| Ville | Minimum | X1st.Qu | Median | Mean | X3rd.Qu | Max | NA.s |
|---|---|---|---|---|---|---|---|
| bordeaux | 1.9154062 | 49.55208 | 69.45833 | 69.41858 | 88.12500 | 169.5000 | NA |
| clermont | 1.7321429 | 54.31250 | 72.48661 | 72.01823 | 89.87500 | 178.5625 | 144 |
| grenoble | 0.4375000 | 35.29129 | 65.78125 | 65.64074 | 91.66964 | 185.8750 | NA |
| lehavre | 2.1250000 | 56.68750 | 69.87500 | 69.16447 | 81.75000 | 184.5000 | 76 |
| lille | 0.1666667 | 41.00000 | 58.75000 | 58.65181 | 74.21250 | 207.1250 | 285 |
| lyon | 0.4375000 | 39.43799 | 64.94705 | 65.15421 | 89.04688 | 229.3750 | 8 |
| marseille | 3.1250000 | 54.31250 | 79.00000 | 77.03170 | 99.10938 | 195.0625 | 16 |
| montpellier | 7.5458333 | 61.66667 | 81.16250 | 81.22084 | 100.05417 | 200.8083 | 9 |
| nancy | 0.5000000 | 52.00000 | 68.25000 | 70.65748 | 87.37500 | 221.0000 | 170 |
| nantes | 1.1250000 | 52.93750 | 68.75000 | 70.20679 | 86.12500 | 216.5000 | 75 |
| nice | 14.5625000 | 60.50000 | 89.25000 | 87.41249 | 110.50000 | 206.3750 | 60 |
| paris | 0.8592206 | 36.77541 | 56.96864 | 58.49854 | 76.43874 | 216.3857 | NA |
| rennes | 1.5625000 | 50.75000 | 64.87500 | 65.52426 | 79.50000 | 213.5625 | 18 |
| rouen | 1.2972346 | 47.00000 | 63.15625 | 63.59236 | 78.75000 | 178.6607 | 16 |
| strasbourg | 0.0000000 | 36.62500 | 61.75000 | 63.87351 | 87.25000 | 206.5000 | 113 |
| toulouse | 1.6250000 | 56.33750 | 75.54063 | 75.36355 | 93.80938 | 180.9594 | NA |
# SET MODELS OBJECTS#
tot <- matrix(NA, nrow = 16, ncol = 10)
colnames(tot) <- c("Ville","Coefficient_L0","L0_CI95_Low","L0_CI95_High", "Coefficient_L1","L1_CI95_Low","L1_CI95_High","Coefficient_L2","L2_CI95_Low","L2_CI95_High")
poll<-list()
modtot<-list()
pred<-list()
y<-matrix(NA,nrow=16,ncol=1)
S<-list()
# MODEL #
for(i in 1:length(villes)) {
poll[[i]] <- onebasis(villes[[i]]$o3.x,"lin")
pol<-poll[[i]]
modtot[[i]]<-gam(nocc_tot~pol+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours+Vacances,data=villes[[i]],family=quasipoisson)
est<-summary(modtot[[i]])
tot[i, 1] <- as.character(villes_name[[i]])
tot[i, 2] <- modtot[[i]]$coefficients[2]
tot[i, 3] <- modtot[[i]]$coefficients[2]-(1.96*est$se[2])
tot[i, 4] <- modtot[[i]]$coefficients[2]+(1.96*est$se[2])
pred[[i]]<-crosspred(pol,modtot[[i]])
y[i,] <- pred[[i]]$coef
S[[i]] <- pred[[i]]$vcov
}
# SET MODELS OBJECTS#
poll_L1<-list()
modtot_L1<-list()
pred_L1<-list()
y_L1<-matrix(NA,nrow=16,ncol=1)
S_L1<-list()
for(i in 1:length(villes)) {
poll_L1[[i]] <- onebasis(villes[[i]]$o3_L1,"lin")
pol_L1<-poll_L1[[i]]
modtot_L1[[i]]<-gam(nocc_tot~pol_L1+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours+Vacances,data=villes[[i]],family=quasipoisson)
est_L1<-summary(modtot_L1[[i]])
tot[i, 5] <- modtot_L1[[i]]$coefficients[2]
tot[i, 6] <- modtot_L1[[i]]$coefficients[2]-(1.96*est_L1$se[2])
tot[i, 7] <- modtot_L1[[i]]$coefficients[2]+(1.96*est_L1$se[2])
pred_L1[[i]]<-crosspred(pol_L1,modtot_L1[[i]])
y_L1[i,] <- pred_L1[[i]]$coef
S_L1[[i]] <- pred_L1[[i]]$vcov
}
# SET MODELS OBJECTS#
poll_L2<-list()
modtot_L2<-list()
pred_L2<-list()
y_L2<-matrix(NA,nrow=16,ncol=1)
S_L2<-list()
# MODEL #
for(i in 1:length(villes)) {
poll_L2[[i]] <- onebasis(villes[[i]]$o3_L2,"lin")
pol_L2<-poll_L2[[i]]
modtot_L2[[i]]<-gam(nocc_tot~pol_L2+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours+Vacances,data=villes[[i]],family=quasipoisson)
est_L2<-summary(modtot_L2[[i]])
tot[i, 8] <- modtot_L2[[i]]$coefficients[2]
tot[i, 9] <- modtot_L2[[i]]$coefficients[2]-(1.96*est_L2$se[2])
tot[i, 10] <- modtot_L2[[i]]$coefficients[2]+(1.96*est_L2$se[2])
pred_L2[[i]]<-crosspred(pol_L2,modtot_L2[[i]])
y_L2[i,] <- pred_L2[[i]]$coef
S_L2[[i]] <- pred_L2[[i]]$vcov
}
## Warning in gam.fit3(x = args$X, y = args$y, sp = lsp, Eb = args$Eb, UrS =
## args$UrS, : Algorithm did not converge
| Ville | Coefficient_L0 | L0_CI95_Low | L0_CI95_High | Coefficient_L1 | L1_CI95_Low | L1_CI95_High | Coefficient_L2 | L2_CI95_Low | L2_CI95_High |
|---|---|---|---|---|---|---|---|---|---|
| bordeaux | 1.00000 | 0.99951 | 1.00048 | 1.00039 | 0.99991 | 1.00087 | 1.00026 | 0.99979 | 1.00074 |
| clermont | 1.00039 | 0.99972 | 1.00106 | 1.00024 | 0.99957 | 1.00092 | 1.00077 | 1.00010 | 1.00144 |
| grenoble | 1.00003 | 0.99950 | 1.00056 | 0.99964 | 0.99910 | 1.00017 | 1.00003 | 0.99950 | 1.00057 |
| lehavre | 1.00023 | 0.99954 | 1.00092 | 1.00036 | 0.99967 | 1.00105 | 1.00028 | 0.99961 | 1.00095 |
