Deep-learning models and time series models for forecasting Covid-19 infection cases deaths, and Recovery in Chelyabinsk region"

That algorithm contains the best 5 models for forecasting Covid 19 deaths cases in Chelyabinsk region

South Ural State University

Makarovskikh Tatyana Anatolyevna “Макаровских Татьяна Анатольевна”

Abotaleb mostafa “Аботалеб Мостафа”

Department of Electrical Engineering and Computer Science

South ural state university, Chelyabinsk, Russian federation

#Import
library(fpp2)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## -- Attaching packages ---------------------------------------------- fpp2 2.4 --
## v ggplot2   3.3.2     v fma       2.4  
## v forecast  8.13      v expsmooth 2.3
## 
library(forecast)
library(ggplot2)
library("readxl")
library(moments)
library(forecast)
require(forecast)  
require(tseries)
## Loading required package: tseries
require(markovchain)
## Loading required package: markovchain
## Package:  markovchain
## Version:  0.8.5-3
## Date:     2020-12-03
## BugReport: https://github.com/spedygiorgio/markovchain/issues
require(data.table)
## Loading required package: data.table
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## 
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
## 
##     format.pval, units
##Global vriable##
Full_original_data <- read.csv("F:/Phd/University Conference/Chelyabinsk covid 19 data.csv") # path of your data ( time series data)
View(Full_original_data)
original_data<-Full_original_data$Deaths
y_lab <- "Covid 19 deaths cases in Chelyabinsk"   # input name of data
Actual_date_interval <- c("2020/03/12","2021/02/22")
Forecast_date_interval <- c("2021/02/23","2021/03/1")
validation_data_days <-7
frequency<-"day"
Population <-1130319 # population in Spain ( population size for SIR Model)
country.name <- "Chelyabinsk"
# Data Preparation & calculate some of statistics measures
View(original_data) # View data in table in R
summary(original_data) # Summary your time series
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##     0.0    27.5   104.5   212.4   265.5   963.0
describe((original_data)) # describe your time series
## (original_data) 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      348        0      172    0.997    212.4    255.3      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     27.5    104.5    265.5    662.7    822.5 
## 
## lowest :   0   1   2   3   4, highest: 937 942 950 957 963
# calculate standard deviation 
library(pastecs)
## 
## Attaching package: 'pastecs'
## The following objects are masked from 'package:data.table':
## 
##     first, last
stat.desc(original_data)
##      nbr.val     nbr.null       nbr.na          min          max        range 
##    348.00000     48.00000      0.00000      0.00000    963.00000    963.00000 
##          sum       median         mean      SE.mean CI.mean.0.95          var 
##  73923.00000    104.50000    212.42241     13.84026     27.22136  66660.38301 
##      std.dev     coef.var 
##    258.18672      1.21544
data.frame(skewness=skewness(original_data))  # calculate Cofficient of skewness
##   skewness
## 1 1.486538
data.frame(kurtosis=kurtosis(original_data))   # calculate Cofficient of kurtosis
##   kurtosis
## 1 4.038715
sd(original_data)
## [1] 258.1867
#processing on data (input data)
rows <- NROW(original_data) # calculate number of rows in time series (number of days)
training_data<-original_data[1:(rows-validation_data_days)] # Training data
testing_data<-original_data[(rows-validation_data_days+1):rows] #testing data
AD<-fulldate<-seq(as.Date(Actual_date_interval[1]),as.Date(Actual_date_interval[2]), frequency)  #input range for actual date
FD<-seq(as.Date(Forecast_date_interval[1]),as.Date(Forecast_date_interval[2]), frequency)  #input range forecasting date
N_forecasting_days<-nrow(data.frame(FD))  #calculate number of days that you want to forecasting
validation_dates<-tail(AD,validation_data_days) # select validation_dates
validation_data_by_name<-weekdays(validation_dates) # put names of validation dates
forecasting_data_by_name<-weekdays(FD)  # put names of Forecasting dates
#NNAR Model 
data_series<-ts(training_data)
model_NNAR<-nnetar(data_series, size = 5)
saveRDS(model_NNAR, file = "model_NNAR.RDS")
my_model <- readRDS("model_NNAR.RDS")
accuracy(model_NNAR)  # accuracy on training data
##                        ME     RMSE      MAE  MPE MAPE      MASE      ACF1
## Training set 2.461123e-05 2.160404 1.341017 -Inf  Inf 0.4977575 0.2099648
#Print Model Parameters
model_NNAR
## Series: data_series 
## Model:  NNAR(1,5) 
## Call:   nnetar(y = data_series, size = 5)
## 
## Average of 20 networks, each of which is
## a 1-5-1 network with 16 weights
## options were - linear output units 
## 
## sigma^2 estimated as 4.667
# Testing Data Evaluation
forecasting_NNAR <- predict(model_NNAR, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_NNAR$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using NNAR Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 day by using NNAR Model for  ==>  Covid 19 deaths cases in Chelyabinsk"
MAPE_Mean_All<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_Mean_All_NNAR<-round(mean(MAPE_Per_Day),3)
MAPE_NNAR<-paste(round(MAPE_Per_Day,3),"%")
MAPE_NNAR_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in NNAR Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in NNAR Model for  ==>  Covid 19 deaths cases in Chelyabinsk"
paste(MAPE_Mean_All,"%")
## [1] "0.547 % MAPE  7 day Covid 19 deaths cases in Chelyabinsk %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in NNAR Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in NNAR Model for  ==>  Covid 19 deaths cases in Chelyabinsk"
data.frame(date_NNAR=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_NNAR=validation_forecast,MAPE_NNAR_Model)
##    date_NNAR validation_data_by_name actual_data forecasting_NNAR
## 1 2021-02-16                 Tuesday         924         922.5074
## 2 2021-02-17               Wednesday         930         928.5100
## 3 2021-02-18                Thursday         937         934.0104
## 4 2021-02-19                  Friday         942         939.0193
## 5 2021-02-20                Saturday         950         943.5538
## 6 2021-02-21                  Sunday         957         947.6364
## 7 2021-02-22                  Monday         963         951.2937
##   MAPE_NNAR_Model
## 1         0.162 %
## 2          0.16 %
## 3         0.319 %
## 4         0.316 %
## 5         0.679 %
## 6         0.978 %
## 7         1.216 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_NNAR=tail(forecasting_NNAR$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_NNAR
## 1 2021-02-23         Tuesday            954.5548
## 2 2021-02-24       Wednesday            957.4505
## 3 2021-02-25        Thursday            960.0119
## 4 2021-02-26          Friday            962.2699
## 5 2021-02-27        Saturday            964.2544
## 6 2021-02-28          Sunday            965.9939
## 7 2021-03-01          Monday            967.5148
plot(forecasting_NNAR)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_NNAR,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph1

