Dissertation Analyses - Stroop with WOMEN only

load(file="/Users/meganwilliams/Desktop/Dissertation/StroopWomen.rdata")
load(file="/Users/meganwilliams/Desktop/Dissertation/StroopMen.rdata")

load(file="/Users/meganwilliams/Desktop/Dissertation/Allvars.rdata")
library(effects)
library(interactions)
library(rcompanion)
library(car)

Stroop Color-Word Test - Psychological Aggression

Model 1

SCWTWlog1 <- glm(PsychAggress ~ StroopMixed + WRATtotal, data=StroopWomen,family = "binomial")
summary(SCWTWlog1)
## 
## Call:
## glm(formula = PsychAggress ~ StroopMixed + WRATtotal, family = "binomial", 
##     data = StroopWomen)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4587   0.3579   0.4536   0.5493   0.9890  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -0.59845    1.13926  -0.525   0.5994  
## StroopMixed  0.04615    0.02024   2.281   0.0226 *
## WRATtotal    0.02608    0.02845   0.917   0.3593  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 218.34  on 292  degrees of freedom
## Residual deviance: 208.90  on 290  degrees of freedom
## AIC: 214.9
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTWlog1)
##                    2.5 %     97.5 %
## (Intercept) -2.806714567 1.69120772
## StroopMixed  0.006976643 0.08668136
## WRATtotal   -0.030979348 0.08115080
exp(cbind(OR = coef(SCWTWlog1), confint(SCWTWlog1)))
##                    OR      2.5 %   97.5 %
## (Intercept) 0.5496647 0.06040312 5.426030
## StroopMixed 1.0472334 1.00700104 1.090549
## WRATtotal   1.0264190 0.96949560 1.084534
#Plots
plot(predictorEffect("StroopMixed",SCWTWlog1))

########Compare to null model 
#Difference in Deviance
with(SCWTWlog1,null.deviance - deviance)
## [1] 9.443564
#Degrees of freedom for the difference between two models
with(SCWTWlog1,df.null - df.residual)
## [1] 2
#p-value
with(SCWTWlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.008899305
#Pseudo R-Squared
nagelkerke(SCWTWlog1)
## $Models
##                                                                            
## Model: "glm, PsychAggress ~ StroopMixed + WRATtotal, binomial, StroopWomen"
## Null:  "glm, PsychAggress ~ 1, binomial, StroopWomen"                      
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0432511
## Cox and Snell (ML)                  0.0317167
## Nagelkerke (Cragg and Uhler)        0.0603715
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq   p.value
##       -2     -4.7218 9.4436 0.0088993
## 
## $Number.of.observations
##           
## Model: 293
## Null:  293
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Model 3

SCWTWlog3 <- glm(PsychAggress ~ (StroopMixed + PovStat)^2 + Age + WRATtotal, data = StroopWomen, family = "binomial")
summary(SCWTWlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (StroopMixed + PovStat)^2 + Age + 
##     WRATtotal, family = "binomial", data = StroopWomen)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.4410   0.3572   0.4561   0.5539   1.0493  
## 
## Coefficients:
##                           Estimate Std. Error z value Pr(>|z|)  
## (Intercept)              -0.857442   1.675271  -0.512   0.6088  
## StroopMixed               0.049350   0.024241   2.036   0.0418 *
## PovStatBelow              0.553900   1.340516   0.413   0.6795  
## Age                       0.000767   0.022247   0.034   0.9725  
## WRATtotal                 0.027754   0.028966   0.958   0.3380  
## StroopMixed:PovStatBelow -0.012855   0.043599  -0.295   0.7681  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 218.34  on 292  degrees of freedom
## Residual deviance: 208.61  on 287  degrees of freedom
## AIC: 220.61
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTWlog3)
##                                 2.5 %     97.5 %
## (Intercept)              -4.152852815 2.44910644
## StroopMixed               0.002609916 0.09823365
## PovStatBelow             -2.048140525 3.25280280
## Age                      -0.042882544 0.04473689
## WRATtotal                -0.030313416 0.08385346
## StroopMixed:PovStatBelow -0.097430787 0.07493664
exp(cbind(OR = coef(SCWTWlog3), confint(SCWTWlog3)))
##                                 OR      2.5 %    97.5 %
## (Intercept)              0.4242459 0.01571951 11.577996
## StroopMixed              1.0505882 1.00261333  1.103221
## PovStatBelow             1.7400252 0.12897451 25.862727
## Age                      1.0007673 0.95802391  1.045753
## WRATtotal                1.0281425 0.97014143  1.087470
## StroopMixed:PovStatBelow 0.9872269 0.90716513  1.077816
##Plots
plot(predictorEffect("StroopMixed",SCWTWlog3))