| lille | 1.00023 | 0.99989 | 1.00058 | 1.00032 | 0.99998 | 1.00066 | 1.00013 | 0.99979 | 1.00047 |
| lyon | 1.00017 | 0.99981 | 1.00053 | 1.00049 | 1.00013 | 1.00084 | 1.00048 | 1.00012 | 1.00083 |
| marseille | 1.00060 | 1.00024 | 1.00096 | 1.00037 | 1.00001 | 1.00073 | 1.00048 | 1.00012 | 1.00084 |
| montpellier | 1.00058 | 0.99994 | 1.00123 | 1.00105 | 1.00040 | 1.00170 | 1.00081 | 1.00017 | 1.00147 |
| nancy | 1.00020 | 0.99960 | 1.00079 | 1.00041 | 0.99981 | 1.00101 | 1.00093 | 1.00033 | 1.00153 |
| nantes | 1.00073 | 1.00020 | 1.00126 | 1.00129 | 1.00077 | 1.00182 | 1.00109 | 1.00057 | 1.00161 |
| nice | 1.00070 | 1.00021 | 1.00119 | 1.00097 | 1.00048 | 1.00147 | 1.00093 | 1.00044 | 1.00142 |
| paris | 1.00016 | 0.99995 | 1.00036 | 1.00010 | 0.99990 | 1.00030 | 0.99994 | 0.99974 | 1.00014 |
| rennes | 0.99995 | 0.99911 | 1.00078 | 0.99928 | 0.99844 | 1.00011 | 0.99921 | 0.99838 | 1.00003 |
| rouen | 1.00058 | 1.00004 | 1.00111 | 1.00083 | 1.00030 | 1.00137 | 1.00072 | 1.00020 | 1.00124 |
| strasbourg | 1.00002 | 0.99953 | 1.00051 | 1.00012 | 0.99963 | 1.00060 | 1.00020 | 0.99971 | 1.00068 |
| toulouse | 1.00050 | 0.99995 | 1.00104 | 1.00075 | 1.00022 | 1.00129 | 1.00087 | 1.00033 | 1.00141 |
meta <- mvmeta(y,S,method="ml")
summary(meta)
## Call: mvmeta(formula = y ~ 1, S = S, method = "ml")
##
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0003 0.0001 4.8083 0.0000 0.0002 0.0004 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Std. Dev
## 0.0001
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 17.1344 (df = 15), p-value = 0.3109
## I-square statistic = 12.5%
##
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
## logLik AIC BIC
## 109.4054 -214.8109 -213.2657
meta_L1 <- mvmeta(y_L1,S_L1,method="ml")
summary(meta_L1)
## Call: mvmeta(formula = y_L1 ~ 1, S = S_L1, method = "ml")
##
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0004 0.0001 3.9235 0.0001 0.0002 0.0006 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Std. Dev
## 0.0003
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 49.0712 (df = 15), p-value = 0.0000
## I-square statistic = 69.4%
##
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
## logLik AIC BIC
## 100.1221 -196.2442 -194.6991
meta_L2 <- mvmeta(y_L2,S_L2,method="ml")
summary(meta_L2)
## Call: mvmeta(formula = y_L2 ~ 1, S = S_L2, method = "ml")
##
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0004 0.0001 4.2788 0.0000 0.0002 0.0006 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Std. Dev
## 0.0003
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 53.0972 (df = 15), p-value = 0.0000
## I-square statistic = 71.7%
##
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
## logLik AIC BIC
## 101.0112 -198.0223 -196.4772
pol <- seq(bound_o3[1],bound_o3[2],length=220) # BASIS USED TO PREDICT PM10, EQUAL TO THAT USED FOR ESTIMATION
pol <- onebasis(pol,"lin")
plot <- crosspred(pol,coef=coef(meta),vcov=vcov(meta),model.link="log",by=1)
plot(plot,"overall",ci="lines",col=1,lwd=3,ylab="RR",xlab="Ozone",main="Pooled DR curves for 2000-2015")
plot <- crosspred(pol,coef=coef(meta_L1),vcov=vcov(meta_L1),model.link="log",by=1)
plot(plot,"overall",ci="lines",col=1,lwd=3,ylab="RR",xlab="Ozone_LAG1",main="")
plot <- crosspred(pol,coef=coef(meta_L2),vcov=vcov(meta_L2),model.link="log",by=1)
plot(plot,"overall",ci="lines",col=1,lwd=3,ylab="RR",xlab="Ozone_LAG2",main="")
######################### DEFINE DIFFERENT DATA PERIOD #####################################
y2001_y2005<-list()
for(i in 1:length(villesG1)) {
y2001_y2005[[i]]<-villesG1[[i]][which (villesG1[[i]]$annee %in% c("2001","2002","2003","2004","2005")),]
y2001_y2005[[i]]$time<-1:nrow(y2001_y2005[[i]])
y2001_y2005[[i]]<-transform(y2001_y2005[[i]], aug2003=format(Dates, "%Y-%m")=="2003-08")
y2001_y2005[[i]]<-y2001_y2005[[i]][y2001_y2005[[i]]$aug2003==FALSE,] ### take off the heat wave of 2003
}
filter<-dplyr::filter
y2006_y2010<-list()
for(i in 1:length(villes)) {
y2006_y2010[[i]]<- villes[[i]] %>% filter(annee %in% c("2006","2007","2008","2009","2010"))
y2006_y2010[[i]]$time<-1:nrow(y2006_y2010[[i]])
}
y2011_y2015<-list()
for(i in 1:length(villes)) {
y2011_y2015[[i]]<- villes[[i]] %>% filter(annee %in% c("2011","2012","2013","2014","2015"))
y2011_y2015[[i]]$time<-1:nrow(y2011_y2015[[i]])
}
## o3 limit values for each period and each city
bound_o3_0105<-as.data.frame(matrix(NA,nrow=length(villesG1),ncol=2))
for(i in 1:length(villesG1)) {
