\[H_0:观察频数与期望频数无显著差异 \quad v.s. \quad H_1:观察频数与期望频数有显著差异\]
load("D:\\New_Folder\\Study_Programming\\R_Programme\\Applied Statistics\\datas - Copy\\example\\ch7\\example7_1.RData")
chisq.test(example7_1$人数)
##
## Chi-squared test for given probabilities
##
## data: example7_1$人数
## X-squared = 12.1, df = 3, p-value = 0.007048
\[H_0:不同受教育程度的离婚家庭与期望频数无显著差异 \quad v.s. \quad H_1:不同受教育程度的离婚家庭与期望频数有显著差异\]
load("D:\\New_Folder\\Study_Programming\\R_Programme\\Applied Statistics\\datas - Copy\\example\\ch7\\example7_2.RData")
chisq.test(example7_2$离婚家庭数,p=example7_2$期望比例)
##
## Chi-squared test for given probabilities
##
## data: example7_2$离婚家庭数
## X-squared = 19.586, df = 4, p-value = 0.0006028
\[H_0:满意度与地区独立 \quad v.s. \quad H_1:满意度与地区不独立\]
#生成列联表下检验
x=c(126,158,35,34,82,65)
M=matrix(x,nr=2,nc=3,byrow=TRUE,dimnames=list(c('满意','不满意'),c('东部','中部','西部')))
chisq.test(M)
##
## Pearson's Chi-squared test
##
## data: M
## X-squared = 51.827, df = 2, p-value = 5.572e-12
#原始数据检验
load("D:\\New_Folder\\Study_Programming\\R_Programme\\Applied Statistics\\datas - Copy\\example\\ch7\\example7_3.RData")
count=table(example7_3)
chisq.test(count)
##
## Pearson's Chi-squared test
##
## data: count
## X-squared = 51.827, df = 2, p-value = 5.572e-12
load("D:\\New_Folder\\Study_Programming\\R_Programme\\Applied Statistics\\datas - Copy\\example\\ch7\\example7_3.RData")
count=table(example7_3)
library(vcd)
## Loading required package: grid
assocstats(count)
## X^2 df P(> X^2)
## Likelihood Ratio 51.326 2 7.1559e-12
## Pearson 51.827 2 5.5718e-12
##
## Phi-Coefficient : NA
## Contingency Coeff.: 0.306
## Cramer's V : 0.322