########Compare to null model 
#Difference in Deviance
with(SCWTWlog3,null.deviance - deviance)
## [1] 9.732659
#Degrees of freedom for the difference between two models
with(SCWTWlog3,df.null - df.residual)
## [1] 5
#p-value
with(SCWTWlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.08317448
#Pseudo R-Squared
nagelkerke(SCWTWlog3)
## $Models
##                                                                                                
## Model: "glm, PsychAggress ~ (StroopMixed + PovStat)^2 + Age + WRATtotal, binomial, StroopWomen"
## Null:  "glm, PsychAggress ~ 1, binomial, StroopWomen"                                          
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0445752
## Cox and Snell (ML)                  0.0326716
## Nagelkerke (Cragg and Uhler)        0.0621891
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq  p.value
##       -5     -4.8663 9.7327 0.083174
## 
## $Number.of.observations
##           
## Model: 293
## Null:  293
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Stroop Color-Word Test - Physical Assault

Model 1

SCWTWlog1 <- glm(PhysAssault ~ StroopMixed + WRATtotal, data=StroopWomen,family = "binomial")
summary(SCWTWlog1)
## 
## Call:
## glm(formula = PhysAssault ~ StroopMixed + WRATtotal, family = "binomial", 
##     data = StroopWomen)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.7963  -0.5591  -0.5101  -0.4547   2.2336  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -3.121549   1.197104  -2.608  0.00912 **
## StroopMixed  0.025776   0.018955   1.360  0.17386   
## WRATtotal    0.008196   0.029639   0.277  0.78214   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 229.86  on 292  degrees of freedom
## Residual deviance: 226.97  on 290  degrees of freedom
## AIC: 232.97
## 
## Number of Fisher Scoring iterations: 4
confint(SCWTWlog1)
##                   2.5 %      97.5 %
## (Intercept) -5.59887873 -0.87892919
## StroopMixed -0.01116633  0.06340302
## WRATtotal   -0.04826455  0.06857784
exp(cbind(OR = coef(SCWTWlog1), confint(SCWTWlog1)))
##                    OR       2.5 %    97.5 %
## (Intercept) 0.0440888 0.003702012 0.4152273
## StroopMixed 1.0261116 0.988895785 1.0654562
## WRATtotal   1.0082299 0.952881667 1.0709840
########Compare to null model 
#Difference in Deviance
with(SCWTWlog1,null.deviance - deviance)
## [1] 2.888132
#Degrees of freedom for the difference between two models
with(SCWTWlog1,df.null - df.residual)
## [1] 2
#p-value
with(SCWTWlog1,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.2359663
#Pseudo R-Squared
nagelkerke(SCWTWlog1)
## $Models
##                                                                           
## Model: "glm, PhysAssault ~ StroopMixed + WRATtotal, binomial, StroopWomen"
## Null:  "glm, PhysAssault ~ 1, binomial, StroopWomen"                      
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                           0.01256490
## Cox and Snell (ML)                 0.00980868
## Nagelkerke (Cragg and Uhler)       0.01804230
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -2     -1.4441 2.8881 0.23597
## 
## $Number.of.observations
##           
## Model: 293
## Null:  293
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
#Plots
plot(predictorEffect("StroopMixed",SCWTWlog1))