bound_o3_0105[i,]<-c(min(y2001_y2005[[i]]$o3.x, na.rm=TRUE),max(y2001_y2005[[i]]$o3.x,na.rm=TRUE))
}
bound_o3_0610<-as.data.frame(matrix(NA,nrow=length(villes),ncol=2))
for(i in 1:length(villes)) {
bound_o3_0610[i,]<-c(min(y2006_y2010[[i]]$o3.x, na.rm=TRUE),max(y2006_y2010[[i]]$o3.x,na.rm=TRUE))
}
bound_o3_1115<-as.data.frame(matrix(NA,nrow=length(villes),ncol=2))
for(i in 1:length(villes)) {
bound_o3_1115[i,]<-c(min(y2011_y2015[[i]]$o3.x, na.rm=TRUE),max(y2011_y2015[[i]]$o3.x,na.rm=TRUE))
}
############################### SET MODELS OBJECTS############################################
tot0105 <- matrix(NA, nrow = 13, ncol = 10)
colnames(tot0105) <- c("Ville","Coefficient_L0","L0_CI95_Low","L0_CI95_High", "Coefficient_L1","L1_CI95_Low","L1_CI95_High","Coefficient_L2","L2_CI95_Low","L2_CI95_High")
poll_0105<-list()
modtot0105<-list()
pred0105<-list()
y0105<-matrix(NA,nrow=13,ncol=1)
S0105<-list()
st_err0105<-c()
poll_0105_L1<-list()
modtot0105_L1<-list()
pred0105_L1<-list()
y0105_L1<-matrix(NA,nrow=13,ncol=1)
S0105_L1<-list()
st_err0105_L1<-c()
poll_0105_L2<-list()
modtot0105_L2<-list()
pred0105_L2<-list()
y0105_L2<-matrix(NA,nrow=13,ncol=1)
S0105_L2<-list()
st_err0105_L2<-c()
tot0610 <- matrix(NA, nrow = 16, ncol = 10)
colnames(tot0610) <- c("Ville","Coefficient_L0","L0_CI95_Low","L0_CI95_High", "Coefficient_L1","L1_CI95_Low","L1_CI95_High","Coefficient_L2","L2_CI95_Low","L2_CI95_High")
poll_0610<-list()
modtot0610<-list()
pred0610<-list()
y0610<-matrix(NA,nrow=16,ncol=1)
S0610<-list()
st_err0610<-c()
poll_0610_L1<-list()
modtot0610_L1<-list()
pred0610_L1<-list()
y0610_L1<-matrix(NA,nrow=16,ncol=1)
S0610_L1<-list()
st_err0610_L1<-c()
poll_0610_L2<-list()
modtot0610_L2<-list()
pred0610_L2<-list()
y0610_L2<-matrix(NA,nrow=16,ncol=1)
S0610_L2<-list()
st_err0610_L2<-c()
tot1115 <- matrix(NA, nrow = 16, ncol = 10)
colnames(tot1115) <- c("Ville","Coefficient_L0","L0_CI95_Low","L0_CI95_High", "Coefficient_L1","L1_CI95_Low","L1_CI95_High","Coefficient_L2","L2_CI95_Low","L2_CI95_High")
poll_1115<-list()
modtot1115<-list()
pred1115<-list()
y1115<-matrix(NA,nrow=16,ncol=1)
S1115<-list()
st_err1115<-c()
poll_1115_L1<-list()
modtot1115_L1<-list()
pred1115_L1<-list()
y1115_L1<-matrix(NA,nrow=16,ncol=1)
S1115_L1<-list()
st_err1115_L1<-c()
poll_1115_L2<-list()
modtot1115_L2<-list()
pred1115_L2<-list()
y1115_L2<-matrix(NA,nrow=16,ncol=1)
S1115_L2<-list()
st_err1115_L2<-c()
#################################### MODELS ################################################
##### For First Period
# LAG0
for(i in 1:length(villesG1)) {
poll_0105[[i]] <- onebasis(y2001_y2005[[i]]$o3.x,"lin")
pol<-poll_0105[[i]]
modtot0105[[i]]<-gam(nocc_tot~pol+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours+Vacances,data=y2001_y2005[[i]],family=quasipoisson)
est<-summary(modtot0105[[i]])
st_err0105[i]<-est$se[2]
tot0105[i, 1] <- as.character(villes_name[[i]])
tot0105[i, 2] <- modtot0105[[i]]$coefficients[2]
tot0105[i, 3] <- modtot0105[[i]]$coefficients[2]-(1.96*est$se[2])
tot0105[i, 4] <- modtot0105[[i]]$coefficients[2]+(1.96*est$se[2])
pred0105[[i]]<-crosspred(pol,modtot0105[[i]])
y0105[i,] <- pred0105[[i]]$coef
S0105[[i]] <- pred0105[[i]]$vcov
}
# LAG1
for(i in 1:length(villesG1)) {
poll_0105_L1[[i]] <- onebasis(y2001_y2005[[i]]$o3_L1,"lin")
pol_L1<-poll_0105_L1[[i]]
modtot0105_L1[[i]]<-gam(nocc_tot~pol_L1+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours+Vacances,data=y2001_y2005[[i]],family=quasipoisson)
est_L1<-summary(modtot0105_L1[[i]])
st_err0105_L1[i]<-est_L1$se[2]
tot0105[i, 5] <- modtot0105_L1[[i]]$coefficients[2]
tot0105[i, 6] <- modtot0105_L1[[i]]$coefficients[2]-(1.96*est_L1$se[2])
tot0105[i, 7] <- modtot0105_L1[[i]]$coefficients[2]+(1.96*est_L1$se[2])
pred0105_L1[[i]]<-crosspred(pol_L1,modtot0105_L1[[i]])
y0105_L1[i,] <- pred0105_L1[[i]]$coef
S0105_L1[[i]] <- pred0105_L1[[i]]$vcov
}
# LAG2
for(i in 1:length(villesG1)) {
poll_0105_L2[[i]] <- onebasis(y2001_y2005[[i]]$o3_L2,"lin")
pol_L2<-poll_0105_L2[[i]]
modtot0105_L2[[i]]<-gam(nocc_tot~pol_L2+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours+Vacances,data=y2001_y2005[[i]],family=quasipoisson)
est_L2<-summary(modtot0105_L2[[i]])
st_err0105_L2[i]<-est_L2$se[2]
tot0105[i, 8] <- modtot0105_L2[[i]]$coefficients[2]
tot0105[i, 9] <- modtot0105_L2[[i]]$coefficients[2]-(1.96*est_L2$se[2])
tot0105[i, 10] <- modtot0105_L2[[i]]$coefficients[2]+(1.96*est_L2$se[2])
pred0105_L2[[i]]<-crosspred(pol_L2,modtot0105_L2[[i]])
