load("data/TSIcor.rda")
cor(TSIcor %>%
select(aa, ie, sleeph, cwt, ldfr, CVLT1t5, ps3,
ps4, wm3, wm4),
use = "pairwise.complete.obs") %>%
round(2)
## aa ie sleeph cwt ldfr CVLT1t5 ps3 ps4 wm3 wm4
## aa 1.00 0.72 -0.14 -0.13 -0.16 -0.09 -0.17 -0.22 -0.11 -0.16
## ie 0.72 1.00 -0.18 -0.19 -0.18 -0.10 -0.22 -0.23 -0.18 -0.18
## sleeph -0.14 -0.18 1.00 0.02 0.10 0.07 -0.35 0.06 -0.02 0.05
## cwt -0.13 -0.19 0.02 1.00 0.30 0.19 0.46 0.51 0.34 0.28
## ldfr -0.16 -0.18 0.10 0.30 1.00 0.71 0.23 0.28 0.19 0.24
## CVLT1t5 -0.09 -0.10 0.07 0.19 0.71 1.00 0.15 0.26 0.15 0.33
## ps3 -0.17 -0.22 -0.35 0.46 0.23 0.15 1.00 0.94 0.36 0.95
## ps4 -0.22 -0.23 0.06 0.51 0.28 0.26 0.94 1.00 0.93 0.45
## wm3 -0.11 -0.18 -0.02 0.34 0.19 0.15 0.36 0.93 1.00 0.92
## wm4 -0.16 -0.18 0.05 0.28 0.24 0.33 0.95 0.45 0.92 1.00
No significant relationships found between variables, >.36 Highest correlations found between variables of interest: -hours of sleep and processing speed on the WAIS III (-0.35) -intrusive experience and processing speed on the WAIS IV (-0.23) -anxious arousal/intrusive experience and processing speed on the WAIS III and IV (-0.22)
ggplot(TSIcor, aes(x = ie, y = ps3)) +
geom_smooth(se = 0) +
geom_jitter(size = 0.5)
ggplot(TSIcor, aes(x = aa, y = ps4)) +
geom_smooth(se = 0) +
geom_jitter(size = 0.5)
TSIcor %>%
group_by(probfsl) %>%
summarize (
avg_ps3 = mean(ps3, na.rm = TRUE)
)
## # A tibble: 3 x 2
## probfsl avg_ps3
## * <chr> <dbl>
## 1 N 94
## 2 Y 93.8
## 3 <NA> 96.0
Not sure yet how to quantify the Y/N question regarding “trouble sleeping”. Maybe tally reported sleep problems into a score from 0-3? (if individual reports nightmares, trouble falling asleep, and waking in sweat, they geta score of 3. Reports no problems and gets a score of 0)