Dissertation Analyses for ABOVE Poverty Status Only

load(file="/Users/meganwilliams/Desktop/Dissertation/StroopAbove.rdata")
load(file="/Users/meganwilliams/Desktop/Dissertation/StroopBelow.rdata")
library(effects)
library(interactions)
library(rcompanion)
library(car)

Stroop Color-Word Test - Psychological Aggression

Model 1

SCWTlog1 <- glm(PsychAggress ~ StroopMixed + WRATtotal, data=StroopAbove,family = "binomial")
summary(SCWTlog1)
## 
## Call:
## glm(formula = PsychAggress ~ StroopMixed + WRATtotal, family = "binomial", 
##     data = StroopAbove)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2999   0.4247   0.5257   0.6149   0.9417  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) 0.123297   0.905204   0.136   0.8917  
## StroopMixed 0.039442   0.015554   2.536   0.0112 *
## WRATtotal   0.007447   0.022207   0.335   0.7374  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 325.37  on 381  degrees of freedom
## Residual deviance: 316.23  on 379  degrees of freedom
## AIC: 322.23
## 
## Number of Fisher Scoring iterations: 4
confint(SCWTlog1)
##                    2.5 %     97.5 %
## (Intercept) -1.615506226 1.95093998
## StroopMixed  0.009242483 0.07041280
## WRATtotal   -0.037144175 0.05026136
exp(cbind(OR = coef(SCWTlog1), confint(SCWTlog1)))
##                   OR     2.5 %   97.5 %
## (Intercept) 1.131221 0.1987900 7.035297
## StroopMixed 1.040230 1.0092853 1.072951
## WRATtotal   1.007475 0.9635372 1.051546
#Plots
plot(predictorEffect("StroopMixed",SCWTlog1))

Model 3

SCWTlog3 <- glm(PsychAggress ~ (StroopMixed + Sex)^2 + Age + WRATtotal, data = StroopAbove,family = "binomial")
summary(SCWTlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (StroopMixed + Sex)^2 + Age + WRATtotal, 
##     family = "binomial", data = StroopAbove)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4677   0.3588   0.5180   0.6248   1.0003  
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)  
## (Intercept)         1.52918    1.43262   1.067   0.2858  
## StroopMixed         0.04283    0.02311   1.854   0.0638 .
## SexMen              0.34069    0.92444   0.369   0.7125  
## Age                -0.03129    0.01783  -1.755   0.0793 .
## WRATtotal           0.01339    0.02224   0.602   0.5472  
## StroopMixed:SexMen -0.02491    0.02895  -0.860   0.3895  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 325.37  on 381  degrees of freedom
## Residual deviance: 309.82  on 376  degrees of freedom
## AIC: 321.82
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTlog3)
##                           2.5 %      97.5 %
## (Intercept)        -1.254884897 4.379800019
## StroopMixed        -0.001613508 0.089514591
## SexMen             -1.477280262 2.161450394
## Age                -0.066867046 0.003272209
## WRATtotal          -0.031153435 0.056399898
## StroopMixed:SexMen -0.082348008 0.031587244
exp(cbind(OR = coef(SCWTlog3), confint(SCWTlog3)))
##                           OR     2.5 %    97.5 %
## (Intercept)        4.6143720 0.2851087 79.822069
## StroopMixed        1.0437589 0.9983878  1.093643
## SexMen             1.4059172 0.2282576  8.683723
## Age                0.9691926 0.9353195  1.003278
## WRATtotal          1.0134756 0.9693268  1.058021
## StroopMixed:SexMen 0.9753946 0.9209514  1.032091
##Plots
plot(predictorEffect("StroopMixed",SCWTlog3))

Stroop Color-Word Test - Physical Assault

Model 1

SCWTlog1 <- glm(PhysAssault ~ StroopMixed + WRATtotal, data=StroopAbove,family = "binomial")
summary(SCWTlog1)
## 
## Call:
## glm(formula = PhysAssault ~ StroopMixed + WRATtotal, family = "binomial", 
##     data = StroopAbove)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.5473  -0.4705  -0.4350  -0.3818   2.3818  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -4.064595   1.321864  -3.075  0.00211 **
## StroopMixed  0.004415   0.018775   0.235  0.81408   
## WRATtotal    0.035299   0.031527   1.120  0.26286   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 234.00  on 381  degrees of freedom
## Residual deviance: 231.93  on 379  degrees of freedom
## AIC: 237.93
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTlog1)
##                   2.5 %      97.5 %
## (Intercept) -6.85365408 -1.64238069
## StroopMixed -0.03235074  0.04145773
## WRATtotal   -0.02376572  0.10037451
exp(cbind(OR = coef(SCWTlog1), confint(SCWTlog1)))
##                     OR       2.5 %    97.5 %
## (Intercept) 0.01716993 0.001055591 0.1935188
## StroopMixed 1.00442501 0.968166952 1.0423291
## WRATtotal   1.03592969 0.976514463 1.1055849
##Plots
plot(predictorEffect("StroopMixed",SCWTlog1))