y0105_L2[i,] <- pred0105_L2[[i]]$coef
S0105_L2[[i]] <- pred0105_L2[[i]]$vcov
}
### Second Period
# L0
for(i in 1:length(villes)) {
poll_0610[[i]] <- onebasis(y2006_y2010[[i]]$o3.x,"lin")
pol<-poll_0610[[i]]
modtot0610[[i]]<-gam(nocc_tot~pol+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours+Vacances,data=y2006_y2010[[i]],family=quasipoisson)
est<-summary(modtot0610[[i]])
st_err0610[i]<-est$se[2]
tot0610[i, 1] <- as.character(villes_name[[i]])
tot0610[i, 2] <- modtot0610[[i]]$coefficients[2]
tot0610[i, 3] <- modtot0610[[i]]$coefficients[2]-(1.96*est$se[2])
tot0610[i, 4] <- modtot0610[[i]]$coefficients[2]+(1.96*est$se[2])
pred0610[[i]]<-crosspred(pol,modtot0610[[i]])
y0610[i,] <- pred0610[[i]]$coef
S0610[[i]] <- pred0610[[i]]$vcov
}
# L1
for(i in 1:length(villes)) {
poll_0610_L1[[i]] <- onebasis(y2006_y2010[[i]]$o3_L1,"lin")
pol_L1<-poll_0610_L1[[i]]
modtot0610_L1[[i]]<-gam(nocc_tot~pol_L1+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours+Vacances,data=y2006_y2010[[i]],family=quasipoisson)
est_L1<-summary(modtot0610_L1[[i]])
st_err0610_L1[i]<-est_L1$se[2]
tot0610[i, 5] <- modtot0610_L1[[i]]$coefficients[2]
tot0610[i, 6] <- modtot0610_L1[[i]]$coefficients[2]-(1.96*est_L1$se[2])
tot0610[i, 7] <- modtot0610_L1[[i]]$coefficients[2]+(1.96*est_L1$se[2])
pred0610_L1[[i]]<-crosspred(pol_L1,modtot0610_L1[[i]])
y0610_L1[i,] <- pred0610_L1[[i]]$coef
S0610_L1[[i]] <- pred0610_L1[[i]]$vcov
}
for(i in 1:length(villes)) {
poll_0610_L2[[i]] <- onebasis(y2006_y2010[[i]]$o3_L2,"lin")
pol_L2<-poll_0610_L2[[i]]
modtot0610_L2[[i]]<-gam(nocc_tot~pol_L2+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours+Vacances,data=y2006_y2010[[i]],family=quasipoisson)
est_L2<-summary(modtot0610_L2[[i]])
st_err0610_L2[i]<-est_L2$se[2]
tot0610[i, 8] <- modtot0610_L2[[i]]$coefficients[2]
tot0610[i, 9] <- modtot0610_L2[[i]]$coefficients[2]-(1.96*est_L2$se[2])
tot0610[i, 10] <- modtot0610_L2[[i]]$coefficients[2]+(1.96*est_L2$se[2])
pred0610_L2[[i]]<-crosspred(pol_L2,modtot0610_L2[[i]])
y0610_L2[i,] <- pred0610_L2[[i]]$coef
S0610_L2[[i]] <- pred0610_L2[[i]]$vcov
}
### Third Period
# L0
for(i in 1:length(villes)) {
poll_1115[[i]] <- onebasis(y2011_y2015[[i]]$o3.x,"lin")
pol<-poll_1115[[i]]
modtot1115[[i]]<-gam(nocc_tot~pol+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours+Vacances,data=y2011_y2015[[i]],family=quasipoisson)
est<-summary(modtot1115[[i]])
st_err1115[i]<-est$se[2]
tot1115[i, 1] <- as.character(villes_name[[i]])
tot1115[i, 2] <- modtot1115[[i]]$coefficients[2]
tot1115[i, 3] <- modtot1115[[i]]$coefficients[2]-(1.96*est$se[2])
tot1115[i, 4] <- modtot1115[[i]]$coefficients[2]+(1.96*est$se[2])
pred1115[[i]]<-crosspred(pol,modtot1115[[i]])
y1115[i,] <- pred1115[[i]]$coef
S1115[[i]] <- pred1115[[i]]$vcov
}
# L1
for(i in 1:length(villes)) {
poll_1115_L1[[i]] <- onebasis(y2011_y2015[[i]]$o3_L1,"lin")
pol_L1<-poll_1115_L1[[i]]
modtot1115_L1[[i]]<-gam(nocc_tot~pol_L1+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours+Vacances,data=y2011_y2015[[i]],family=quasipoisson)
est_L1<-summary(modtot1115_L1[[i]])
st_err1115_L1[i]<-est_L1$se[2]
tot1115[i, 5] <- modtot1115_L1[[i]]$coefficients[2]
tot1115[i, 6] <- modtot1115_L1[[i]]$coefficients[2]-(1.96*est_L1$se[2])
tot1115[i, 7] <- modtot1115_L1[[i]]$coefficients[2]+(1.96*est_L1$se[2])
pred1115_L1[[i]]<-crosspred(pol_L1,modtot1115_L1[[i]])
y1115_L1[i,] <- pred1115_L1[[i]]$coef
S1115_L1[[i]] <- pred1115_L1[[i]]$vcov
}
# L2
for(i in 1:length(villes)) {
poll_1115_L2[[i]] <- onebasis(y2011_y2015[[i]]$o3_L2,"lin")
pol_L2<-poll_1115_L2[[i]]
modtot1115_L2[[i]]<-gam(nocc_tot~pol_L2+ns(time,df=round(8*length(time)/365))+ns(tempmoy,df=6)+ns(temp3,df=6)+Jours+Vacances,data=y2011_y2015[[i]],family=quasipoisson)
est_L2<-summary(modtot1115_L2[[i]])
st_err1115_L2[i]<-est_L2$se[2]
tot1115[i, 8] <- modtot1115_L2[[i]]$coefficients[2]
tot1115[i, 9] <- modtot1115_L2[[i]]$coefficients[2]-(1.96*est_L2$se[2])
tot1115[i, 10] <- modtot1115_L2[[i]]$coefficients[2]+(1.96*est_L2$se[2])
pred1115_L2[[i]]<-crosspred(pol_L2,modtot1115_L2[[i]])
y1115_L2[i,] <- pred1115_L2[[i]]$coef
S1115_L2[[i]] <- pred1115_L2[[i]]$vcov
}
First Period:
resL0_1 <- data.frame("ville"=G1_names,"coef" = as.numeric(as.character(tot0105[, 2])),"St_err" = st_err0105)
meta_L0_1<-rma(coef,sei=St_err,data=resL0_1)
#Forestplot
forest(meta_L0_1, slab = resL0_1$ville, refline=1,xlab="Lag 0",transf = exp, digits=4L)
meta_0105 <- mvmeta(y0105,S0105,method="ml")
