Regresiones de Poisson Univariadas para WHO.modified

Aca están las modelos de WHO.modified considerandola como variable de conteo Son regresiones univariadas

load("~/Dropbox/odontologia/maestria_anunziatta/julio2013/datos_tana_25072013.RData")


library(survey)
## Attaching package: 'survey'
## The following object(s) are masked from 'package:graphics':
## 
## dotchart
# domingo 28 de julio 2013

# WHO.modified

modelo6.poi <- svyglm(WHO.modified ~ Sexo.rec, diseniopost1, family = quasipoisson())

summary(modelo6.poi)
## 
## Call:
## svyglm(formula = WHO.modified ~ Sexo.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.0580     0.1070    9.89  4.7e-12 ***
## Sexo.rec2-F  -0.0267     0.1048   -0.25      0.8    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.387)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo6.poi)
##               2.5 % 97.5 %
## (Intercept)  0.8483 1.2677
## Sexo.rec2-F -0.2321 0.1788
modelo7.poi <- svyglm(WHO.modified ~ Nivel.Socieconomico.rec, diseniopost1, 
    family = quasipoisson())



summary(modelo7.poi)
## 
## Call:
## svyglm(formula = WHO.modified ~ Nivel.Socieconomico.rec, diseniopost1, 
##     family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                       0.705      0.167    4.21  0.00016 ***
## Nivel.Socieconomico.rec2-MEDIO    0.470      0.144    3.27  0.00235 ** 
## Nivel.Socieconomico.rec3-BAJO     0.475      0.204    2.33  0.02547 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.275)
## 
## Number of Fisher Scoring iterations: 6
confint(modelo7.poi)
##                                  2.5 % 97.5 %
## (Intercept)                    0.37706 1.0336
## Nivel.Socieconomico.rec2-MEDIO 0.18785 0.7513
## Nivel.Socieconomico.rec3-BAJO  0.07508 0.8743



modelo8.poi <- svyglm(WHO.modified ~ Nivel.Educativo.de.la.Madre1.rec, diseniopost1, 
    family = quasipoisson())

summary(modelo8.poi)
## 
## Call:
## svyglm(formula = WHO.modified ~ Nivel.Educativo.de.la.Madre1.rec, 
##     diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                                     Estimate Std. Error
## (Intercept)                                            0.514      0.240
## Nivel.Educativo.de.la.Madre1.rec2-High School          0.482      0.187
## Nivel.Educativo.de.la.Madre1.rec3-Elementary School    0.659      0.242
##                                                     t value Pr(>|t|)   
## (Intercept)                                            2.14   0.0389 * 
## Nivel.Educativo.de.la.Madre1.rec2-High School          2.57   0.0142 * 
## Nivel.Educativo.de.la.Madre1.rec3-Elementary School    2.72   0.0099 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.229)
## 
## Number of Fisher Scoring iterations: 6
confint(modelo8.poi)
##                                                       2.5 % 97.5 %
## (Intercept)                                         0.04355 0.9844
## Nivel.Educativo.de.la.Madre1.rec2-High School       0.11502 0.8495
## Nivel.Educativo.de.la.Madre1.rec3-Elementary School 0.18406 1.1335

modelo9.poi <- svyglm(WHO.modified ~ Tipo.de.Escuela.rec, diseniopost1, family = quasipoisson())

summary(modelo9.poi)
## 
## Call:
## svyglm(formula = WHO.modified ~ Tipo.de.Escuela.rec, diseniopost1, 
##     family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                    0.6712     0.0837    8.02  1.1e-09 ***
## Tipo.de.Escuela.rec2-Publica   0.4814     0.1211    3.97    3e-04 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.246)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo9.poi)
##                               2.5 % 97.5 %
## (Intercept)                  0.5072 0.8352
## Tipo.de.Escuela.rec2-Publica 0.2440 0.7188

modelo11.poi <- svyglm(WHO.modified ~ AtenOdonto2.rec, diseniopost1, family = quasipoisson())

summary(modelo11.poi)
## 
## Call:
## svyglm(formula = WHO.modified ~ AtenOdonto2.rec, diseniopost1, 
##     family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                         Estimate Std. Error t value
## (Intercept)                                0.914      0.113    8.06
## AtenOdonto2.rec2-publica                   0.272      0.140    1.94
## AtenOdonto2.rec3-nunca fue al dentista     0.359      0.168    2.14
##                                         Pr(>|t|)    
## (Intercept)                              1.1e-09 ***
## AtenOdonto2.rec2-publica                   0.060 .  
## AtenOdonto2.rec3-nunca fue al dentista     0.039 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.337)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo11.poi)
##                                             2.5 % 97.5 %
## (Intercept)                              0.691978 1.1365
## AtenOdonto2.rec2-publica                -0.002697 0.5472
## AtenOdonto2.rec3-nunca fue al dentista   0.030006 0.6871