Model 3

SCWTWlog3 <- glm(PhysAssault ~ (StroopMixed + PovStat)^2 + Age + WRATtotal, data = StroopWomen, family = "binomial")
summary(SCWTWlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (StroopMixed + PovStat)^2 + Age + 
##     WRATtotal, family = "binomial", data = StroopWomen)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8211  -0.5915  -0.4818  -0.3849   2.4741  
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)
## (Intercept)              -2.40914    1.72686  -1.395    0.163
## StroopMixed               0.02365    0.02407   0.983    0.326
## PovStatBelow              1.24257    1.35168   0.919    0.358
## Age                      -0.02976    0.02177  -1.367    0.172
## WRATtotal                 0.01958    0.03082   0.635    0.525
## StroopMixed:PovStatBelow -0.02257    0.03823  -0.590    0.555
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 229.86  on 292  degrees of freedom
## Residual deviance: 222.22  on 287  degrees of freedom
## AIC: 234.22
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTWlog3)
##                                2.5 %     97.5 %
## (Intercept)              -5.87854988 0.92002169
## StroopMixed              -0.02331525 0.07145934
## PovStatBelow             -1.46774799 3.87005788
## Age                      -0.07352351 0.01221587
## WRATtotal                -0.03895401 0.08245625
## StroopMixed:PovStatBelow -0.09775810 0.05304793
exp(cbind(OR = coef(SCWTWlog3), confint(SCWTWlog3)))
##                                  OR       2.5 %    97.5 %
## (Intercept)              0.08989286 0.002798841  2.509345
## StroopMixed              1.02393384 0.976954453  1.074074
## PovStatBelow             3.46450070 0.230443862 47.945161
## Age                      0.97068064 0.929114304  1.012291
## WRATtotal                1.01977669 0.961794943  1.085951
## StroopMixed:PovStatBelow 0.97768583 0.906868247  1.054480
########Compare to null model 
#Difference in Deviance
with(SCWTWlog3,null.deviance - deviance)
## [1] 7.63734
#Degrees of freedom for the difference between two models
with(SCWTWlog3,df.null - df.residual)
## [1] 5
#p-value
with(SCWTWlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.1773877
#Pseudo R-Squared
nagelkerke(SCWTWlog3)
## $Models
##                                                                                               
## Model: "glm, PhysAssault ~ (StroopMixed + PovStat)^2 + Age + WRATtotal, binomial, StroopWomen"
## Null:  "glm, PhysAssault ~ 1, binomial, StroopWomen"                                          
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0332264
## Cox and Snell (ML)                  0.0257292
## Nagelkerke (Cragg and Uhler)        0.0473268
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -5     -3.8187 7.6373 0.17739
## 
## $Number.of.observations
##           
## Model: 293
## Null:  293
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
#Plots
plot(predictorEffect("StroopMixed",SCWTWlog3))

Dissertation Analyses - Stroop with MEN only

Stroop Color-Word Test - Psychological Aggression

Model 1

SCWTMlog1 <- glm(PsychAggress ~ StroopMixed + WRATtotal, data=StroopMen,family = "binomial")
summary(SCWTMlog1 )
## 
## Call:
## glm(formula = PsychAggress ~ StroopMixed + WRATtotal, family = "binomial", 
##     data = StroopMen)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.1330   0.5059   0.5778   0.6351   0.8038  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.573355   0.957586   0.599    0.549
## StroopMixed 0.025346   0.017682   1.433    0.152
## WRATtotal   0.005201   0.023224   0.224    0.823
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 231.39  on 254  degrees of freedom
## Residual deviance: 228.56  on 252  degrees of freedom
## AIC: 234.56
## 
## Number of Fisher Scoring iterations: 4
confint(SCWTMlog1 )
##                    2.5 %     97.5 %
## (Intercept) -1.254688757 2.52463462
## StroopMixed -0.009261462 0.06035586
## WRATtotal   -0.041660411 0.04990716
exp(cbind(OR = coef(SCWTMlog1 ), confint(SCWTMlog1 )))
##                   OR     2.5 %    97.5 %
## (Intercept) 1.774209 0.2851646 12.486332
## StroopMixed 1.025670 0.9907813  1.062214
## WRATtotal   1.005215 0.9591955  1.051174
#Plots
plot(predictorEffect("StroopMixed",SCWTMlog1 ))

########Compare to null model 
#Difference in Deviance
with(SCWTMlog1 ,null.deviance - deviance)
## [1] 2.831976
#Degrees of freedom for the difference between two models
with(SCWTMlog1 ,df.null - df.residual)
## [1] 2
#p-value
with(SCWTMlog1 ,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.2426857
#Pseudo R-Squared
nagelkerke(SCWTMlog1 )
## $Models
##                                                                          
## Model: "glm, PsychAggress ~ StroopMixed + WRATtotal, binomial, StroopMen"
## Null:  "glm, PsychAggress ~ 1, binomial, StroopMen"                      
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0122390
## Cox and Snell (ML)                  0.0110443
## Nagelkerke (Cragg and Uhler)        0.0185174
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff Chisq p.value
##       -2      -1.416 2.832 0.24269
## 
## $Number.of.observations
##           
## Model: 255
## Null:  255
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Model 3