summary(meta_0105)
## Call: mvmeta(formula = y0105 ~ 1, S = S0105, method = "ml")
##
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0001 0.0001 0.5971 0.5505 -0.0001 0.0003
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Std. Dev
## 0.0000
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 8.2349 (df = 12), p-value = 0.7665
## I-square statistic = 1.0%
##
## 13 studies, 13 observations, 1 fixed and 1 random-effects parameters
## logLik AIC BIC
## 83.7379 -163.4759 -162.3460
Second Period:
resL0_2 <- data.frame("ville"=villes_name,"coef" = as.numeric(as.character(tot0610[, 2])),"St_err" = st_err0610)
meta_L0_2<-rma(coef,sei=St_err,data=resL0_2)
#Forestplot
forest(meta_L0_2, slab = resL0_2$ville, refline=1,xlab="Lag 0",transf = exp, digits=4L)
meta_0610 <- mvmeta(y0610,S0610,method="ml")
summary(meta_0610)
## Call: mvmeta(formula = y0610 ~ 1, S = S0610, method = "ml")
##
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0002 0.0001 1.6024 0.1091 -0.0000 0.0004
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Std. Dev
## 0.0000
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 13.9945 (df = 15), p-value = 0.5259
## I-square statistic = 1.0%
##
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
## logLik AIC BIC
## 100.4299 -196.8597 -195.3146
Third Period:
resL0_3 <- data.frame("ville"=villes_name,"coef" = as.numeric(as.character(tot1115[, 2])),"St_err" = st_err1115)
meta_L0_3<-rma(coef,sei=St_err,data=resL0_3)
#Forestplot
forest(meta_L0_3, slab = resL0_3$ville, refline=1,xlab="Lag 0",transf = exp, digits=4L)
meta_1115 <- mvmeta(y1115,S1115,method="ml")
summary(meta_1115)
## Call: mvmeta(formula = y1115 ~ 1, S = S1115, method = "ml")
##
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0003 0.0001 2.9355 0.0033 0.0001 0.0005 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Std. Dev
## 0.0000
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 6.7365 (df = 15), p-value = 0.9646
## I-square statistic = 1.0%
##
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
## logLik AIC BIC
## 104.6798 -205.3597 -203.8145
First Period:
resL1_1 <- data.frame("ville"=G1_names,"coef" = as.numeric(as.character(tot0105[, 5])),"St_err" = st_err0105_L1)
meta_L1_1<-rma(coef,sei=St_err,data=resL1_1)
#Forestplot
forest(meta_L1_1, slab = resL1_1$ville, refline=1,xlab="Lag 1", transf = exp, digits=4L)
meta_0105_L1 <- mvmeta(y0105_L1,S0105_L1,method="ml")
summary(meta_0105_L1)
## Call: mvmeta(formula = y0105_L1 ~ 1, S = S0105_L1, method = "ml")
##
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0002 0.0001 2.1487 0.0317 0.0000 0.0004 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Std. Dev
## 0.0000
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 9.0010 (df = 12), p-value = 0.7028
## I-square statistic = 1.0%
##
## 13 studies, 13 observations, 1 fixed and 1 random-effects parameters
## logLik AIC BIC
## 83.4108 -162.8216 -161.6917
Second Period:
resL1_2 <- data.frame("ville"=villes_name,"coef" = as.numeric(as.character(tot0610[, 5])),"St_err" = st_err0610_L1)
meta_L1_2<-rma(coef,sei=St_err,data=resL1_2)
#Forestplot
forest(meta_L1_2, slab = resL1_2$ville, refline=1,xlab="Lag 1",transf = exp, digits=4L)
meta_0610_L1 <- mvmeta(y0610_L1,S0610_L1,method="ml")
summary(meta_0610_L1)
## Call: mvmeta(formula = y0610_L1 ~ 1, S = S0610_L1, method = "ml")
##
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0003 0.0001 2.8342 0.0046 0.0001 0.0005 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Std. Dev
## 0.0000
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 23.6661 (df = 15), p-value = 0.0710
## I-square statistic = 36.6%
##
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
## logLik AIC BIC
## 95.8630 -187.7260 -186.1808
Third Period:
resL1_3 <- data.frame("ville"=villes_name,"coef" = as.numeric(as.character(tot1115[, 5])),"St_err" = st_err1115_L1)
meta_L1_3<-rma(coef,sei=St_err,data=resL1_3)
#Forestplot
forest(meta_L1_3, slab = resL1_3$ville, refline=1,xlab="Lag 1",transf = exp, digits=4L)
meta_1115_L1 <- mvmeta(y1115_L1,S1115_L1,method="ml")
summary(meta_1115_L1)
## Call: mvmeta(formula = y1115_L1 ~ 1, S = S1115_L1, method = "ml")
##
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0004 0.0001 4.1511 0.0000 0.0002 0.0006 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Std. Dev
## 0.0000
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 9.2588 (df = 15), p-value = 0.8636