saveRDS(model_NNAR, file = "model_NNAR.RDS")
## Error of forecasting
Error_NNAR<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_NNAR<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_NNAR<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_NNAR<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_NNAR<-sqrt(sum((Error_NNAR^2))/validation_data_days)   #  Root mean square forecast error
MSE_NNAR<-(sum((Error_NNAR^2))/validation_data_days)   #  Root mean square forecast error
MAD_NNAR<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_NNAR<-c(Error_NNAR)
REOF_ANNAR<-c(paste(round(REOF_A_NNAR,3),"%"))
REOF_FNNAR<-c(paste(round(REOF_F_NNAR,3),"%"))
data.frame(correlation_NNAR,MSE_NNAR,RMSE_NNAR,MAPE_Mean_All,MAD_NNAR) # analysis of Error  by using NNAR Model shows result of correlation ,MSE ,MPER
##   correlation_NNAR MSE_NNAR RMSE_NNAR
## 1        0.9938404 41.21964  6.420252
##                                              MAPE_Mean_All MAD_NNAR
## 1 0.547 % MAPE  7 day Covid 19 deaths cases in Chelyabinsk 5.209861
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_NNAR,REOF_ANNAR,REOF_FNNAR)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_NNAR REOF_ANNAR REOF_FNNAR
## 1       2021-02-16             Tuesday  1.492579    0.162 %    0.162 %
## 2       2021-02-17           Wednesday  1.490048     0.16 %     0.16 %
## 3       2021-02-18            Thursday  2.989616    0.319 %     0.32 %
## 4       2021-02-19              Friday  2.980732    0.316 %    0.317 %
## 5       2021-02-20            Saturday  6.446217    0.679 %    0.683 %
## 6       2021-02-21              Sunday  9.363563    0.978 %    0.988 %
## 7       2021-02-22              Monday 11.706273    1.216 %    1.231 %
##bats model
# Data Modeling
data_series<-ts(training_data) # make your data to time series
autoplot(data_series ,xlab=paste ("Time in  ", frequency, sep=" "), ylab = y_lab, main=paste ("Actual Data :", y_lab, sep=" "))

model_bats<-bats(data_series)
accuracy(model_bats)  # accuracy on training data
##                     ME     RMSE      MAE MPE MAPE     MASE         ACF1
## Training set 0.1128668 2.163422 1.204211 Inf  Inf 0.446978 -0.004508876
# Print Model Parameters
model_bats
## BATS(1, {0,0}, 1, -)
## 
## Call: bats(y = data_series)
## 
## Parameters
##   Alpha: 1.030885
##   Beta: 0.2222292
##   Damping Parameter: 1
## 
## Seed States:
##              [,1]
## [1,]  0.009660588
## [2,] -0.033358967
## 
## Sigma: 2.163422
## AIC: 2522.965
#ploting BATS Model
plot(model_bats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4)

# Testing Data Evaluation
forecasting_bats <- predict(model_bats, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_bats$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 day by using bats Model for  ==>  Covid 19 deaths cases in Chelyabinsk"
MAPE_Mean_All.bats_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.bats<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_bats<-paste(round(MAPE_Per_Day,3),"%")
MAPE_bats_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in bats Model for  ==>  Covid 19 deaths cases in Chelyabinsk"
paste(MAPE_Mean_All.bats,"%")
## [1] "0.708 % MAPE  7 day Covid 19 deaths cases in Chelyabinsk %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in bats Model for  ==>  Covid 19 deaths cases in Chelyabinsk"
data.frame(date_bats=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_bats=validation_forecast,MAPE_bats_Model)
##    date_bats validation_data_by_name actual_data forecasting_bats
## 1 2021-02-16                 Tuesday         924         924.4592
## 2 2021-02-17               Wednesday         930         932.9789
## 3 2021-02-18                Thursday         937         941.4986
## 4 2021-02-19                  Friday         942         950.0183
## 5 2021-02-20                Saturday         950         958.5380
## 6 2021-02-21                  Sunday         957         967.0577
## 7 2021-02-22                  Monday         963         975.5775
##   MAPE_bats_Model
## 1          0.05 %
## 2          0.32 %
## 3          0.48 %
## 4         0.851 %
## 5         0.899 %
## 6         1.051 %
## 7         1.306 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_bats=tail(forecasting_bats$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_bats
## 1 2021-02-23         Tuesday            984.0972
## 2 2021-02-24       Wednesday            992.6169
## 3 2021-02-25        Thursday           1001.1366
## 4 2021-02-26          Friday           1009.6563
## 5 2021-02-27        Saturday           1018.1760
## 6 2021-02-28          Sunday           1026.6957
## 7 2021-03-01          Monday           1035.2154
plot(forecasting_bats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph1<-autoplot(forecasting_bats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph1

