The impact of how a dollar spent on an organization’s marketing efforts on its sales is something that all organizations should consider. A fiscally prudent organization should be using its relatively scarce resources wisely. Thus, all organizations need to ask themselves, “Is the money I’m spending worth the return on sales?” Furthermore, organizations can delve deeper by asking, “For every dollar spent on marketing, how much are we getting in return on sales?” One can answer these questions using a simple linear regression model. As always, we will use a fabricated example to examine a store’s marketing efforts and their impact on sales. This will also be a more comprehensive primer on the simple linear regression model, the model that the majority of econometrics students are first exposed to.

marketing <- readRDS("marketing.rds")
marketing
##     youtube facebook newspaper sales
## 1    276.12    45.36     83.04 26.52
## 2     53.40    47.16     54.12 12.48
## 3     20.64    55.08     83.16 11.16
## 4    181.80    49.56     70.20 22.20
## 5    216.96    12.96     70.08 15.48
## 6     10.44    58.68     90.00  8.64
## 7     69.00    39.36     28.20 14.16
## 8    144.24    23.52     13.92 15.84
## 9     10.32     2.52      1.20  5.76
## 10   239.76     3.12     25.44 12.72
## 11    79.32     6.96     29.04 10.32
## 12   257.64    28.80      4.80 20.88
## 13    28.56    42.12     79.08 11.04
## 14   117.00     9.12      8.64 11.64
## 15   244.92    39.48     55.20 22.80
## 16   234.48    57.24     63.48 26.88
## 17    81.36    43.92    136.80 15.00
## 18   337.68    47.52     66.96 29.28
## 19    83.04    24.60     21.96 13.56
## 20   176.76    28.68     22.92 17.52
## 21   262.08    33.24     64.08 21.60
## 22   284.88     6.12     28.20 15.00
## 23    15.84    19.08     59.52  6.72
## 24   273.96    20.28     31.44 18.60
## 25    74.76    15.12     21.96 11.64
## 26   315.48     4.20     23.40 14.40
## 27   171.48    35.16     15.12 18.00
## 28   288.12    20.04     27.48 19.08
## 29   298.56    32.52     27.48 22.68
## 30    84.72    19.20     48.96 12.60
## 31   351.48    33.96     51.84 25.68
## 32   135.48    20.88     46.32 14.28
## 33   116.64     1.80     36.00 11.52
## 34   318.72    24.00      0.36 20.88
## 35   114.84     1.68      8.88 11.40
## 36   348.84     4.92     10.20 15.36
## 37   320.28    52.56      6.00 30.48
## 38    89.64    59.28     54.84 17.64
## 39    51.72    32.04     42.12 12.12
## 40   273.60    45.24     38.40 25.80
## 41   243.00    26.76     37.92 19.92
## 42   212.40    40.08     46.44 20.52
## 43   352.32    33.24      2.16 24.84
## 44   248.28    10.08     31.68 15.48
## 45    30.12    30.84     51.96 10.20
## 46   210.12    27.00     37.80 17.88
## 47   107.64    11.88     42.84 12.72
## 48   287.88    49.80     22.20 27.84
## 49   272.64    18.96     59.88 17.76
## 50    80.28    14.04     44.16 11.64
## 51   239.76     3.72     41.52 13.68
## 52   120.48    11.52      4.32 12.84
## 53   259.68    50.04     47.52 27.12
## 54   219.12    55.44     70.44 25.44
## 55   315.24    34.56     19.08 24.24
## 56   238.68    59.28     72.00 28.44
## 57     8.76    33.72     49.68  6.60
## 58   163.44    23.04     19.92 15.84
## 59   252.96    59.52     45.24 28.56
## 60   252.84    35.40     11.16 22.08
## 61    64.20     2.40     25.68  9.72
## 62   313.56    51.24     65.64 29.04
## 63   287.16    18.60     32.76 18.84
## 64   123.24    35.52     10.08 16.80
## 65   157.32    51.36     34.68 21.60
## 66    82.80    11.16      1.08 11.16
## 67    37.80    29.52      2.64 11.40
## 68   167.16    17.40     12.24 16.08
## 69   284.88    33.00     13.20 22.68
## 70   260.16    52.68     32.64 26.76
## 71   238.92    36.72     46.44 21.96
## 72   131.76    17.16     38.04 14.88
## 73    32.16    39.60     23.16 10.56
## 74   155.28     6.84     37.56 13.20
## 75   256.08    29.52     15.72 20.40
## 76    20.28    52.44    107.28 10.44
## 77    33.00     1.92     24.84  8.28
## 78   144.60    34.20     17.04 17.04
## 79     6.48    35.88     11.28  6.36
## 80   139.20     9.24     27.72 13.20
## 81    91.68    32.04     26.76 14.16
## 82   287.76     4.92     44.28 14.76
## 83    90.36    24.36     39.00 13.56
## 84    82.08    53.40     42.72 16.32
## 85   256.20    51.60     40.56 26.04
## 86   231.84    22.08     78.84 18.24
## 87    91.56    33.00     19.20 14.40
## 88   132.84    48.72     75.84 19.20
## 89   105.96    30.60     88.08 