## I-square statistic = 1.0%
##
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
## logLik AIC BIC
## 103.5027 -203.0055 -201.4603
First Period:
resL2_1 <- data.frame("ville"=G1_names,"coef" = as.numeric(as.character(tot0105[, 8])),"St_err" = st_err0105_L2)
meta_L2_1<-rma(coef,sei=St_err,data=resL2_1)
#Forestplot
forest(meta_L2_1, slab = resL1_1$ville, refline=1,xlab="Lag 2", transf = exp, digits=4L)
meta_0105_L2 <- mvmeta(y0105_L2,S0105_L2,method="ml")
summary(meta_0105_L2)
## Call: mvmeta(formula = y0105_L2 ~ 1, S = S0105_L2, method = "ml")
##
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0002 0.0001 1.8595 0.0630 -0.0000 0.0004 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Std. Dev
## 0.0000
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 11.4551 (df = 12), p-value = 0.4904
## I-square statistic = 1.0%
##
## 13 studies, 13 observations, 1 fixed and 1 random-effects parameters
## logLik AIC BIC
## 82.3687 -160.7374 -159.6076
Second Period:
resL2_2 <- data.frame("ville"=villes_name,"coef" = as.numeric(as.character(tot0610[, 8])),"St_err" = st_err0610_L2)
meta_L2_2<-rma(coef,sei=St_err,data=resL2_2)
#Forestplot
forest(meta_L2_2, slab = resL2_2$ville, refline=1,xlab="Lag 2",transf = exp, digits=4L)
meta_0610_L2 <- mvmeta(y0610_L2,S0610_L2,method="ml")
summary(meta_0610_L2)
## Call: mvmeta(formula = y0610_L2 ~ 1, S = S0610_L2, method = "ml")
##
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0002 0.0001 1.3253 0.1851 -0.0001 0.0004
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Std. Dev
## 0.0002
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 19.9531 (df = 15), p-value = 0.1737
## I-square statistic = 24.8%
##
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
## logLik AIC BIC
## 97.8582 -191.7164 -190.1712
Third Period:
resL2_3 <- data.frame("ville"=villes_name,"coef" = as.numeric(as.character(tot1115[, 8])),"St_err" = st_err1115_L2)
meta_L2_3<-rma(coef,sei=St_err,data=resL1_3)
#Forestplot
forest(meta_L2_3, slab = resL2_3$ville, refline=1,xlab="Lag 2",transf = exp, digits=4L)
meta_1115_L2 <- mvmeta(y1115_L2,S1115_L2,method="ml")
summary(meta_1115_L2)
## Call: mvmeta(formula = y1115_L2 ~ 1, S = S1115_L2, method = "ml")
##
## Univariate random-effects meta-analysis
## Dimension: 1
## Estimation method: ML
##
## Fixed-effects coefficients
## Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub
## (Intercept) 0.0004 0.0001 4.2984 0.0000 0.0002 0.0006 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Between-study random-effects (co)variance components
## Std. Dev
## 0.0000
##
## Univariate Cochran Q-test for heterogeneity:
## Q = 10.9673 (df = 15), p-value = 0.7549
## I-square statistic = 1.0%
##
## 16 studies, 16 observations, 1 fixed and 1 random-effects parameters
## logLik AIC BIC
## 102.7181 -201.4362 -199.8910
####Results for Lag0
L0<-matrix(NA,nrow=16,ncol=12)
colnames(L0)<-c("villes","Period1","P1_CI95_Low","P1_CI95_High","Period2","P2_CI95_Low","P2_CI95_High","Period3","P3_CI95_Low","P3_CI95_High","Temp_Change1_2","Temp_Change2_3")
L0<-as.data.frame(L0)
L0[,1]<-names(villes)
L0[which(L0$villes %in% names(villesG1)),]$Period1<-exp(tot0105$Coefficient_L0*10)
L0$Period2<-exp(tot0610$Coefficient_L0*10)
L0$Period3<-exp(tot1115$Coefficient_L0*10)
L0[which(L0$villes %in% names(villesG1)),]$P1_CI95_Low<-exp(tot0105$L0_CI95_Low*10)
L0$P2_CI95_Low<-exp(tot0610$L0_CI95_Low*10)
L0$P3_CI95_Low<-exp(tot1115$L0_CI95_Low*10)
L0[which(L0$villes %in% names(villesG1)),]$P1_CI95_High<-exp(tot0105$L0_CI95_High*10)
L0$P2_CI95_High<-exp(tot0610$L0_CI95_High*10)
L0$P3_CI95_High<-exp(tot1115$L0_CI95_High*10)
L0[which(L0$villes %in% names(villesG1)),]$Temp_Change1_2<-(exp(tot0610[which(tot0610$Ville %in% names(villesG1)),]$Coefficient_L0*10)-exp(tot0105$Coefficient_L0*10))*100
L0$Temp_Change2_3<-(exp(tot1115$Coefficient_L0*10)-exp(tot0610$Coefficient_L0*10))*100
L0[,2:12]<-round(L0[,2:12],digits = 3)
kable(L0) %>% kable_styling(bootstrap_options = c("hover", "condensed"),full_width = F, position = "center")%>% add_header_above(c(" ", "Period 1" = 3, "Period 2" = 3, "Period 3"=3, "Temporal Change (%)"=2))%>%column_spec(1, bold = T, border_right = T)%>%
column_spec(4, border_right = T)%>%
column_spec(7, border_right = T)%>%
column_spec(10, border_right = T)
| villes | Period1 | P1_CI95_Low | P1_CI95_High | Period2 | P2_CI95_Low | P2_CI95_High | Period3 | P3_CI95_Low | P3_CI95_High | Temp_Change1_2 | Temp_Change2_3 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| bordeaux | 0.997 | 0.988 | 1.007 | 1.004 | 0.994 | 1.014 | 0.999 | 0.991 | 1.008 | 0.700 | -0.501 |