## Error of forecasting
Error_bats<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_bats<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_bats<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_bats<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_bats<-sqrt(sum((Error_bats^2))/validation_data_days)   #  Root mean square forecast error
MSE_bats<-(sum((Error_bats^2))/validation_data_days)   #  Root mean square forecast error
MAD_bats<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_bats<-c(Error_bats)
REOF_Abats<-c(paste(round(REOF_A_bats,3),"%"))
REOF_Fbats<-c(paste(round(REOF_F_bats,3),"%"))
data.frame(correlation_bats,MSE_bats,RMSE_bats,MAPE_Mean_All.bats_Model,MAD_bats) # analysis of Error  by using Bats Model shows result of correlation ,MSE ,MPER
##   correlation_bats MSE_bats RMSE_bats MAPE_Mean_All.bats_Model MAD_bats
## 1        0.9990562 60.83788  7.799864                    0.708 6.732625
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_bats,REOF_Abats,REOF_Fbats)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name  AEOF_bats REOF_Abats REOF_Fbats
## 1       2021-02-16             Tuesday  0.4592291     0.05 %     0.05 %
## 2       2021-02-17           Wednesday  2.9789326     0.32 %    0.319 %
## 3       2021-02-18            Thursday  4.4986362     0.48 %    0.478 %
## 4       2021-02-19              Friday  8.0183398    0.851 %    0.844 %
## 5       2021-02-20            Saturday  8.5380433    0.899 %    0.891 %
## 6       2021-02-21              Sunday 10.0577469    1.051 %     1.04 %
## 7       2021-02-22              Monday 12.5774505    1.306 %    1.289 %
## TBATS Model
# Data Modeling
data_series<-ts(training_data)
model_TBATS<-forecast:::fitSpecificTBATS(data_series,use.box.cox=FALSE, use.beta=TRUE,  seasonal.periods=c(6),use.damping=FALSE,k.vector=c(2))
accuracy(model_TBATS)  # accuracy on training data
##                     ME     RMSE      MAE MPE MAPE      MASE         ACF1
## Training set 0.1100632 2.147359 1.237981 NaN  Inf 0.4595125 -0.004931208
# Print Model Parameters
model_TBATS
## TBATS(1, {0,0}, 1, {<6,2>})
## 
## Call: NULL
## 
## Parameters
##   Alpha: 1.022415
##   Beta: 0.2265549
##   Damping Parameter: 1
##   Gamma-1 Values: -0.001642296
##   Gamma-2 Values: 0.001166739
## 
## Seed States:
##              [,1]
## [1,]  0.031251729
## [2,] -0.036238078
## [3,]  0.215435948
## [4,]  0.034530050
## [5,] -0.232526945
## [6,] -0.007323124
## 
## Sigma: 2.147359
## AIC: 2529.883
plot(model_TBATS,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)

# Testing Data Evaluation
forecasting_tbats <- predict(model_TBATS, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_tbats$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using TBATS Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 day by using TBATS Model for  ==>  Covid 19 deaths cases in Chelyabinsk"
MAPE_Mean_All.TBATS_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.TBATS<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_TBATS<-paste(round(MAPE_Per_Day,3),"%")
MAPE_TBATS_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in TBATS Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in TBATS Model for  ==>  Covid 19 deaths cases in Chelyabinsk"
paste(MAPE_Mean_All.TBATS,"%")
## [1] "0.682 % MAPE  7 day Covid 19 deaths cases in Chelyabinsk %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in TBATS Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in TBATS Model for  ==>  Covid 19 deaths cases in Chelyabinsk"
data.frame(date_TBATS=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_TBATS=validation_forecast,MAPE_TBATS_Model)
##   date_TBATS validation_data_by_name actual_data forecasting_TBATS
## 1 2021-02-16                 Tuesday         924          924.6090
## 2 2021-02-17               Wednesday         930          933.0580
## 3 2021-02-18                Thursday         937          941.1544
## 4 2021-02-19                  Friday         942          949.3860
## 5 2021-02-20                Saturday         950          958.0357
## 6 2021-02-21                  Sunday         957          966.7553
## 7 2021-02-22                  Monday         963          975.4094
##   MAPE_TBATS_Model
## 1          0.066 %
## 2          0.329 %
## 3          0.443 %
## 4          0.784 %
## 5          0.846 %
## 6          1.019 %
## 7          1.289 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_TBATS=tail(forecasting_tbats$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_TBATS
## 1 2021-02-23         Tuesday             983.8583
## 2 2021-02-24       Wednesday             991.9547
## 3 2021-02-25        Thursday            1000.1863
## 4 2021-02-26          Friday            1008.8360
## 5 2021-02-27        Saturday            1017.5556
## 6 2021-02-28          Sunday            1026.2097
## 7 2021-03-01          Monday            1034.6587
plot(forecasting_tbats)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph2<-autoplot(forecasting_tbats,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph2