modelo12.poi <- svyglm(WHO.modified ~ FrCepDenti.4.rec, diseniopost1, family = quasipoisson())


summary(modelo12.poi)
## 
## Call:
## svyglm(formula = WHO.modified ~ FrCepDenti.4.rec, diseniopost1, 
##     family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                        Estimate Std. Error t value
## (Intercept)                               1.329      0.162    8.21
## FrCepDenti.4.rec2-1 vez al dias          -0.192      0.209   -0.92
## FrCepDenti.4.rec3-2 veces al dia         -0.284      0.196   -1.45
## FrCepDenti.4.rec4-3 veces al dia o mas   -0.363      0.202   -1.80
##                                        Pr(>|t|)    
## (Intercept)                               9e-10 ***
## FrCepDenti.4.rec2-1 vez al dias           0.364    
## FrCepDenti.4.rec3-2 veces al dia          0.156    
## FrCepDenti.4.rec4-3 veces al dia o mas    0.081 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.19)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo12.poi)
##                                          2.5 %  97.5 %
## (Intercept)                             1.0118 1.64604
## FrCepDenti.4.rec2-1 vez al dias        -0.6025 0.21791
## FrCepDenti.4.rec3-2 veces al dia       -0.6681 0.09982
## FrCepDenti.4.rec4-3 veces al dia o mas -0.7593 0.03291



modelo13.poi <- svyglm(WHO.modified ~ UsoDentifrico3.rec, diseniopost1, family = quasipoisson())



summary(modelo13.poi)
## 
## Call:
## svyglm(formula = WHO.modified ~ UsoDentifrico3.rec, diseniopost1, 
##     family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              1.0445     0.0724   14.43   <2e-16 ***
## UsoDentifrico3.rec2-No  -0.0946     0.3083   -0.31     0.76    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.376)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo13.poi)
##                          2.5 % 97.5 %
## (Intercept)             0.9027 1.1863
## UsoDentifrico3.rec2-No -0.6989 0.5097

modelo14.poi <- svyglm(WHO.modified ~ FluorProf.rec, diseniopost1, family = quasipoisson())

summary(modelo14.poi)
## 
## Call:
## svyglm(formula = WHO.modified ~ FluorProf.rec, diseniopost1, 
##     family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         1.0621     0.1022   10.39  1.2e-12 ***
## FluorProf.rec2-No  -0.0447     0.1081   -0.41     0.68    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.182)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo14.poi)
##                     2.5 % 97.5 %
## (Intercept)        0.8617 1.2625
## FluorProf.rec2-No -0.2565 0.1672


modelo15.poi <- svyglm(WHO.modified ~ RefrColaB.rec, diseniopost1, family = quasipoisson())

summary(modelo15.poi)
## 
## Call:
## svyglm(formula = WHO.modified ~ RefrColaB.rec, diseniopost1, 
##     family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                        1.2066     0.0986   12.24  1.4e-14 ***
## RefrColaB.rec2-A veces            -0.2035     0.0809   -2.51    0.016 *  
## RefrColaB.rec3-Nunca o raramente  -0.2658     0.1439   -1.85    0.073 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.303)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo15.poi)
##                                    2.5 %   97.5 %
## (Intercept)                       1.0134  1.39975
## RefrColaB.rec2-A veces           -0.3621 -0.04485
## RefrColaB.rec3-Nunca o raramente -0.5478  0.01613


modelo16.poi <- svyglm(WHO.modified ~ MateDulceB.rec, diseniopost1, family = quasipoisson())

summary(modelo16.poi)
## 
## Call:
## svyglm(formula = WHO.modified ~ MateDulceB.rec, diseniopost1, 
##     family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                          1.126      0.156    7.21  1.5e-08 ***
## MateDulceB.rec2-A veces              0.129      0.195    0.66     0.51    
## MateDulceB.rec3-Nunca o raramente   -0.194      0.136   -1.43     0.16    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.222)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo16.poi)
##                                     2.5 %  97.5 %
## (Intercept)                        0.8197 1.43198
## MateDulceB.rec2-A veces           -0.2536 0.51247
## MateDulceB.rec3-Nunca o raramente -0.4603 0.07196

modelo17.poi <- svyglm(WHO.modified ~ GolosinasB.rec, diseniopost1, family = quasipoisson())