| clermont | 1.005 | 0.992 | 1.017 | 1.000 | 0.987 | 1.013 | 1.001 | 0.989 | 1.013 | -0.501 | 0.100 |
| grenoble | 1.002 | 0.992 | 1.011 | 1.006 | 0.996 | 1.016 | 0.999 | 0.990 | 1.009 | 0.402 | -0.702 |
| lehavre | 0.996 | 0.983 | 1.009 | 1.000 | 0.987 | 1.014 | 1.005 | 0.992 | 1.018 | 0.399 | 0.501 |
| lille | 1.000 | 0.994 | 1.006 | 1.002 | 0.995 | 1.009 | 1.004 | 0.997 | 1.011 | 0.200 | 0.201 |
| lyon | NA | NA | NA | 1.002 | 0.995 | 1.009 | 1.003 | 0.997 | 1.010 | NA | 0.100 |
| marseille | 1.006 | 1.000 | 1.013 | 1.004 | 0.998 | 1.011 | 1.005 | 0.999 | 1.012 | -0.201 | 0.100 |
| montpellier | 1.005 | 0.994 | 1.016 | 1.004 | 0.992 | 1.017 | 0.999 | 0.987 | 1.012 | -0.100 | -0.501 |
| nancy | NA | NA | NA | 0.994 | 0.983 | 1.006 | 1.000 | 0.989 | 1.011 | NA | 0.598 |
| nantes | 0.994 | 0.984 | 1.004 | 0.996 | 0.986 | 1.007 | 1.004 | 0.995 | 1.014 | 0.199 | 0.800 |
| nice | NA | NA | NA | 1.006 | 0.997 | 1.016 | 0.994 | 0.984 | 1.004 | NA | -1.200 |
| paris | 1.000 | 0.997 | 1.003 | 1.002 | 0.999 | 1.006 | 1.003 | 1.000 | 1.006 | 0.200 | 0.100 |
| rennes | 1.002 | 0.986 | 1.018 | 0.998 | 0.981 | 1.015 | 1.004 | 0.989 | 1.020 | -0.400 | 0.601 |
| rouen | 1.003 | 0.993 | 1.013 | 1.005 | 0.995 | 1.016 | 1.005 | 0.996 | 1.015 | 0.201 | 0.000 |
| strasbourg | 0.996 | 0.987 | 1.005 | 0.996 | 0.987 | 1.005 | 1.004 | 0.995 | 1.013 | 0.000 | 0.800 |
| toulouse | 1.004 | 0.994 | 1.014 | 0.988 | 0.978 | 0.999 | 1.008 | 0.998 | 1.018 | -1.594 | 1.996 |
#write_xlsx(L0,"C:/Users/Anna/Dropbox/Leo/change DR curves/results/Ozone/L0_periods.xlsx")
resL0 <- data.frame("Period1" = as.numeric(as.character(meta_L0_1$b)),"Period2" = as.numeric(as.character(meta_L0_2$b)),"Period3"=as.numeric(as.character(meta_L0_3$b)))
resL0$change12<-(exp(resL0$Period2*10)-exp(resL0$Period1*10))*100
resL0$change23<-(exp(resL0$Period3*10)-exp(resL0$Period2*10))*100
resL0[1:3]<-exp(resL0[1:3])
kable(resL0)%>% kable_styling(bootstrap_options = c("hover", "condensed"),full_width = F, position = "center")
| Period1 | Period2 | Period3 | change12 | change23 |
|---|---|---|---|---|
| 1.000061 | 1.000162 | 1.000289 | 0.1003545 | 0.1270233 |
####Results for Lag1
| villes | Period1 | P1_CI95_Low | P1_CI95_High | Period2 | P2_CI95_Low | P2_CI95_High | Period3 | P3_CI95_Low | P3_CI95_High | Temp_Change1_2 | Temp_Change2_3 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| bordeaux | 1.001 | 0.992 | 1.010 | 1.009 | 1.000 | 1.019 | 1.003 | 0.995 | 1.012 | 0.804 | -0.604 |
| clermont | 1.005 | 0.992 | 1.018 | 0.991 | 0.978 | 1.004 | 1.005 | 0.993 | 1.017 | -1.397 | 1.397 |
| grenoble | 0.996 | 0.986 | 1.006 | 0.998 | 0.988 | 1.008 | 0.999 | 0.989 | 1.009 | 0.199 | 0.100 |
| lehavre | 1.000 | 0.987 | 1.013 | 0.997 | 0.984 | 1.010 | 1.013 | 1.000 | 1.026 | -0.300 | 1.608 |
| lille | 1.004 | 0.998 | 1.011 | 1.001 | 0.995 | 1.008 | 1.002 | 0.996 | 1.009 | -0.301 | 0.100 |
| lyon | NA | NA | NA | 1.006 | 0.999 | 1.013 | 1.003 | 0.997 | 1.010 | NA | -0.301 |
| marseille | 1.002 | 0.995 | 1.008 | 1.005 | 0.998 | 1.011 | 1.000 | 0.993 | 1.007 | 0.301 | -0.501 |
| montpellier | 1.007 | 0.995 | 1.018 | 1.005 | 0.993 | 1.018 | 1.010 | 0.998 | 1.022 | -0.201 | 0.504 |
| nancy | NA | NA | NA | 0.999 | 0.988 | 1.011 | 1.004 | 0.993 | 1.015 | NA | 0.501 |
| nantes | 0.999 | 0.989 | 1.009 | 1.011 | 1.000 | 1.021 | 1.008 | 0.998 | 1.017 | 1.206 | -0.303 |
| nice | NA | NA | NA | 1.011 | 1.001 | 1.020 | 1.004 | 0.994 | 1.015 | NA | -0.705 |
| paris | 1.002 | 0.999 | 1.005 | 1.003 | 1.000 | 1.006 | 1.004 | 1.001 | 1.007 | 0.100 | 0.100 |
| rennes | 0.995 | 0.979 | 1.011 | 0.996 | 0.979 | 1.013 | 0.993 | 0.978 | 1.009 | 0.100 | -0.298 |
| rouen | 1.003 | 0.993 | 1.013 | 1.009 | 0.999 | 1.019 | 1.007 | 0.998 | 1.017 | 0.604 | -0.202 |
| strasbourg | 1.002 | 0.994 | 1.011 | 0.991 | 0.982 | 1.000 | 1.007 | 0.999 | 1.016 | -1.096 | 1.598 |
| toulouse | 1.013 | 1.003 | 1.023 | 0.997 | 0.987 | 1.007 | 1.007 | 0.997 | 1.017 | -1.608 | 1.002 |
| Period1 | Period2 | Period3 | change12 | change23 |
|---|---|---|---|---|
| 1.000219 | 1.00025 | 1.000404 | 0.0311357 | 0.1539444 |
####Results for Lag2
| villes | Period1 | P1_CI95_Low | P1_CI95_High | Period2 | P2_CI95_Low | P2_CI95_High | Period3 | P3_CI95_Low | P3_CI95_High | Temp_Change1_2 | Temp_Change2_3 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| bordeaux | 1.000 | 0.991 | 1.009 | 1.005 | 0.995 | 1.014 | 1.005 | 0.996 | 1.013 | 0.501 | 0.000 |
