Dissertation Analyses for WOMEN only

load(file="/Users/meganwilliams/Desktop/Dissertation/StroopMixed.rdata")
load(file="/Users/meganwilliams/Desktop/Dissertation/AllvarsMen.rdata")
load(file="/Users/meganwilliams/Desktop/Dissertation/AllvarsWomen.rdata")

library(effects)
library(interactions)
library(rcompanion)
library(car)

Trail Making Test Part A - Psychological Aggression

Model 1

options(scipen = 999)
TMTAWlog1 <- glm(PsychAggress ~ TrailsA + WRATtotal, data=AllvarsWomen,family = "binomial")
summary(TMTAWlog1)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsA + WRATtotal, family = "binomial", 
##     data = AllvarsWomen)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2523   0.4229   0.4540   0.4963   0.8980  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept)  1.112104   1.037822   1.072    0.284
## TrailsA     -0.005448   0.004361  -1.249    0.212
## WRATtotal    0.027774   0.023584   1.178    0.239
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 227.67  on 330  degrees of freedom
## Residual deviance: 224.72  on 328  degrees of freedom
## AIC: 230.72
## 
## Number of Fisher Scoring iterations: 5
confint(TMTAWlog1)
##                   2.5 %      97.5 %
## (Intercept) -0.86311148 3.241870505
## TrailsA     -0.01379764 0.004836086
## WRATtotal   -0.01983973 0.073343509
exp(cbind(OR = coef(TMTAWlog1), confint(TMTAWlog1)))
##                    OR     2.5 %    97.5 %
## (Intercept) 3.0407503 0.4218475 25.581527
## TrailsA     0.9945672 0.9862971  1.004848
## WRATtotal   1.0281638 0.9803558  1.076100
plot(predictorEffect("TrailsA",TMTAWlog1))

########Compare to null model 
#Difference in Deviance
with(TMTAWlog1,null.deviance - deviance)
## [1] 2.957548
#Degrees of freedom for the difference between two models
with(TMTAWlog1,df.null - df.residual)
## [1] 2
#p-value
with(TMTAWlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.227917
#Pseudo R-Squared
nagelkerke(TMTAWlog1)
## $Models
##                                                                         
## Model: "glm, PsychAggress ~ TrailsA + WRATtotal, binomial, AllvarsWomen"
## Null:  "glm, PsychAggress ~ 1, binomial, AllvarsWomen"                  
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                           0.01299030
## Cox and Snell (ML)                 0.00889539
## Nagelkerke (Cragg and Uhler)       0.01788600
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -2     -1.4788 2.9575 0.22792
## 
## $Number.of.observations
##           
## Model: 331
## Null:  331
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Model 3