SCWTMlog3 <- glm(PsychAggress ~ (StroopMixed + PovStat)^2 + Age + WRATtotal, data = StroopMen, family = "binomial")
summary(SCWTMlog3)
## 
## Call:
## glm(formula = PsychAggress ~ (StroopMixed + PovStat)^2 + Age + 
##     WRATtotal, family = "binomial", data = StroopMen)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.3281   0.4320   0.5611   0.6493   0.9211  
## 
## Coefficients:
##                            Estimate Std. Error z value Pr(>|z|)  
## (Intercept)               2.136e+00  1.575e+00   1.356   0.1751  
## StroopMixed               1.796e-02  2.120e-02   0.847   0.3967  
## PovStatBelow              3.589e-01  1.164e+00   0.308   0.7578  
## Age                      -3.449e-02  2.093e-02  -1.648   0.0994 .
## WRATtotal                 1.101e-02  2.385e-02   0.462   0.6444  
## StroopMixed:PovStatBelow -5.567e-05  3.932e-02  -0.001   0.9989  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 231.39  on 254  degrees of freedom
## Residual deviance: 224.19  on 249  degrees of freedom
## AIC: 236.19
## 
## Number of Fisher Scoring iterations: 4
confint(SCWTMlog3)
##                                2.5 %      97.5 %
## (Intercept)              -0.91913096 5.280075330
## StroopMixed              -0.02344319 0.060112456
## PovStatBelow             -1.87688251 2.743036977
## Age                      -0.07645394 0.005980495
## WRATtotal                -0.03684554 0.057212143
## StroopMixed:PovStatBelow -0.07738540 0.078190865
exp(cbind(OR = coef(SCWTMlog3), confint(SCWTMlog3)))
##                                 OR     2.5 %     97.5 %
## (Intercept)              8.4613002 0.3988655 196.384668
## StroopMixed              1.0181265 0.9768295   1.061956
## PovStatBelow             1.4318083 0.1530665  15.534090
## Age                      0.9661016 0.9263956   1.005998
## WRATtotal                1.0110700 0.9638250   1.058880
## StroopMixed:PovStatBelow 0.9999443 0.9255331   1.081329
##Plots
plot(predictorEffect("StroopMixed",SCWTMlog3))

########Compare to null model 
#Difference in Deviance
with(SCWTMlog3,null.deviance - deviance)
## [1] 7.194528
#Degrees of freedom for the difference between two models
with(SCWTMlog3,df.null - df.residual)
## [1] 5
#p-value
with(SCWTMlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.2065703
#Pseudo R-Squared
nagelkerke(SCWTMlog3)
## $Models
##                                                                                              
## Model: "glm, PsychAggress ~ (StroopMixed + PovStat)^2 + Age + WRATtotal, binomial, StroopMen"
## Null:  "glm, PsychAggress ~ 1, binomial, StroopMen"                                          
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0310928
## Cox and Snell (ML)                  0.0278195
## Nagelkerke (Cragg and Uhler)        0.0466434
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -5     -3.5973 7.1945 0.20657
## 
## $Number.of.observations
##           
## Model: 255
## Null:  255
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"

Stroop Color-Word Test - Physical Assault

Model 1

SCWTMlog1 <- glm(PhysAssault ~ StroopMixed + WRATtotal, data=StroopMen,family = "binomial")
summary(SCWTMlog1 )
## 
## Call:
## glm(formula = PhysAssault ~ StroopMixed + WRATtotal, family = "binomial", 
##     data = StroopMen)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.6180  -0.4673  -0.4326  -0.3917   2.3280  
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -2.53047    1.32925  -1.904    0.057 .
## StroopMixed -0.02395    0.02234  -1.072    0.284  
## WRATtotal    0.02287    0.03173   0.721    0.471  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 159.10  on 254  degrees of freedom
## Residual deviance: 157.85  on 252  degrees of freedom
## AIC: 163.85
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTMlog1 )
##                   2.5 %      97.5 %
## (Intercept) -5.34789298 -0.09157939
## StroopMixed -0.06797701  0.02003670
## WRATtotal   -0.03653533  0.08860834
exp(cbind(OR = coef(SCWTMlog1 ), confint(SCWTMlog1 )))
##                     OR       2.5 %    97.5 %
## (Intercept) 0.07962193 0.004758166 0.9124889
## StroopMixed 0.97633854 0.934281952 1.0202388
## WRATtotal   1.02313465 0.964124031 1.0926526
########Compare to null model 
#Difference in Deviance
with(SCWTMlog1 ,null.deviance - deviance)
## [1] 1.252079
#Degrees of freedom for the difference between two models
with(SCWTMlog1 ,df.null - df.residual)
## [1] 2
#p-value
with(SCWTMlog1 ,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.5347053
#Pseudo R-Squared
nagelkerke(SCWTMlog1 )
## $Models
##                                                                         
## Model: "glm, PhysAssault ~ StroopMixed + WRATtotal, binomial, StroopMen"
## Null:  "glm, PhysAssault ~ 1, binomial, StroopMen"                      
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                           0.00786972
## Cox and Snell (ML)                 0.00489808
## Nagelkerke (Cragg and Uhler)       0.01055250
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff  Chisq p.value
##       -2    -0.62604 1.2521 0.53471
## 
## $Number.of.observations
##           
## Model: 255
## Null:  255
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
#Plots
plot(predictorEffect("StroopMixed",SCWTMlog1 ))