## Error of forecasting TBATS Model
Error_tbats<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_tbats1<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_tbats<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_tbats<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_tbats<-sqrt(sum((Error_tbats^2))/validation_data_days)   #  Root mean square forecast error
MSE_tbats<-(sum((Error_tbats^2))/validation_data_days)   #  Root mean square forecast error
MAD_tbats<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_tbats<-c(Error_tbats)
REOF_A_tbats<-c(paste(round(REOF_A_tbats1,3),"%"))
REOF_F_tbats<-c(paste(round(REOF_F_tbats,3),"%"))
data.frame(correlation_tbats,MSE_tbats,RMSE_tbats,MAPE_Mean_All.TBATS_Model,MAD_tbats) # analysis of Error  by using TBATS model shows result of correlation ,MSE ,MPER
##   correlation_tbats MSE_tbats RMSE_tbats MAPE_Mean_All.TBATS_Model MAD_tbats
## 1         0.9992995  56.46622   7.514401                     0.682  6.486809
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_tbats,REOF_A_tbats,REOF_F_tbats)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_tbats REOF_A_tbats REOF_F_tbats
## 1       2021-02-16             Tuesday  0.6090139      0.066 %      0.066 %
## 2       2021-02-17           Wednesday  3.0579715      0.329 %      0.328 %
## 3       2021-02-18            Thursday  4.1543825      0.443 %      0.441 %
## 4       2021-02-19              Friday  7.3859627      0.784 %      0.778 %
## 5       2021-02-20            Saturday  8.0356712      0.846 %      0.839 %
## 6       2021-02-21              Sunday  9.7553042      1.019 %      1.009 %
## 7       2021-02-22              Monday 12.4093556      1.289 %      1.272 %
## Holt's linear trend
# Data Modeling
data_series<-ts(training_data)
model_holt<-holt(data_series,h=N_forecasting_days+validation_data_days,lambda = "auto")
accuracy(model_holt)  # accuracy on training data
##                      ME     RMSE     MAE MPE MAPE     MASE       ACF1
## Training set 0.06410443 2.172962 1.22817 NaN  Inf 0.455871 0.05254633
# Print Model Parameters
summary(model_holt$model)
## Holt's method 
## 
## Call:
##  holt(y = data_series, h = N_forecasting_days + validation_data_days,  
## 
##  Call:
##      lambda = "auto") 
## 
##   Box-Cox transformation: lambda= 0.7583 
## 
##   Smoothing parameters:
##     alpha = 0.9999 
##     beta  = 0.1952 
## 
##   Initial states:
##     l = -1.3226 
##     b = 3e-04 
## 
##   sigma:  0.6449
## 
##      AIC     AICc      BIC 
## 1695.493 1695.672 1714.652 
## 
## Training set error measures:
##                      ME     RMSE     MAE MPE MAPE     MASE       ACF1
## Training set 0.06410443 2.172962 1.22817 NaN  Inf 0.455871 0.05254633
# Testing Data Evaluation
forecasting_holt <- predict(model_holt, h=N_forecasting_days+validation_data_days,lambda = "auto")
validation_forecast<-head(forecasting_holt$mean,validation_data_days)
MAPE_Per_Day<-round(  abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using holt Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 day by using holt Model for  ==>  Covid 19 deaths cases in Chelyabinsk"
MAPE_Mean_All.Holt_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.Holt<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_holt<-paste(round(MAPE_Per_Day,3),"%")
MAPE_holt_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in holt Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in holt Model for  ==>  Covid 19 deaths cases in Chelyabinsk"
paste(MAPE_Mean_All.Holt,"%")
## [1] "0.812 % MAPE  7 day Covid 19 deaths cases in Chelyabinsk %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in holt Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in holt Model for  ==>  Covid 19 deaths cases in Chelyabinsk"
data.frame(date_holt=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_holt=validation_forecast,MAPE_holt_Model)
##    date_holt validation_data_by_name actual_data forecasting_holt
## 1 2021-02-16                 Tuesday         924         924.7117
## 2 2021-02-17               Wednesday         930         933.4431
## 3 2021-02-18                Thursday         937         942.1943
## 4 2021-02-19                  Friday         942         950.9651
## 5 2021-02-20                Saturday         950         959.7556
## 6 2021-02-21                  Sunday         957         968.5655
## 7 2021-02-22                  Monday         963         977.3949
##   MAPE_holt_Model
## 1         0.077 %
## 2          0.37 %
## 3         0.554 %
## 4         0.952 %
## 5         1.027 %
## 6         1.209 %
## 7         1.495 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_holt=tail(forecasting_holt$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_holt
## 1 2021-02-23         Tuesday            986.2435
## 2 2021-02-24       Wednesday            995.1114
## 3 2021-02-25        Thursday           1003.9985
## 4 2021-02-26          Friday           1012.9046
## 5 2021-02-27        Saturday           1021.8297
## 6 2021-02-28          Sunday           1030.7736
## 7 2021-03-01          Monday           1039.7364
plot(forecasting_holt)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph3<-autoplot(forecasting_holt,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph3

