data_frame <- read.csv("escooter_trips_open_data.csv")

Top Census Blocks for Trip Start

most_common_starts <- data_frame %>% group_by(start_census_block_group) %>% summarize(Count = n())
most_common_starts %>% arrange(desc(Count))
## # A tibble: 477 x 2
##    start_census_block_group  Count
##    <fct>                     <int>
##  1 NULL                     358540
##  2 410510106001              53961
##  3 410510106003              52185
##  4 410510050001              47300
##  5 410510051002              32543
##  6 410510011011              29966
##  7 410510023032              23816
##  8 410510051001              18178
##  9 410510049001              17673
## 10 410510021001              17575
## # ... with 467 more rows
2018-2020 data

2018-2020 data

Top Census Blocks for Trip End

most_common_end <- data_frame %>% group_by(end_census_block_group) %>%summarize(Count = n())
most_common_end %>% arrange(desc(Count))
## # A tibble: 531 x 2
##    end_census_block_group  Count
##    <fct>                   <int>
##  1 NULL                   358540
##  2 410510050001            28029
##  3 410510011011            27108
##  4 410510106003            25242
##  5 410510023032            24984
##  6 410510051001            23364
##  7 410510056002            19738
##  8 410510049001            19618
##  9 410510052002            17653
## 10 410510106001            16508
## # ... with 521 more rows
write.csv(most_common_end,file="end_census_block_group.csv") 
write.csv(most_common_starts,file="start_census_block_group.csv") 
2018-2020 trips

2018-2020 trips

Most Common Census Block Start-End Pairs

count_trips <- data_frame %>% group_by(start_census_block_group,end_census_block_group)   %>%summarize(Count = n())

count_trips %>% arrange(desc(Count))
## # A tibble: 14,141 x 3
## # Groups:   start_census_block_group [477]
##    start_census_block_group end_census_block_group  Count
##    <fct>                    <fct>                   <int>
##  1 NULL                     NULL                   358540
##  2 410510011011             410510011011            10903
##  3 410510023032             410510023032            10624
##  4 410510106003             410510106003            10279
##  5 410510050001             410510050001             8493
##  6 410510059001             410510059001             5940
##  7 410510051001             410510051001             5713
##  8 410510106001             410510106001             4814
##  9 410510049001             410510049001             4685
## 10 410510050001             410510051001             4671
## # ... with 14,131 more rows

Trimet Stop Density by Census Block

trimet_census_join<-read.csv("trimet_census_join.csv")
trimet_density <- trimet_census_join %>% group_by(geoid) %>% summarize(Count = n())
trimet_density %>% arrange(desc(Count))
## # A tibble: 868 x 2
##           geoid Count
##           <dbl> <int>
##  1 410510043001    79
##  2 410510072021    77
##  3 410510073001    43
##  4 410510046012    39
##  5 410519800001    35
##  6 410510023032    34
##  7 410510102001    33
##  8 410050215001    32
##  9 410510106001    32
## 10 410670301013    32
## # ... with 858 more rows