| clermont | 1.012 | 0.999 | 1.025 | 0.999 | 0.986 | 1.011 | 1.006 | 0.994 | 1.018 | -1.307 | 0.702 |
| grenoble | 0.999 | 0.990 | 1.009 | 0.996 | 0.986 | 1.007 | 1.007 | 0.997 | 1.017 | -0.299 | 1.102 |
| lehavre | 1.001 | 0.989 | 1.013 | 0.999 | 0.986 | 1.012 | 1.008 | 0.996 | 1.021 | -0.200 | 0.903 |
| lille | 1.003 | 0.996 | 1.009 | 0.999 | 0.992 | 1.005 | 1.002 | 0.995 | 1.008 | -0.400 | 0.300 |
| lyon | NA | NA | NA | 1.001 | 0.994 | 1.007 | 1.006 | 0.999 | 1.013 | NA | 0.502 |
| marseille | 1.006 | 0.999 | 1.012 | 1.006 | 1.000 | 1.013 | 0.999 | 0.992 | 1.006 | 0.000 | -0.702 |
| montpellier | 1.013 | 1.002 | 1.024 | 0.994 | 0.981 | 1.006 | 1.008 | 0.996 | 1.020 | -1.907 | 1.401 |
| nancy | NA | NA | NA | 1.010 | 0.998 | 1.021 | 1.012 | 1.001 | 1.023 | NA | 0.202 |
| nantes | 1.001 | 0.991 | 1.010 | 1.009 | 0.999 | 1.020 | 1.005 | 0.996 | 1.014 | 0.804 | -0.403 |
| nice | NA | NA | NA | 1.007 | 0.997 | 1.017 | 1.005 | 0.994 | 1.015 | NA | -0.201 |
| paris | 1.000 | 0.997 | 1.003 | 0.999 | 0.996 | 1.003 | 1.003 | 1.000 | 1.006 | -0.100 | 0.400 |
| rennes | 0.992 | 0.976 | 1.007 | 0.992 | 0.976 | 1.009 | 0.992 | 0.977 | 1.007 | 0.000 | 0.000 |
| rouen | 0.999 | 0.990 | 1.009 | 1.010 | 1.000 | 1.020 | 1.006 | 0.996 | 1.015 | 1.105 | -0.403 |
| strasbourg | 1.003 | 0.994 | 1.012 | 0.994 | 0.985 | 1.003 | 1.007 | 0.998 | 1.016 | -0.899 | 1.301 |
| toulouse | 1.006 | 0.996 | 1.016 | 1.005 | 0.995 | 1.015 | 1.010 | 1.000 | 1.020 | -0.101 | 0.504 |
| Period1 | Period2 | Period3 | change12 | change23 |
|---|---|---|---|---|
| 1.000213 | 1.000165 | 1.000404 | -0.0475805 | 0.2390857 |
pol0105 <- seq(min(bound_o3_0105[,1]),max(bound_o3_0105[,2]),length=220)
pol0105 <- onebasis(pol0105,"lin")
pol0610 <- seq(min(bound_o3_0610[,1]),max(bound_o3_0610[,2]),length=220)
pol0610 <- onebasis(pol0610,"lin")
pol1115 <- seq(min(bound_o3_1115[,1]),max(bound_o3_1115[,2]),length=220)
pol1115 <- onebasis(pol1115,"lin")
plot_0105 <- crosspred(pol0105,coef=coef(meta_0105),vcov=vcov(meta_0105),model.link="log",by=1)
plot(plot_0105,"overall",ci="lines",col=1,lwd=3,ylab="RR",xlab="PM10",main="2001-2005")
plot_0610 <- crosspred(pol0610,coef=coef(meta_0610),vcov=vcov(meta_0610),model.link="log",by=1)
plot(plot_0610,"overall",ci="lines",col=1,lwd=3,ylab="RR",xlab="PM10",main="2006-2010")
plot_1115 <- crosspred(pol1115,coef=coef(meta_1115),vcov=vcov(meta_1115),model.link="log",by=1)
plot(plot_1115,"overall",ci="lines",col=1,lwd=3,ylab="RR",xlab="PM10",main="2011-2015")
plot_0105_L1 <- crosspred(pol0105,coef=coef(meta_0105_L1),vcov=vcov(meta_0105_L1),model.link="log",by=1)
plot(plot_0105_L1,"overall",ci="lines",col=1,lwd=3,ylab="RR",xlab="PM10_L1",main="2001-2005")
plot_0610_L1 <- crosspred(pol0610,coef=coef(meta_0610_L1),vcov=vcov(meta_0610_L1),model.link="log",by=1)
plot(plot_0610_L1,"overall",ci="lines",col=1,lwd=3,ylab="RR",xlab="PM10_L1",main="2006-2010")
plot_1115_L1 <- crosspred(pol1115,coef=coef(meta_1115_L1),vcov=vcov(meta_1115_L1),model.link="log",by=1)
plot(plot_1115_L1,"overall",ci="lines",col=1,lwd=3,ylab="RR",xlab="PM10_L1",main="2011-2015")
plot_0105_L2 <- crosspred(pol0105,coef=coef(meta_0105_L2),vcov=vcov(meta_0105_L2),model.link="log",by=1)
plot(plot_0105_L2,"overall",ci="lines",col=1,lwd=3,ylab="RR",xlab="PM10_L2",main="2001-2005")
plot_0610_L2 <- crosspred(pol0610,coef=coef(meta_0610_L2),vcov=vcov(meta_0610_L2),model.link="log",by=1)
plot(plot_0610_L2,"overall",ci="lines",col=1,lwd=3,ylab="RR",xlab="PM10_L2",main="2006-2010")
plot_1115_L2 <- crosspred(pol1115,coef=coef(meta_1115_L2),vcov=vcov(meta_1115_L2),model.link="log",by=1)
plot(plot_1115_L2,"overall",ci="lines",col=1,lwd=3,ylab="RR",xlab="PM10",main="2011-2015")
Lag 0
## Plot per city, exemple
i=1
par (mfrow=c(2,2),mar=c(1,1,3,1))
plot(pred0105[[i]],ci="lines",col=1,lwd=3,ylab="RR",xlab="o3",main="2001-2005")
plot(pred0610[[i]],ci="lines",col=1,lwd=3,ylab="RR",xlab="o3",main="2006-2010")
plot(pred1115[[i]],ci="lines",col=1,lwd=3,ylab="RR",xlab="o3",main="2011-2015")
Lag1
Lag2
Lag 0
Lag 1
Lag 2
Lag 0
Lag 1
Lag 2
Lag 0
Lag 1
Lag 2
Lag 0
Lag 1
Lag 2
Lag 0
Lag 1
Lag 2
Lag 0
Lag 1
Lag 2
Lag 0
Lag 1
Lag 2
Lag 0
Lag 1
Lag 2
Lag 0
Lag 1
Lag 2
Lag 0
Lag 1
Lag 2
Lag 0
Lag 1
Lag 2
Lag 0
Lag 1
Lag 2
Lag 0
Lag 1
Lag 2
Lag 0
Lag 1
Lag 2
Lag 0
Lag 1
Lag 2