## Error of forecasting by using Holt's linear model
Error_Holt<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_Holt1<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_Holt<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_Holt<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_Holt<-sqrt(sum((Error_Holt^2))/validation_data_days)   #  Root mean square forecast error
MSE_Holt<-(sum((Error_Holt^2))/validation_data_days)   #  Root mean square forecast error
MAD_Holt<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_Holt<-c(Error_Holt)
REOF_A_Holt<-c(paste(round(REOF_A_Holt1,3),"%"))
REOF_F_Holt<-c(paste(round(REOF_F_Holt,3),"%"))
REOF_A_Holt11<-mean(abs(((testing_data-validation_forecast)/testing_data)*100))
data.frame(correlation_Holt,MSE_Holt,RMSE_Holt,MAPE_Mean_All.Holt_Model,MAD_Holt) # analysis of Error  by using Holt's linear model shows result of correlation ,MSE ,MPER
##   correlation_Holt MSE_Holt RMSE_Holt MAPE_Mean_All.Holt_Model MAD_Holt
## 1        0.9990907 79.40841   8.91114                    0.812 7.718589
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_Holt,REOF_A_Holt,REOF_F_Holt)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name  AEOF_Holt REOF_A_Holt REOF_F_Holt
## 1       2021-02-16             Tuesday  0.7117273     0.077 %     0.077 %
## 2       2021-02-17           Wednesday  3.4431027      0.37 %     0.369 %
## 3       2021-02-18            Thursday  5.1942626     0.554 %     0.551 %
## 4       2021-02-19              Friday  8.9651119     0.952 %     0.943 %
## 5       2021-02-20            Saturday  9.7555565     1.027 %     1.016 %
## 6       2021-02-21              Sunday 11.5655037     1.209 %     1.194 %
## 7       2021-02-22              Monday 14.3948614     1.495 %     1.473 %
#Auto arima model
##################
require(tseries) # need to install tseries tj test Stationarity in time series 
paste ("tests For Check Stationarity in series  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series  ==>  Covid 19 deaths cases in Chelyabinsk"
kpss.test(data_series) # applay kpss test
## Warning in kpss.test(data_series): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  data_series
## KPSS Level = 4.3099, Truncation lag parameter = 5, p-value = 0.01
pp.test(data_series)   # applay pp test
## Warning in pp.test(data_series): p-value greater than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  data_series
## Dickey-Fuller Z(alpha) = 3.5318, Truncation lag parameter = 5, p-value
## = 0.99
## alternative hypothesis: stationary
adf.test(data_series)  # applay adf test
## Warning in adf.test(data_series): p-value greater than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  data_series
## Dickey-Fuller = 1.2681, Lag order = 6, p-value = 0.99
## alternative hypothesis: stationary
ndiffs(data_series)    # Doing first diffrencing on data
## [1] 2
#Taking the first difference
diff1_x1<-diff(data_series)
autoplot(diff1_x1, xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black",  ylab=y_lab,main = "1nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking first differences in  ==> ",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking first differences in  ==>  Covid 19 deaths cases in Chelyabinsk"
kpss.test(diff1_x1)   # applay kpss test after taking first differences
## Warning in kpss.test(diff1_x1): p-value smaller than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff1_x1
## KPSS Level = 3.5973, Truncation lag parameter = 5, p-value = 0.01
pp.test(diff1_x1)     # applay pp test after taking first differences
## Warning in pp.test(diff1_x1): p-value smaller than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff1_x1
## Dickey-Fuller Z(alpha) = -174.26, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff1_x1)    # applay adf test after taking first differences
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff1_x1
## Dickey-Fuller = -2.6114, Lag order = 6, p-value = 0.3188
## alternative hypothesis: stationary
#Taking the second difference
diff2_x1=diff(diff1_x1)
autoplot(diff2_x1, xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", ylab=y_lab ,main = "2nd differenced series")
## Warning: Ignoring unknown parameters: col.main, col.lab, col.sub