15.48
## 90   131.76    57.36     61.68 20.04
## 91   161.16     5.88     11.16 13.44
## 92    34.32     1.80     39.60  8.76
## 93   261.24    40.20     70.80 23.28
## 94   301.08    43.80     86.76 26.64
## 95   128.88    16.80     13.08 13.80
## 96   195.96    37.92     63.48 20.28
## 97   237.12     4.20      7.08 14.04
## 98   221.88    25.20     26.40 18.60
## 99   347.64    50.76     61.44 30.48
## 100  162.24    50.04     55.08 20.64
## 101  266.88     5.16     59.76 14.04
## 102  355.68    43.56    121.08 28.56
## 103  336.24    12.12     25.68 17.76
## 104  225.48    20.64     21.48 17.64
## 105  285.84    41.16      6.36 24.84
## 106  165.48    55.68     70.80 23.04
## 107   30.00    13.20     35.64  8.64
## 108  108.48     0.36     27.84 10.44
## 109   15.72     0.48     30.72  6.36
## 110  306.48    32.28      6.60 23.76
## 111  270.96     9.84     67.80 16.08
## 112  290.04    45.60     27.84 26.16
## 113  210.84    18.48      2.88 16.92
## 114  251.52    24.72     12.84 19.08
## 115   93.84    56.16     41.40 17.52
## 116   90.12    42.00     63.24 15.12
## 117  167.04    17.16     30.72 14.64
## 118   91.68     0.96     17.76 11.28
## 119  150.84    44.28     95.04 19.08
## 120   23.28    19.20     26.76  7.92
## 121  169.56    32.16     55.44 18.60
## 122   22.56    26.04     60.48  8.40
## 123  268.80     2.88     18.72 13.92
## 124  147.72    41.52     14.88 18.24
## 125  275.40    38.76     89.04 23.64
## 126  104.64    14.16     31.08 12.72
## 127    9.36    46.68     60.72  7.92
## 128   96.24     0.00     11.04 10.56
## 129  264.36    58.80      3.84 29.64
## 130   71.52    14.40     51.72 11.64
## 131    0.84    47.52     10.44  1.92
## 132  318.24     3.48     51.60 15.24
## 133   10.08    32.64      2.52  6.84
## 134  263.76    40.20     54.12 23.52
## 135   44.28    46.32     78.72 12.96
## 136   57.96    56.40     10.20 13.92
## 137   30.72    46.80     11.16 11.40
## 138  328.44    34.68     71.64 24.96
## 139   51.60    31.08     24.60 11.52
## 140  221.88    52.68      2.04 24.84
## 141   88.08    20.40     15.48 13.08
## 142  232.44    42.48     90.72 23.04
## 143  264.60    39.84     45.48 24.12
## 144  125.52     6.84     41.28 12.48
## 145  115.44    17.76     46.68 13.68
## 146  168.36     2.28     10.80 12.36
## 147  288.12     8.76     10.44 15.84
## 148  291.84    58.80     53.16 30.48
## 149   45.60    48.36     14.28 13.08
## 150   53.64    30.96     24.72 12.12
## 151  336.84    16.68     44.40 19.32
## 152  145.20    10.08     58.44 13.92
## 153  237.12    27.96     17.04 19.92
## 154  205.56    47.64     45.24 22.80
## 155  225.36    25.32     11.40 18.72
## 156    4.92    13.92      6.84  3.84
## 157  112.68    52.20     60.60 18.36
## 158  179.76     1.56     29.16 12.12
## 159   14.04    44.28     54.24  8.76
## 160  158.04    22.08     41.52 15.48
## 161  207.00    21.72     36.84 17.28
## 162  102.84    42.96     59.16 15.96
## 163  226.08    21.72     30.72 17.88
## 164  196.20    44.16      8.88 21.60
## 165  140.64    17.64      6.48 14.28
## 166  281.40     4.08    101.76 14.28
## 167   21.48    45.12     25.92  9.60
## 168  248.16     6.24     23.28 14.64
## 169  258.48    28.32     69.12 20.52
## 170  341.16    12.72      7.68 18.00
## 171   60.00    13.92     22.08 10.08
## 172  197.40    25.08     56.88 17.40
## 173   23.52    24.12     20.40  9.12
## 174  202.08     8.52     15.36 14.04
## 175  266.88     4.08     15.72 13.80
## 176  332.28    58.68     50.16 32.40
## 177  298.08    36.24     24.36 24.24
## 178  204.24     9.36     42.24 14.04
## 179  332.04     2.76     28.44 14.16
## 180  198.72    12.00     21.12 15.12
## 181  187.92     3.12      9.96 12.60
## 182  262.20     6.48     32.88 14.64
## 183   67.44     6.84     35.64 10.44
## 184  345.12    51.60     86.16 31.44
## 185  304.56    25.56     36.00 21.12
## 186  246.00    54.12     23.52 27.12
## 187  167.40     2.52     31.92 12.36
## 188  229.32    34.44     21.84 20.76
## 189  343.20    16.68      4.44 19.08
## 190   22.44    14.52     28.08  8.04
## 191   47.40    49.32      6.96 12.96
## 192   90.60    12.96      7.20 11.88
## 193   20.64     4.92     37.92  7.08
## 194  200.16    50.40      4.32 23.52
## 195  179.64    42.72      7.20 20.76
## 196   45.84     4.44     16.56  9.12
## 197  113.04     5.88      9.72 11.64
## 198  212.40    11.16      7.68 15.36
## 199  340.32    50.40     79.44 30.60
## 200  278.52    10.32     10.44 16.08