options(scipen = 999)
TMTAWlog3 <- glm(PsychAggress ~ (TrailsA + PovStat)^2 + Age + WRATtotal, data = AllvarsWomen, family = "binomial")
summary(TMTAWlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (TrailsA + PovStat)^2 + Age + WRATtotal, 
##     family = "binomial", data = AllvarsWomen)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2944   0.4092   0.4515   0.4954   0.9077  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)           1.770260   1.396971   1.267    0.205
## TrailsA              -0.004729   0.004585  -1.031    0.302
## PovStatBelow         -0.278664   0.921144  -0.303    0.762
## Age                  -0.016324   0.020473  -0.797    0.425
## WRATtotal             0.028915   0.023705   1.220    0.223
## TrailsA:PovStatBelow  0.011636   0.026207   0.444    0.657
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 227.67  on 330  degrees of freedom
## Residual deviance: 223.76  on 325  degrees of freedom
## AIC: 235.76
## 
## Number of Fisher Scoring iterations: 5
confint(TMTAWlog3)
##                            2.5 %      97.5 %
## (Intercept)          -0.91244445 4.600162000
## TrailsA              -0.01357863 0.006046941
## PovStatBelow         -2.23542354 1.409426319
## Age                  -0.05664314 0.024013310
## WRATtotal            -0.01896245 0.074670840
## TrailsA:PovStatBelow -0.03096826 0.073679544
exp(cbind(OR = coef(TMTAWlog3), confint(TMTAWlog3)))
##                             OR     2.5 %    97.5 %
## (Intercept)          5.8723817 0.4015415 99.500433
## TrailsA              0.9952825 0.9865131  1.006065
## PovStatBelow         0.7567940 0.1069468  4.093606
## Age                  0.9838085 0.9449312  1.024304
## WRATtotal            1.0293369 0.9812162  1.077529
## TrailsA:PovStatBelow 1.0117039 0.9695063  1.076462
Anova(TMTAWlog3, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PsychAggress
##                 Df  Chisq Pr(>Chisq)
## TrailsA          1 0.9579     0.3277
## PovStat          1 0.0535     0.8170
## Age              1 0.6358     0.4252
## WRATtotal        1 1.4878     0.2226
## TrailsA:PovStat  1 0.1971     0.6570
########Compare to null model 
#Difference in Deviance
with(TMTAWlog3,null.deviance - deviance)
## [1] 3.908561
#Degrees of freedom for the difference between two models
with(TMTAWlog3,df.null - df.residual)
## [1] 5
#p-value
with(TMTAWlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.5626548
#Pseudo R-Squared
nagelkerke(TMTAWlog3)
## $Models
##                                                                                             
## Model: "glm, PsychAggress ~ (TrailsA + PovStat)^2 + Age + WRATtotal, binomial, AllvarsWomen"
## Null:  "glm, PsychAggress ~ 1, binomial, AllvarsWomen"                                      
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0171674
## Cox and Snell (ML)                  0.0117389
## Nagelkerke (Cragg and Uhler)        0.0236035
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -5     -1.9543 3.9086 0.56265
## 
## $Number.of.observations
##           
## Model: 331
## Null:  331
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
plot(predictorEffect("TrailsA",TMTAWlog3))

Trail Making Test Part A - Physical Assault

Model 1

options(scipen = 999)
TMTAWlog1 <- glm(PhysAssault ~ TrailsA + WRATtotal, data=AllvarsWomen,family = "binomial")
summary(TMTAWlog1)
## 
## Call:
## glm(formula = PhysAssault ~ TrailsA + WRATtotal, family = "binomial", 
##     data = AllvarsWomen)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6855  -0.5758  -0.5264  -0.4632   2.4193  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -2.967483   1.229056  -2.414   0.0158 *
## TrailsA     -0.007566   0.010297  -0.735   0.4625  
## WRATtotal    0.030878   0.025158   1.227   0.2197  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 263.18  on 330  degrees of freedom
## Residual deviance: 260.27  on 328  degrees of freedom
## AIC: 266.27
## 
## Number of Fisher Scoring iterations: 5
exp(cbind(OR = coef(TMTAWlog1), confint(TMTAWlog1)))
##                     OR       2.5 %    97.5 %
## (Intercept) 0.05143259 0.004356779 0.5689323
## TrailsA     0.99246287 0.966472952 1.0059130
## WRATtotal   1.03135999 0.983136981 1.0854992
Anova(TMTAWlog1, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PhysAssault
##           Df  Chisq Pr(>Chisq)
## TrailsA    1 0.5398     0.4625
## WRATtotal  1 1.5065     0.2197
########Compare to null model 
#Difference in Deviance
with(TMTAWlog1,null.deviance - deviance)
## [1] 2.902885
#Degrees of freedom for the difference between two models
with(TMTAWlog1,df.null - df.residual)
## [1] 2
#p-value
with(TMTAWlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.2342322
#Pseudo R-Squared
nagelkerke(TMTAWlog1)
## $Models
##                                                                        
## Model: "glm, PhysAssault ~ TrailsA + WRATtotal, binomial, AllvarsWomen"
## Null:  "glm, PhysAssault ~ 1, binomial, AllvarsWomen"                  
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0110302
## Cox and Snell (ML)                  0.0087317
## Nagelkerke (Cragg and Uhler)        0.0159204
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -2     -1.4514 2.9029 0.23423
## 
## $Number.of.observations
##           
## Model: 331
## Null:  331
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
plot(predictorEffect("TrailsA",TMTAWlog1))