##Testing the stationary of the first differenced series
paste ("tests For Check Stationarity in series after taking Second differences in",y_lab, sep=" ")
## [1] "tests For Check Stationarity in series after taking Second differences in Covid 19 deaths cases in Chelyabinsk"
kpss.test(diff2_x1)   # applay kpss test after taking Second differences
## Warning in kpss.test(diff2_x1): p-value greater than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  diff2_x1
## KPSS Level = 0.018282, Truncation lag parameter = 5, p-value = 0.1
pp.test(diff2_x1)     # applay pp test after taking Second differences
## Warning in pp.test(diff2_x1): p-value smaller than printed p-value
## 
##  Phillips-Perron Unit Root Test
## 
## data:  diff2_x1
## Dickey-Fuller Z(alpha) = -399.84, Truncation lag parameter = 5, p-value
## = 0.01
## alternative hypothesis: stationary
adf.test(diff2_x1)    # applay adf test after taking Second differences
## Warning in adf.test(diff2_x1): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff2_x1
## Dickey-Fuller = -10.465, Lag order = 6, p-value = 0.01
## alternative hypothesis: stationary
####Fitting an ARIMA Model
#1. Using auto arima function
model1 <- auto.arima(data_series,stepwise=FALSE, approximation=FALSE, trace=T, test = c("kpss", "adf", "pp"))  #applaying auto arima
## 
##  ARIMA(0,2,0)                    : 1640.439
##  ARIMA(0,2,1)                    : 1492.437
##  ARIMA(0,2,2)                    : 1494.21
##  ARIMA(0,2,3)                    : 1495.379
##  ARIMA(0,2,4)                    : 1495.539
##  ARIMA(0,2,5)                    : 1497.54
##  ARIMA(1,2,0)                    : 1566.28
##  ARIMA(1,2,1)                    : 1494.244
##  ARIMA(1,2,2)                    : 1494.224
##  ARIMA(1,2,3)                    : 1495.999
##  ARIMA(1,2,4)                    : 1497.567
##  ARIMA(2,2,0)                    : 1519.783
##  ARIMA(2,2,1)                    : 1495.476
##  ARIMA(2,2,2)                    : 1495.983
##  ARIMA(2,2,3)                    : 1498.046
##  ARIMA(3,2,0)                    : 1511.457
##  ARIMA(3,2,1)                    : 1495.65
##  ARIMA(3,2,2)                    : 1497.723
##  ARIMA(4,2,0)                    : 1508.289
##  ARIMA(4,2,1)                    : 1497.723
##  ARIMA(5,2,0)                    : 1506.572
## 
## 
## 
##  Best model: ARIMA(0,2,1)
model1 # show the result of autoarima 
## Series: data_series 
## ARIMA(0,2,1) 
## 
## Coefficients:
##           ma1
##       -0.7673
## s.e.   0.0368
## 
## sigma^2 estimated as 4.726:  log likelihood=-744.2
## AIC=1492.4   AICc=1492.44   BIC=1500.05
#Make changes in the source of auto arima to run the best model
arima.string <- function (object, padding = FALSE) 
{
  order <- object$arma[c(1, 6, 2, 3, 7, 4, 5)]
  m <- order[7]
  result <- paste("ARIMA(", order[1], ",", order[2], ",", 
                  order[3], ")", sep = "")
  if (m > 1 && sum(order[4:6]) > 0) {
    result <- paste(result, "(", order[4], ",", order[5], 
                    ",", order[6], ")[", m, "]", sep = "")
  }
  if (padding && m > 1 && sum(order[4:6]) == 0) {
    result <- paste(result, "         ", sep = "")
    if (m <= 9) {
      result <- paste(result, " ", sep = "")
    }
    else if (m <= 99) {
      result <- paste(result, "  ", sep = "")
    }
    else {
      result <- paste(result, "   ", sep = "")
    }
  }
  if (!is.null(object$xreg)) {
    if (NCOL(object$xreg) == 1 && is.element("drift", names(object$coef))) {
      result <- paste(result, "with drift        ")
    }
    else {
      result <- paste("Regression with", result, "errors")
    }
  }
  else {
    if (is.element("constant", names(object$coef)) || is.element("intercept", 
                                                                 names(object$coef))) {
      result <- paste(result, "with non-zero mean")
    }
    else if (order[2] == 0 && order[5] == 0) {
      result <- paste(result, "with zero mean    ")
    }
    else {
      result <- paste(result, "                  ")
    }
  }
  if (!padding) {
    result <- gsub("[ ]*$", "", result)
  }
  return(result)
}


bestmodel <- arima.string(model1, padding = TRUE)
bestmodel <- substring(bestmodel,7,11)
bestmodel <- gsub(" ", "", bestmodel)
bestmodel <- gsub(")", "", bestmodel)
bestmodel <- strsplit(bestmodel, ",")[[1]]
bestmodel <- c(strtoi(bestmodel[1]),strtoi(bestmodel[2]),strtoi(bestmodel[3]))
bestmodel
## [1] 0 2 1
strtoi(bestmodel[3])
## [1] 1
#2. Using ACF and PACF Function
#par(mfrow=c(1,2))  # Code for making two plot in one graph 
acf(diff2_x1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab, main=paste("ACF-2nd differenced series ",y_lab, sep=" ",lag.max=20))    # plot ACF "auto correlation function after taking second diffrences

pacf(diff2_x1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab,main=paste("PACF-2nd differenced series ",y_lab, sep=" ",lag.max=20))   # plot PACF " Partial auto correlation function after taking second diffrences

library(forecast)   # install library forecast             
x1_model1= arima(data_series, order=c(bestmodel)) # Run Best model of auto arima  for forecasting
x1_model1  # Show result of best model of auto arima 
## 
## Call:
## arima(x = data_series, order = c(bestmodel))
## 
## Coefficients:
##           ma1
##       -0.7673
## s.e.   0.0368
## 
## sigma^2 estimated as 4.712:  log likelihood = -744.2,  aic = 1492.4
paste ("accuracy of autoarima Model For  ==> ",y_lab, sep=" ")
## [1] "accuracy of autoarima Model For  ==>  Covid 19 deaths cases in Chelyabinsk"
accuracy(x1_model1)  # aacuracy of best model from auto arima
##                     ME    RMSE      MAE       MPE     MAPE      MASE       ACF1
## Training set 0.1068026 2.16429 1.206553 0.4439731 2.502436 0.4478471 0.01484319
x1_model1$x          # show result of best model from auto arima 
## NULL
checkresiduals(x1_model1,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)  # checkresiduals from best model from using auto arima 