summary(modelo17.poi)
## 
## Call:
## svyglm(formula = WHO.modified ~ GolosinasB.rec, diseniopost1, 
##     family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                          1.214      0.132    9.19  4.4e-11 ***
## GolosinasB.rec2-A veces             -0.191      0.106   -1.80    0.080 .  
## GolosinasB.rec3-Nunca o raramente   -0.370      0.155   -2.39    0.022 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.252)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo17.poi)
##                                     2.5 %   97.5 %
## (Intercept)                        0.9554  1.47343
## GolosinasB.rec2-A veces           -0.3983  0.01716
## GolosinasB.rec3-Nunca o raramente -0.6734 -0.06602


modelo19.poi <- svyglm(WHO.modified ~ Masas.DulcesB.rec, diseniopost1, family = quasipoisson())

summary(modelo19.poi)
## 
## Call:
## svyglm(formula = WHO.modified ~ Masas.DulcesB.rec, diseniopost1, 
##     family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)                            1.2238     0.1112   11.01  3.1e-13
## Masas.DulcesB.rec2-A veces            -0.1978     0.0939   -2.11    0.042
## Masas.DulcesB.rec3-Nunca o raramente  -0.2908     0.1724   -1.69    0.100
##                                         
## (Intercept)                          ***
## Masas.DulcesB.rec2-A veces           *  
## Masas.DulcesB.rec3-Nunca o raramente    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.312)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo19.poi)
##                                        2.5 %   97.5 %
## (Intercept)                           1.0059  1.44168
## Masas.DulcesB.rec2-A veces           -0.3818 -0.01369
## Masas.DulcesB.rec3-Nunca o raramente -0.6288  0.04714


modelo20.poi <- svyglm(WHO.modified ~ UltmVisita1.rec, diseniopost1, family = quasipoisson())

summary(modelo20.poi)
## 
## Call:
## svyglm(formula = WHO.modified ~ UltmVisita1.rec, diseniopost1, 
##     family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                        Estimate Std. Error t value
## (Intercept)                              0.9907     0.0999    9.92
## UltmVisita1.rec2- años atrás             0.1389     0.1906    0.73
## UltmVisita1.rec3-Nunca fue al dentista   0.2827     0.1530    1.85
##                                        Pr(>|t|)    
## (Intercept)                             5.7e-12 ***
## UltmVisita1.rec2- años atrás              0.471    
## UltmVisita1.rec3-Nunca fue al dentista    0.073 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.316)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo20.poi)
##                                           2.5 % 97.5 %
## (Intercept)                             0.79498 1.1865
## UltmVisita1.rec2- años atrás           -0.23461 0.5123
## UltmVisita1.rec3-Nunca fue al dentista -0.01712 0.5825





modelo21.poi <- svyglm(WHO.modified ~ IGS.rec1, diseniopost1, family = quasipoisson())


summary(modelo21.poi)
## 
## Call:
## svyglm(formula = WHO.modified ~ IGS.rec1, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             0.954      0.116    8.23  7.1e-10 ***
## IGS.rec12-De 20 a 60    0.132      0.126    1.05   0.3010    
## IGS.rec13-Mas de 60     0.361      0.122    2.95   0.0054 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.359)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo21.poi)
##                        2.5 % 97.5 %
## (Intercept)           0.7270 1.1818
## IGS.rec12-De 20 a 60 -0.1151 0.3801
## IGS.rec13-Mas de 60   0.1214 0.6001



modelo22.poi <- svyglm(WHO.modified ~ Nive.Educativo.de.la.Madre2.rec, diseniopost1, 
    family = quasipoisson())

summary(modelo22.poi)
## 
## Call:
## svyglm(formula = WHO.modified ~ Nive.Educativo.de.la.Madre2.rec, 
##     diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                                     Estimate Std. Error
## (Intercept)                                            0.763      0.211
## Nive.Educativo.de.la.Madre2.rec2-HIGH SCHOOL           0.296      0.184
## Nive.Educativo.de.la.Madre2.rec3-ELEMENTARY SCHOOL     0.492      0.244
##                                                     t value Pr(>|t|)    
## (Intercept)                                            3.62  0.00088 ***
## Nive.Educativo.de.la.Madre2.rec2-HIGH SCHOOL           1.61  0.11638    
## Nive.Educativo.de.la.Madre2.rec3-ELEMENTARY SCHOOL     2.02  0.05077 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 3.255)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo22.poi)
##                                                        2.5 % 97.5 %
## (Intercept)                                          0.35011 1.1768
## Nive.Educativo.de.la.Madre2.rec2-HIGH SCHOOL        -0.06473 0.6558
## Nive.Educativo.de.la.Madre2.rec3-ELEMENTARY SCHOOL   0.01440 0.9695