Model 3

SCWTlog3 <- glm(PhysAssault ~ (StroopMixed + Sex)^2+ Age + WRATtotal, data = StroopAbove,family = "binomial")
summary(SCWTlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (StroopMixed + Sex)^2 + Age + WRATtotal, 
##     family = "binomial", data = StroopAbove)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8186  -0.4701  -0.3846  -0.2975   2.5623  
## 
## Coefficients:
##                    Estimate Std. Error z value Pr(>|z|)  
## (Intercept)        -3.01746    1.81726  -1.660   0.0968 .
## StroopMixed         0.01424    0.02410   0.591   0.5545  
## SexMen              1.80928    1.24720   1.451   0.1469  
## Age                -0.03585    0.02208  -1.624   0.1044  
## WRATtotal           0.04609    0.03279   1.405   0.1599  
## StroopMixed:SexMen -0.07205    0.03626  -1.987   0.0469 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 234.00  on 381  degrees of freedom
## Residual deviance: 221.74  on 376  degrees of freedom
## AIC: 233.74
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTlog3)
##                          2.5 %       97.5 %
## (Intercept)        -6.69567376  0.459075800
## StroopMixed        -0.03294528  0.061947939
## SexMen             -0.67423061  4.248893034
## Age                -0.08002205  0.006948246
## WRATtotal          -0.01503945  0.114109032
## StroopMixed:SexMen -0.14436252 -0.001641460
exp(cbind(OR = coef(SCWTlog3), confint(SCWTlog3)))
##                            OR       2.5 %     97.5 %
## (Intercept)        0.04892516 0.001236249  1.5826107
## StroopMixed        1.01434342 0.967591505  1.0639070
## SexMen             6.10607871 0.509548311 70.0278510
## Age                0.96478615 0.923095995  1.0069724
## WRATtotal          1.04716858 0.985073080  1.1208743
## StroopMixed:SexMen 0.93048869 0.865573902  0.9983599
##Plots
plot(predictorEffect("StroopMixed",SCWTlog3))

Dissertation Analyses for Below Poverty Status Only

Stroop Color-Word Test - Psychological Aggression

Model 1

SCWTlog1 <- glm(PsychAggress ~ StroopMixed + WRATtotal, data=StroopBelow,family = "binomial")
summary(SCWTlog1)
## 
## Call:
## glm(formula = PsychAggress ~ StroopMixed + WRATtotal, family = "binomial", 
##     data = StroopBelow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4181   0.3987   0.4787   0.5550   0.8000  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.35676    1.31898  -0.270    0.787
## StroopMixed  0.03090    0.02609   1.184    0.236
## WRATtotal    0.03350    0.03229   1.037    0.300
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 126.06  on 165  degrees of freedom
## Residual deviance: 122.54  on 163  degrees of freedom
## AIC: 128.54
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTlog1)
##                   2.5 %     97.5 %
## (Intercept) -2.90677054 2.32291278
## StroopMixed -0.02041742 0.08262287
## WRATtotal   -0.03125495 0.09658674
exp(cbind(OR = coef(SCWTlog1), confint(SCWTlog1)))
##                    OR      2.5 %    97.5 %
## (Intercept) 0.6999385 0.05465194 10.205357
## StroopMixed 1.0313792 0.97978961  1.086132
## WRATtotal   1.0340693 0.96922844  1.101405
#Plots
plot(predictorEffect("StroopMixed",SCWTlog1))