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(0,2,1)
## Q* = 13.33, df = 9, p-value = 0.1482
## 
## Model df: 1.   Total lags used: 10
paste("Box-Ljung test , Ljung-Box test For Modelling for   ==> ",y_lab, sep=" ")
## [1] "Box-Ljung test , Ljung-Box test For Modelling for   ==>  Covid 19 deaths cases in Chelyabinsk"
Box.test(x1_model1$residuals^2, lag=20, type="Ljung-Box")   # Do test for resdulas by using Box-Ljung test , Ljung-Box test For Modelling
## 
##  Box-Ljung test
## 
## data:  x1_model1$residuals^2
## X-squared = 19.906, df = 20, p-value = 0.4638
library(tseries)
jarque.bera.test(x1_model1$residuals)  # Do test jarque.bera.test 
## 
##  Jarque Bera Test
## 
## data:  x1_model1$residuals
## X-squared = 3311, df = 2, p-value < 2.2e-16
#Actual Vs Fitted
plot(data_series, col='red',lwd=2, main="Actual vs Fitted Plot", xlab='Time in (days)', ylab=y_lab) # plot actual and Fitted model 
lines(fitted(x1_model1), col='black')

#Test data
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) ) # make testing data in time series and start from rows-6
forecasting_auto_arima <- forecast(x1_model1, h=N_forecasting_days+validation_data_days)
validation_forecast<-head(forecasting_auto_arima$mean,validation_data_days)
MAPE_Per_Day<-round(abs(((testing_data-validation_forecast)/testing_data)*100)  ,3)
paste ("MAPE % For ",validation_data_days,frequency,"by using bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE % For  7 day by using bats Model for  ==>  Covid 19 deaths cases in Chelyabinsk"
MAPE_Mean_All.ARIMA_Model<-round(mean(MAPE_Per_Day),3)
MAPE_Mean_All.ARIMA<-paste(round(mean(MAPE_Per_Day),3),"% MAPE ",validation_data_days,frequency,y_lab,sep=" ")
MAPE_auto_arima<-paste(round(MAPE_Per_Day,3),"%")
MAPE_auto.arima_Model<-paste(MAPE_Per_Day ,"%")
paste (" MAPE that's Error of Forecasting for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] " MAPE that's Error of Forecasting for  7  days in bats Model for  ==>  Covid 19 deaths cases in Chelyabinsk"
paste(MAPE_Mean_All.ARIMA,"%")
## [1] "0.695 % MAPE  7 day Covid 19 deaths cases in Chelyabinsk %"
paste ("MAPE that's Error of Forecasting day by day for ",validation_data_days," days in bats Model for  ==> ",y_lab, sep=" ")
## [1] "MAPE that's Error of Forecasting day by day for  7  days in bats Model for  ==>  Covid 19 deaths cases in Chelyabinsk"
data.frame(date_auto.arima=validation_dates,validation_data_by_name,actual_data=testing_data,forecasting_auto.arima=validation_forecast,MAPE_auto.arima_Model)
##   date_auto.arima validation_data_by_name actual_data forecasting_auto.arima
## 1      2021-02-16                 Tuesday         924               924.4738
## 2      2021-02-17               Wednesday         930               932.9477
## 3      2021-02-18                Thursday         937               941.4215
## 4      2021-02-19                  Friday         942               949.8954
## 5      2021-02-20                Saturday         950               958.3692
## 6      2021-02-21                  Sunday         957               966.8431
## 7      2021-02-22                  Monday         963               975.3169
##   MAPE_auto.arima_Model
## 1               0.051 %
## 2               0.317 %
## 3               0.472 %
## 4               0.838 %
## 5               0.881 %
## 6               1.029 %
## 7               1.279 %
data.frame(FD,forecating_date=forecasting_data_by_name,forecasting_by_auto.arima=tail(forecasting_auto_arima$mean,N_forecasting_days))
##           FD forecating_date forecasting_by_auto.arima
## 1 2021-02-23         Tuesday                  983.7907
## 2 2021-02-24       Wednesday                  992.2646
## 3 2021-02-25        Thursday                 1000.7384
## 4 2021-02-26          Friday                 1009.2123
## 5 2021-02-27        Saturday                 1017.6861
## 6 2021-02-28          Sunday                 1026.1599
## 7 2021-03-01          Monday                 1034.6338
plot(forecasting_auto_arima)
x1_test <- ts(testing_data, start =(rows-validation_data_days+1) )
lines(x1_test, col='red',lwd=2)

graph4<-autoplot(forecasting_auto_arima,xlab = paste ("Time in  ", frequency ,y_lab , sep=" "),  col.main="black", col.lab="black", col.sub="black", cex.main=1, cex.lab=1, cex.sub=1,font.main=4, font.lab=4, ylab=y_lab)
graph4