1 Is there a relationship between advertising budget and sales?

Hipotesisnya adalah \[ \begin{align} \tag{1} H_{0}&:\beta_{youtube}=\beta_{facebook}= \beta_{newspaper}=0 \\ H_{a}&:\beta_{youtube}≠\beta_{facebook}≠\beta_{newspaper}≠0 \end{align} \]

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
linmod <- lm(sales~., data=marketing)
slinmod <- linmod %>% summary()
anova(linmod)$'Pr(>F)'[1]
## [1] 1.809337e-84

Jika dilihat, maka p-valuenya = 1.560676e^-95. Hasil tersebut lebih kecil dari tingkat signifikansi, yaitu 0.05. Hal itu menunjukan bahwa kita tolak H0, sehingga terdapat hubungan antara youtube, facebook, newspaper, dan sales.

2 How strong is the relationship between advertising budget and sales?

Kekuatan hubungan tersebut dapat diketahui dengan R^2

\[ \begin{align} \tag{2} R^2= {SSR\over SST}=1-{{SSE\over SST}} \end{align} \]

residual.se <- summary(linmod)$sigma
residual.se
## [1] 2.022612
mean1 <- mean(marketing$sales)
residual.se/mean1
## [1] 0.1202004
r_kuadrat <- summary(linmod)$r.sq
r_kuadrat
## [1] 0.8972106

Nilai R^2 yaitu 0 atau 1. Jika nilai R^2 semakin mendekati 1, maka hubungan antarvariabelnya semakin kuat.

Dari perhitungan kita di atas, hasil dari R^2 (r_kuadrat) adalah 0.8972106, yang berarti mendekati 1, maka relationship antara advertising budget (youtube, facebook, newspaper) dengan sales adalah sangat kuat

3 Which media contribute to sales?

Untuk mencarinya, dapat menggunakan p-value dari setiap variabel responnya

coef1 <- summary(linmod)$coefficients 
coef1
##                 Estimate  Std. Error    t value     Pr(>|t|)
## (Intercept)  3.526667243 0.374289884  9.4222884 1.267295e-17
## youtube      0.045764645 0.001394897 32.8086244 1.509960e-81
## facebook     0.188530017 0.008611234 21.8934961 1.505339e-54
## newspaper   -0.001037493 0.005871010 -0.1767146 8.599151e-01

Berdasarkan hasil di atas, didapatkan bahwa hasil p-value youtube dan facebook adalah lebih rendah dari 0.05, sedangkan p-value dari newspaper tinggi. Oleh karena itu, media yang berkontribusi dengan sales adalah youtube dan facebook

4 How accurately can we estimate the effect of each medium on sales?

Untuk mengetahui keakuratan media dalam mengestimasi sales, kita dapat melihat dari koefisien determination atau \(R^2\)

slinmod$adj.r.squared
## [1] 0.8956373

Hasilnya menunjukkan bahwa koefisien determinationnya adalah \(R^2 = 0.9242541\), yang berarti efek dari advertising budget dapat mengestimasi sales hingga 92.42%.

5 How accurately can we predict future sales?

library(dplyr)
library(magrittr)
b0 <- coef(linmod)[[1]]
b1 <- coef(linmod)[[2]]
x1 <- marketing$youtube
b2 <- coef(linmod)[[3]]
x2 <- marketing$facebook
b3 <- coef(linmod)[[4]]
x3 <- marketing$newspaper
marketing$sales_pred <- (b0 +b1*x1 +b2*x2 +b3*x3) %>% round(2)
marketing$error <- abs(marketing$sales-marketing$sales_pred) %>% round(2)
marketing$'%error' <- round(marketing$error/marketing$sales*100,2)
total_percentage_error <- sum(marketing$`%error`)
MAPE <-  total_percentage_error/nrow(marketing)
paste(total_percentage_error/nrow(marketing),"%")
## [1] "13.87845 %"
paste("The accuracy is ", 100-MAPE,"%")
## [1] "The accuracy is  86.12155 %"

Jadi, tingkat akurasi untuk memprediksi future sales adalah 86.12%

6 Is there synergy (interaction) among the advertising media?

library(car)
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
vif(linmod)
##   youtube  facebook newspaper 
##  1.004611  1.144952  1.145187

Hasil di atas menunjukkan bahwa semua nilai VIF nya adala kurang dari 5, yang berarti tidak ada sinergi atau interaksi di antara advertising media.