Model 3

SCWTlog3 <- glm(PsychAggress ~ (StroopMixed + Sex)^2 + Age + WRATtotal, data = StroopBelow,family = "binomial")
summary(SCWTlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (StroopMixed + Sex)^2 + Age + WRATtotal, 
##     family = "binomial", data = StroopBelow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.5313   0.3839   0.4837   0.5675   0.8612  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)        -1.608300   2.293227  -0.701    0.483
## StroopMixed         0.043540   0.041434   1.051    0.293
## SexMen              0.142206   1.528035   0.093    0.926
## Age                 0.021624   0.030238   0.715    0.475
## WRATtotal           0.032175   0.032252   0.998    0.318
## StroopMixed:SexMen -0.006833   0.051495  -0.133    0.894
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 126.06  on 165  degrees of freedom
## Residual deviance: 121.99  on 160  degrees of freedom
## AIC: 133.99
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTlog3)
##                          2.5 %     97.5 %
## (Intercept)        -6.25314541 2.80975444
## StroopMixed        -0.03560823 0.12845828
## SexMen             -2.87661238 3.17552270
## Age                -0.03664372 0.08291913
## WRATtotal          -0.03230900 0.09544438
## StroopMixed:SexMen -0.10958616 0.09378193
exp(cbind(OR = coef(SCWTlog3), confint(SCWTlog3)))
##                           OR       2.5 %    97.5 %
## (Intercept)        0.2002277 0.001924392 16.605840
## StroopMixed        1.0445017 0.965018289  1.137074
## SexMen             1.1528145 0.056325248 23.939330
## Age                1.0218592 0.964019539  1.086454
## WRATtotal          1.0326984 0.968207364  1.100148
## StroopMixed:SexMen 0.9931901 0.896204940  1.098320
##Plots
plot(predictorEffect("StroopMixed",SCWTlog3))

Stroop Color-Word Test - Physical Assault

Model 1

SCWTlog1 <- glm(PhysAssault ~ StroopMixed + WRATtotal, data=StroopBelow,family = "binomial")
summary(SCWTlog1)
## 
## Call:
## glm(formula = PhysAssault ~ StroopMixed + WRATtotal, family = "binomial", 
##     data = StroopBelow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7618  -0.6328  -0.5951  -0.5374   2.0218  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -2.59167    1.31550  -1.970   0.0488 *
## StroopMixed  0.01591    0.02351   0.677   0.4986  
## WRATtotal    0.01177    0.03104   0.379   0.7044  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 150.65  on 165  degrees of freedom
## Residual deviance: 149.79  on 163  degrees of freedom
## AIC: 155.79
## 
## Number of Fisher Scoring iterations: 4
confint(SCWTlog1)
##                   2.5 %      97.5 %
## (Intercept) -5.32888834 -0.13336153
## StroopMixed -0.02961156  0.06308590
## WRATtotal   -0.04742889  0.07508423
exp(cbind(OR = coef(SCWTlog1), confint(SCWTlog1)))
##                     OR       2.5 %    97.5 %
## (Intercept) 0.07489491 0.004849458 0.8751486
## StroopMixed 1.01603441 0.970822564 1.0651183
## WRATtotal   1.01184389 0.953678290 1.0779749
##Plots
plot(predictorEffect("StroopMixed",SCWTlog1))

Model 3

SCWTlog3 <- glm(PhysAssault ~ (StroopMixed + Sex)^2+ Age + WRATtotal, data = StroopBelow,family = "binomial")
summary(SCWTlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (StroopMixed + Sex)^2 + Age + WRATtotal, 
##     family = "binomial", data = StroopBelow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7582  -0.6391  -0.5797  -0.5020   2.0639  
## 
## Coefficients:
##                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)        -1.408863   1.981845  -0.711    0.477
## StroopMixed         0.005099   0.033690   0.151    0.880
## SexMen             -0.200251   1.501423  -0.133    0.894
## Age                -0.021126   0.025488  -0.829    0.407
## WRATtotal           0.013664   0.031048   0.440    0.660
## StroopMixed:SexMen  0.006575   0.045514   0.144    0.885
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 150.65  on 165  degrees of freedom
## Residual deviance: 149.05  on 160  degrees of freedom
## AIC: 161.05
## 
## Number of Fisher Scoring iterations: 4
confint(SCWTlog3)
##                          2.5 %     97.5 %
## (Intercept)        -5.33305942 2.49562431
## StroopMixed        -0.06153089 0.07194844
## SexMen             -3.20659714 2.74300462
## Age                -0.07256563 0.02805610
## WRATtotal          -0.04567362 0.07693745
## StroopMixed:SexMen -0.08247322 0.09717083
exp(cbind(OR = coef(SCWTlog3), confint(SCWTlog3)))
##                           OR       2.5 %    97.5 %
## (Intercept)        0.2444210 0.004829273 12.129304
## StroopMixed        1.0051120 0.940323901  1.074600
## SexMen             0.8185257 0.040494175 15.533588
## Age                0.9790957 0.930004707  1.028453
## WRATtotal          1.0137582 0.955353721  1.079975
## StroopMixed:SexMen 1.0065968 0.920836101  1.102049
##Plots
plot(predictorEffect("StroopMixed",SCWTlog3))