Diadopsi dari website https://rpubs.com/michaelmallari/linear-algebra-for-data-science
Aljabar Linear untuk Sains Data Membuat Vektor Data :
rep(3, 3)
## [1] 3 3 3
rep(4, 4)
## [1] 4 4 4 4
Membuat vektor bilangan genap dan ganjil
seq(2, 6, by = 2)
## [1] 2 4 6
seq(1, 5, by = 2)
## [1] 1 3 5
Menampilkan data vektor di atas menggunakan 'c'
c(3, 3, 3)
## [1] 3 3 3
c(4, 4, 4, 4)
## [1] 4 4 4 4
c(2, 4, 6)
## [1] 2 4 6
c(1, 3, 5)
## [1] 1 3 5
x=c(1,2,3)
y=seq(2, 6, by = 2)
z=rep(2, 3)
#Penjumlahan x dan y dan cetak
print(x + y)
## [1] 3 6 9
# Multiply z by 2 and print
print(2*z)
## [1] 4 4 4
# Multiply x and y by each other and print
print(x*y)
## [1] 2 8 18
# Add x to z, if possible, and print
print(x + z)
## [1] 3 4 5
#membuat matriks 3 kolom dan 2 baris yang berisi bilangan 1
matrix(1, nrow = 2, ncol = 3)
## [,1] [,2] [,3]
## [1,] 1 1 1
## [2,] 1 1 1
print(matrix(2, nrow = 3, ncol = 2))
## [,1] [,2]
## [1,] 2 2
## [2,] 2 2
## [3,] 2 2
# Membuat Matriks, mengubah fungsinya dengan byrow.
B <- matrix(c(1, 2, 3, 2), nrow = 2, ncol = 2, byrow = FALSE)
A <- matrix(c(1, 2, 3, 2), nrow = 2, ncol = 2, byrow = TRUE)
# Menjumlahkan A dengan matriks yang telah dibuat sebelumnya
A + B
## [,1] [,2]
## [1,] 2 5
## [2,] 5 4
A = matrix(c(1, 2, 3, -1, 0, 3), nrow = 2, ncol = 3, byrow = TRUE)
b = c(-2, 2, 2)
# Kalikan A dan b
A%*%b
## [,1]
## [1,] 8
## [2,] 8
Pentingnya Urutan dalam Perkalian Matriks
A = matrix(c(1, 3, 2, -1), nrow = 2, ncol = 2)
B = matrix(c(-1, 1, 2, -3), nrow = 2, ncol = 2)
b = c(-2, 2)
# Kalikan A dan B
A%*%B
## [,1] [,2]
## [1,] 1 -4
## [2,] -4 9
# Kalikan hasil A dan B dengan b
A%*%B%*%b
## [,1]
## [1,] -10
## [2,] 26
# Multiply A on the right of B, and then by the vector b
B%*%A%*%b
## [,1]
## [1,] -18
## [2,] 26
Intro to The Matrix Inverse
# Take the inverse of the 2 by 2 identity matrix
solve(diag(2))
## [,1] [,2]
## [1,] 1 0
## [2,] 0 1
# Take the inverse of the matrix A
Ainv <- solve(A)
# Multiply A inverse by A
Ainv%*%A
## [,1] [,2]
## [1,] 1 -5.551115e-17
## [2,] 0 1.000000e+00
# Multiply A by its inverse
A%*%Ainv
## [,1] [,2]
## [1,] 1 5.551115e-17
## [2,] 0 1.000000e+00