Model 3

options(scipen = 999)
TMTAWlog3 <- glm(PhysAssault ~ (TrailsA + PovStat)^2 + Age + WRATtotal, data = AllvarsWomen, family = "binomial")
summary(TMTAWlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (TrailsA + PovStat)^2 + Age + WRATtotal, 
##     family = "binomial", data = AllvarsWomen)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.0348  -0.5698  -0.4745  -0.3792   2.5024  
## 
## Coefficients:
##                        Estimate Std. Error z value Pr(>|z|)  
## (Intercept)          -2.4066971  1.4788421  -1.627   0.1036  
## TrailsA               0.0008511  0.0069432   0.123   0.9024  
## PovStatBelow          1.6908258  0.8966716   1.886   0.0593 .
## Age                  -0.0294400  0.0195042  -1.509   0.1312  
## WRATtotal             0.0378536  0.0257276   1.471   0.1412  
## TrailsA:PovStatBelow -0.0407166  0.0293487  -1.387   0.1653  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 263.18  on 330  degrees of freedom
## Residual deviance: 251.78  on 325  degrees of freedom
## AIC: 263.78
## 
## Number of Fisher Scoring iterations: 5
confint(TMTAWlog3)
## Waiting for profiling to be done...
##                            2.5 %      97.5 %
## (Intercept)          -5.39869591 0.421841883
## TrailsA              -0.02063067 0.011397809
## PovStatBelow          0.04421362 3.555736721
## Age                  -0.06866923 0.008116750
## WRATtotal            -0.01067123 0.090499079
## TrailsA:PovStatBelow -0.10554416 0.009535001
exp(cbind(OR = coef(TMTAWlog3), confint(TMTAWlog3)))
## Waiting for profiling to be done...
##                              OR       2.5 %    97.5 %
## (Intercept)          0.09011243 0.004522475  1.524767
## TrailsA              1.00085147 0.979580688  1.011463
## PovStatBelow         5.42395783 1.045205610 35.013606
## Age                  0.97098913 0.933635449  1.008150
## WRATtotal            1.03857920 0.989385504  1.094720
## TrailsA:PovStatBelow 0.96010119 0.899834737  1.009581
Anova(TMTAWlog3, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PhysAssault
##                 Df  Chisq Pr(>Chisq)
## TrailsA          1 0.0218     0.8826
## PovStat          1 2.5055     0.1134
## Age              1 2.2784     0.1312
## WRATtotal        1 2.1648     0.1412
## TrailsA:PovStat  1 1.9247     0.1653
########Compare to null model 
#Difference in Deviance
with(TMTAWlog3,null.deviance - deviance)
## [1] 11.39501
#Degrees of freedom for the difference between two models
with(TMTAWlog3,df.null - df.residual)
## [1] 5
#p-value
with(TMTAWlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.04408684
#Pseudo R-Squared
nagelkerke(TMTAWlog3)
## $Models
##                                                                                            
## Model: "glm, PhysAssault ~ (TrailsA + PovStat)^2 + Age + WRATtotal, binomial, AllvarsWomen"
## Null:  "glm, PhysAssault ~ 1, binomial, AllvarsWomen"                                      
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0432981
## Cox and Snell (ML)                  0.0338402
## Nagelkerke (Cragg and Uhler)        0.0617003
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq  p.value
##       -5     -5.6975 11.395 0.044087
## 
## $Number.of.observations
##           
## Model: 331
## Null:  331
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
plot(predictorEffect("TrailsA",TMTAWlog3))