Model 3

SCWTMlog3 <- glm(PhysAssault ~ (StroopMixed + PovStat)^2 + Age + WRATtotal, data = StroopMen, family = "binomial")
summary(SCWTMlog3)
## 
## Call:
## glm(formula = PhysAssault ~ (StroopMixed + PovStat)^2 + Age + 
##     WRATtotal, family = "binomial", data = StroopMen)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -0.8454  -0.4846  -0.3720  -0.2871   2.5519  
## 
## Coefficients:
##                          Estimate Std. Error z value Pr(>|z|)  
## (Intercept)              -1.47757    2.13956  -0.691   0.4898  
## StroopMixed              -0.05393    0.03160  -1.707   0.0879 .
## PovStatBelow             -0.78810    1.41002  -0.559   0.5762  
## Age                      -0.02713    0.02610  -1.039   0.2986  
## WRATtotal                 0.04040    0.03291   1.228   0.2195  
## StroopMixed:PovStatBelow  0.05824    0.04408   1.321   0.1864  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 159.10  on 254  degrees of freedom
## Residual deviance: 149.02  on 249  degrees of freedom
## AIC: 161.02
## 
## Number of Fisher Scoring iterations: 5
confint(SCWTMlog3)
##                                2.5 %      97.5 %
## (Intercept)              -5.80337887 2.645971863
## StroopMixed              -0.11749160 0.007246323
## PovStatBelow             -3.63935483 1.949785577
## Age                      -0.07929506 0.023735879
## WRATtotal                -0.02102793 0.108802697
## StroopMixed:PovStatBelow -0.02701156 0.146779894
exp(cbind(OR = coef(SCWTMlog3), confint(SCWTMlog3)))
##                                 OR       2.5 %    97.5 %
## (Intercept)              0.2281912 0.003017342 14.097139
## StroopMixed              0.9475000 0.889147981  1.007273
## PovStatBelow             0.4547100 0.026269287  7.027181
## Age                      0.9732390 0.923767317  1.024020
## WRATtotal                1.0412302 0.979191619  1.114942
## StroopMixed:PovStatBelow 1.0599724 0.973349991  1.158099
########Compare to null model 
#Difference in Deviance
with(SCWTMlog3,null.deviance - deviance)
## [1] 10.0804
#Degrees of freedom for the difference between two models
with(SCWTMlog3,df.null - df.residual)
## [1] 5
#p-value
with(SCWTMlog3,pchisq(null.deviance-deviance,df.null-df.residual,lower.tail=FALSE))
## [1] 0.07298889
#Pseudo R-Squared
nagelkerke(SCWTMlog3)
## $Models
##                                                                                             
## Model: "glm, PhysAssault ~ (StroopMixed + PovStat)^2 + Age + WRATtotal, binomial, StroopMen"
## Null:  "glm, PhysAssault ~ 1, binomial, StroopMen"                                          
## 
## $Pseudo.R.squared.for.model.vs.null
##                              Pseudo.R.squared
## McFadden                            0.0633586
## Cox and Snell (ML)                  0.0387598
## Nagelkerke (Cragg and Uhler)        0.0835048
## 
## $Likelihood.ratio.test
##  Df.diff LogLik.diff Chisq  p.value
##       -5     -5.0402 10.08 0.072989
## 
## $Number.of.observations
##           
## Model: 255
## Null:  255
## 
## $Messages
## [1] "Note: For models fit with REML, these statistics are based on refitting with ML"
## 
## $Warnings
## [1] "None"
#Plots
plot(predictorEffect("StroopMixed",SCWTMlog3))