freedom
## Residual deviance: 179.03  on 198  degrees of freedom
## AIC: 185.03
## 
## Number of Fisher Scoring iterations: 5
confint(TMTAlog1)
##                   2.5 %      97.5 %
## (Intercept) -4.62362452 0.868176639
## TrailsA     -0.06134589 0.003966274
## WRATtotal   -0.02919876 0.080755163
exp(cbind(OR = coef(TMTAlog1), confint(TMTAlog1)))
##                    OR       2.5 %   97.5 %
## (Intercept) 0.1618323 0.009817149 2.382563
## TrailsA     0.9764017 0.940497874 1.003974
## WRATtotal   1.0240051 0.971223408 1.084105
##Plots
plot(predictorEffect("TrailsA",TMTAlog1))

Model 3

TMTAlog3 <- glm(PhysAssault ~ (TrailsA + Sex)^2+ Age + WRATtotal, data = AllvarsBelow,family = "binomial")
summary(TMTAlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (TrailsA + Sex)^2 + Age + WRATtotal, 
##     family = "binomial", data = AllvarsBelow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.0064  -0.6644  -0.5464  -0.4044   2.1531  
## 
## Coefficients:
##                Estimate Std. Error z value Pr(>|z|)
## (Intercept)    -0.12444    1.69889  -0.073    0.942
## TrailsA        -0.04062    0.02910  -1.396    0.163
## SexMen         -1.11362    1.01236  -1.100    0.271
## Age            -0.02900    0.02278  -1.273    0.203
## WRATtotal       0.02428    0.02763   0.879    0.380
## TrailsA:SexMen  0.03573    0.03170   1.127    0.260
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 182.73  on 200  degrees of freedom
## Residual deviance: 175.71  on 195  degrees of freedom
## AIC: 187.71
## 
## Number of Fisher Scoring iterations: 5
confint(TMTAlog3)
##                      2.5 %      97.5 %
## (Intercept)    -3.48707129 3.215065236
## TrailsA        -0.10522393 0.007676091
## SexMen         -3.14471339 0.984567664
## Age            -0.07488326 0.014971179
## WRATtotal      -0.02805941 0.080943339
## TrailsA:SexMen -0.02738174 0.103401460
exp(cbind(OR = coef(TMTAlog3), confint(TMTAlog3)))
##                       OR      2.5 %    97.5 %
## (Intercept)    0.8829879 0.03059033 24.904917
## TrailsA        0.9601965 0.90012294  1.007706
## SexMen         0.3283693 0.04307927  2.676654
## Age            0.9714196 0.92785180  1.015084
## WRATtotal      1.0245813 0.97233060  1.084309
## TrailsA:SexMen 1.0363741 0.97298974  1.108937
##Plots
plot(predictorEffect("TrailsA",TMTAlog3))