Dissertation Analyses for MEN only

load(file="/Users/meganwilliams/Desktop/Dissertation/StroopMixed.rdata")
load(file="/Users/meganwilliams/Desktop/Dissertation/AllvarsMen.rdata")
load(file="/Users/meganwilliams/Desktop/Dissertation/AllvarsWomen.rdata")

library(effects)
library(interactions)
library(rcompanion)
library(car)

Trail Making Test Part A - Psychological Aggression

Model 1

TMTAMlog1 <- glm(PsychAggress ~ TrailsA + WRATtotal, data=AllvarsMen,family = "binomial")
summary(TMTAMlog1)
## 
## Call:
## glm(formula = PsychAggress ~ TrailsA + WRATtotal, family = "binomial", 
##     data = AllvarsMen)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.0186   0.5367   0.5627   0.5960   1.2066  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  1.364313   0.842450   1.619   0.1053  
## TrailsA     -0.006531   0.003622  -1.803   0.0714 .
## WRATtotal    0.012538   0.018487   0.678   0.4977  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 273.92  on 309  degrees of freedom
## Residual deviance: 270.09  on 307  degrees of freedom
## AIC: 276.09
## 
## Number of Fisher Scoring iterations: 4
confint(TMTAMlog1)
##                   2.5 %       97.5 %
## (Intercept) -0.23740596 3.0868098954
## TrailsA     -0.01410886 0.0009720848
## WRATtotal   -0.02473921 0.0481481886
exp(cbind(OR = coef(TMTAMlog1), confint(TMTAMlog1)))
##                    OR     2.5 %    97.5 %
## (Intercept) 3.9130325 0.7886711 21.907081
## TrailsA     0.9934906 0.9859902  1.000973
## WRATtotal   1.0126165 0.9755643  1.049326
plot(predictorEffect("TrailsA",TMTAMlog1))

########Compare to null model 
#Difference in Deviance
with(TMTAMlog1,null.deviance - deviance)
## [1] 3.829029
#Degrees of freedom for the difference between two models
with(TMTAMlog1,df.null - df.residual)
## [1] 2
#p-value
with(TMTAMlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.1474134
#Pseudo R-Squared
nagelkerke(TMTAMlog1)
## $Models
##                                                                       
## Model: "glm, PsychAggress ~ TrailsA + WRATtotal, binomial, AllvarsMen"
## Null:  "glm, PsychAggress ~ 1, binomial, AllvarsMen"                  
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0139787
## Cox and Snell (ML)                  0.0122757
## Nagelkerke (Cragg and Uhler)        0.0209230
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff Chisq p.value
##       -2     -1.9145 3.829 0.14741
## 
## $Number.of.observations
##           
## Model: 310
## Null:  310
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Model 3