MAPE_Mean_All.ARIMA
## [1] "0.695 % MAPE  7 day Covid 19 deaths cases in Chelyabinsk"
## Error of forecasting
Error_auto.arima<-abs(testing_data-validation_forecast)  # Absolute error of forecast (AEOF)
REOF_A_auto.arima<-abs(((testing_data-validation_forecast)/testing_data)*100)  #Relative error of forecast (divided by actual)(REOF_A)
REOF_F_auto.arima<-abs(((testing_data-validation_forecast)/validation_forecast)*100)  #Relative error of forecast (divided by forecast)(REOF_F)
correlation_auto.arima<-cor(testing_data,validation_forecast, method = c("pearson"))     # correlation coefficient between predicted and actual values 
RMSE_auto.arima<-sqrt(sum((Error_auto.arima^2))/validation_data_days)   #  Root mean square forecast error
MSE_auto.arima<-(sum((Error_auto.arima^2))/validation_data_days)   #  Root mean square forecast error
MAD_auto.arima<-abs((sum(testing_data-validation_forecast))/validation_data_days)   # average forecast accuracy
AEOF_auto.arima<-c(Error_auto.arima)
REOF_auto.arima1<-c(paste(round(REOF_A_auto.arima,3),"%"))
REOF_auto.arima2<-c(paste(round(REOF_F_auto.arima,3),"%"))
data.frame(correlation_auto.arima,MSE_auto.arima,RMSE_auto.arima,MAPE_Mean_All.ARIMA_Model,MAD_auto.arima) # analysis of Error  by using Auto ARIMAA model shows result of correlation ,MSE ,MPER
##   correlation_auto.arima MSE_auto.arima RMSE_auto.arima
## 1              0.9990562       58.49077        7.647926
##   MAPE_Mean_All.ARIMA_Model MAD_auto.arima
## 1                     0.695       6.609654
data.frame(validation_dates,Validation_day_name=validation_data_by_name,AEOF_auto.arima,REOF_A_auto.arima=REOF_auto.arima1,REOF_F_auto.arima=REOF_auto.arima2)   # Analysis of error shows result AEOF,REOF_A,REOF_F
##   validation_dates Validation_day_name AEOF_auto.arima REOF_A_auto.arima
## 1       2021-02-16             Tuesday       0.4738421           0.051 %
## 2       2021-02-17           Wednesday       2.9476843           0.317 %
## 3       2021-02-18            Thursday       4.4215264           0.472 %
## 4       2021-02-19              Friday       7.8953685           0.838 %
## 5       2021-02-20            Saturday       8.3692106           0.881 %
## 6       2021-02-21              Sunday       9.8430528           1.029 %
## 7       2021-02-22              Monday      12.3168949           1.279 %
##   REOF_F_auto.arima
## 1           0.051 %
## 2           0.316 %
## 3            0.47 %
## 4           0.831 %
## 5           0.873 %
## 6           1.018 %
## 7           1.263 %
# Table for MAPE For counry
best_recommended_model <- min(MAPE_Mean_All_NNAR,MAPE_Mean_All.bats_Model,MAPE_Mean_All.TBATS_Model,MAPE_Mean_All.Holt_Model,MAPE_Mean_All.ARIMA_Model)
paste("System Choose Least Error ==> ( MAPE %) of Forecasting  by using bats model and BATS Model, Holt's Linear Models , and autoarima for  ==> ", y_lab , sep=" ")
## [1] "System Choose Least Error ==> ( MAPE %) of Forecasting  by using bats model and BATS Model, Holt's Linear Models , and autoarima for  ==>  Covid 19 deaths cases in Chelyabinsk"
best_recommended_model
## [1] 0.547
x1<-if(best_recommended_model >= MAPE_Mean_All.bats_Model) {paste("BATS Model")}
x2<-if(best_recommended_model >= MAPE_Mean_All.TBATS_Model) {paste("TBATS Model")}
x3<-if(best_recommended_model >= MAPE_Mean_All.Holt_Model) {paste("Holt Model")}
x4<-if(best_recommended_model >= MAPE_Mean_All.ARIMA_Model) {paste("ARIMA Model")}
x5<-if(best_recommended_model >= MAPE_Mean_All_NNAR) {paste("NNAR Model")}
result<-c(x1,x2,x3,x4,x5)

table.error<-data.frame(country.name,NNAR.model=MAPE_Mean_All_NNAR, BATS.Model=MAPE_Mean_All.bats_Model,TBATS.Model=MAPE_Mean_All.TBATS_Model,Holt.Model=MAPE_Mean_All.Holt_Model,ARIMA.Model=MAPE_Mean_All.ARIMA_Model,Best.Model=result)

library(ascii)
print(ascii(table(table.error)), type = "rest")
## 
## +---+--------------+------------+------------+-------------+------------+-------------+------------+------+
## |   | country.name | NNAR.model | BATS.Model | TBATS.Model | Holt.Model | ARIMA.Model | Best.Model | Freq |
## +===+==============+============+============+=============+============+=============+============+======+
## | 1 | Chelyabinsk  | 0.547      | 0.708      | 0.682       | 0.812      | 0.695       | NNAR Model | 1.00 |
## +---+--------------+------------+------------+-------------+------------+-------------+------------+------+
message("System finished Forecasting  by using autoarima and Holt's ,TBATS, and BATS  Model ==>",y_lab, sep=" ")
## System finished Forecasting  by using autoarima and Holt's ,TBATS, and BATS  Model ==>Covid 19 deaths cases in Chelyabinsk
message(" Thank you for using our System For Modelling  ==> ",y_lab, sep=" ")
##  Thank you for using our System For Modelling  ==> Covid 19 deaths cases in Chelyabinsk