options(scipen = 999)
TMTAMlog3 <- glm(PsychAggress ~ (TrailsA + PovStat)^2 + Age + WRATtotal, data = AllvarsMen,family = "binomial")
summary(TMTAMlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (TrailsA + PovStat)^2 + Age + WRATtotal, 
##     family = "binomial", data = AllvarsMen)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.2993   0.4427   0.5493   0.6257   0.9648  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)  
## (Intercept)           2.223509   1.286000   1.729   0.0838 .
## TrailsA              -0.004456   0.004266  -1.045   0.2962  
## PovStatBelow          0.849126   0.565185   1.502   0.1330  
## Age                  -0.025305   0.017720  -1.428   0.1533  
## WRATtotal             0.016200   0.018926   0.856   0.3920  
## TrailsA:PovStatBelow -0.009152   0.009465  -0.967   0.3336  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 273.92  on 309  degrees of freedom
## Residual deviance: 265.13  on 304  degrees of freedom
## AIC: 277.13
## 
## Number of Fisher Scoring iterations: 4
confint(TMTAMlog3)
##                            2.5 %      97.5 %
## (Intercept)          -0.26735807 4.792599561
## TrailsA              -0.01291187 0.005180761
## PovStatBelow         -0.19630553 2.161096990
## Age                  -0.06063448 0.009120367
## WRATtotal            -0.02178959 0.052831531
## TrailsA:PovStatBelow -0.03589580 0.008390065
exp(cbind(OR = coef(TMTAMlog3), confint(TMTAMlog3)))
##                             OR     2.5 %     97.5 %
## (Intercept)          9.2396979 0.7653990 120.614506
## TrailsA              0.9955544 0.9871711   1.005194
## PovStatBelow         2.3376039 0.8217611   8.680655
## Age                  0.9750122 0.9411672   1.009162
## WRATtotal            1.0163316 0.9784461   1.054252
## TrailsA:PovStatBelow 0.9908899 0.9647408   1.008425
Anova(TMTAMlog3, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PsychAggress
##                 Df  Chisq Pr(>Chisq)  
## TrailsA          1 2.7339    0.09824 .
## PovStat          1 1.3571    0.24405  
## Age              1 2.0395    0.15326  
## WRATtotal        1 0.7326    0.39203  
## TrailsA:PovStat  1 0.9349    0.33359  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
########Compare to null model 
#Difference in Deviance
with(TMTAMlog3,null.deviance - deviance)
## [1] 8.784853
#Degrees of freedom for the difference between two models
with(TMTAMlog3,df.null - df.residual)
## [1] 5
#p-value
with(TMTAMlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.1179595
#Pseudo R-Squared
nagelkerke(TMTAMlog3)
## $Models
##                                                                                           
## Model: "glm, PsychAggress ~ (TrailsA + PovStat)^2 + Age + WRATtotal, binomial, AllvarsMen"
## Null:  "glm, PsychAggress ~ 1, binomial, AllvarsMen"                                      
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0320711
## Cox and Snell (ML)                  0.0279405
## Nagelkerke (Cragg and Uhler)        0.0476223
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -5     -4.3924 8.7849 0.11796
## 
## $Number.of.observations
##           
## Model: 310
## Null:  310
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
plot(predictorEffect("TrailsA",TMTAMlog3))

Trail Making Test Part A - Physical Assault

Model 1

options(scipen = 999)
TMTAMlog1 <- glm(PhysAssault ~ TrailsA + WRATtotal, data=AllvarsMen,family = "binomial")
summary(TMTAMlog1)
## 
## Call:
## glm(formula = PhysAssault ~ TrailsA + WRATtotal, family = "binomial", 
##     data = AllvarsMen)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.5761  -0.5128  -0.4891  -0.4609   2.1902  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.15536    1.25580  -0.920    0.358
## TrailsA     -0.01138    0.01301  -0.875    0.381
## WRATtotal   -0.01178    0.02355  -0.500    0.617
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 218.58  on 309  degrees of freedom
## Residual deviance: 217.20  on 307  degrees of freedom
## AIC: 223.2
## 
## Number of Fisher Scoring iterations: 6
exp(cbind(OR = coef(TMTAMlog1), confint(TMTAMlog1)))
##                    OR      2.5 %   97.5 %
## (Intercept) 0.3149429 0.02905759 4.057861
## TrailsA     0.9886800 0.95829576 1.004720
## WRATtotal   0.9882937 0.94396256 1.036015
Anova(TMTAMlog1, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PhysAssault
##           Df  Chisq Pr(>Chisq)
## TrailsA    1 0.7662     0.3814
## WRATtotal  1 0.2500     0.6170
########Compare to null model 
#Difference in Deviance
with(TMTAMlog1,null.deviance - deviance)
## [1] 1.378496
#Degrees of freedom for the difference between two models
with(TMTAMlog1,df.null - df.residual)
## [1] 2
#p-value
with(TMTAMlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.5019534
#Pseudo R-Squared
nagelkerke(TMTAMlog1)
## $Models
##                                                                      
## Model: "glm, PhysAssault ~ TrailsA + WRATtotal, binomial, AllvarsMen"
## Null:  "glm, PhysAssault ~ 1, binomial, AllvarsMen"                  
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                           0.00630670
## Cox and Snell (ML)                 0.00443689
## Nagelkerke (Cragg and Uhler)       0.00876971
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -2    -0.68925 1.3785 0.50195
## 
## $Number.of.observations
##           
## Model: 310
## Null:  310
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
plot(predictorEffect("TrailsA",TMTAMlog1))

Model 3

options(scipen = 999)
TMTAMlog3 <- glm(PhysAssault ~ (TrailsA + PovStat)^2 + Age + WRATtotal, data = AllvarsMen,family = "binomial")
summary(TMTAMlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (TrailsA + PovStat)^2 + Age + WRATtotal, 
##     family = "binomial", data = AllvarsMen)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7676  -0.5319  -0.4560  -0.3828   2.3400  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)
## (Intercept)          -0.157937   1.616419  -0.098    0.922
## TrailsA              -0.010862   0.016229  -0.669    0.503
## PovStatBelow          0.341012   0.818882   0.416    0.677
## Age                  -0.030737   0.020724  -1.483    0.138
## WRATtotal            -0.006410   0.024024  -0.267    0.790
## TrailsA:PovStatBelow  0.004318   0.021489   0.201    0.841
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 218.58  on 309  degrees of freedom
## Residual deviance: 212.63  on 304  degrees of freedom
## AIC: 224.63
## 
## Number of Fisher Scoring iterations: 6
confint(TMTAMlog3)
## Waiting for profiling to be done...
##                            2.5 %      97.5 %
## (Intercept)          -3.30864473 3.072138815
## TrailsA              -0.05329183 0.006927701
## PovStatBelow         -1.31130901 2.160675753
## Age                  -0.07206158 0.009648445
## WRATtotal            -0.05296189 0.042093249
## TrailsA:PovStatBelow -0.04602336 0.051127406
exp(cbind(OR = coef(TMTAMlog3), confint(TMTAMlog3)))
## Waiting for profiling to be done...
##                             OR     2.5 %    97.5 %
## (Intercept)          0.8539034 0.0365657 21.588026
## TrailsA              0.9891967 0.9481033  1.006952
## PovStatBelow         1.4063695 0.2694671  8.676999
## Age                  0.9697304 0.9304736  1.009695
## WRATtotal            0.9936109 0.9484162  1.042992
## TrailsA:PovStatBelow 1.0043274 0.9550197  1.052457
Anova(TMTAMlog3, type="II", test="Wald")
## Analysis of Deviance Table (Type II tests)
## 
## Response: PhysAssault
##                 Df  Chisq Pr(>Chisq)
## TrailsA          1 0.5828     0.4452
## PovStat          1 1.5508     0.2130
## Age              1 2.1998     0.1380
## WRATtotal        1 0.0712     0.7896
## TrailsA:PovStat  1 0.0404     0.8407
########Compare to null model 
#Difference in Deviance
with(TMTAMlog3,null.deviance - deviance)
## [1] 5.948348
#Degrees of freedom for the difference between two models
with(TMTAMlog3,df.null - df.residual)
## [1] 5
#p-value
with(TMTAMlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.3112774
#Pseudo R-Squared
nagelkerke(TMTAMlog3)
## $Models
##                                                                                          
## Model: "glm, PhysAssault ~ (TrailsA + PovStat)^2 + Age + WRATtotal, binomial, AllvarsMen"
## Null:  "glm, PhysAssault ~ 1, binomial, AllvarsMen"                                      
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0272141
## Cox and Snell (ML)                  0.0190053
## Nagelkerke (Cragg and Uhler)        0.0375648
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -5     -2.9742 5.9483 0.31128
## 
## $Number.of.observations
##           
## Model: 310
## Null:  310
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
plot(predictorEffect("TrailsA",TMTAMlog3))