# Check the format of the input file
tourney <- read.csv("../Project1/tournamentinfo.txt", nrows = 7)
tourney
## X.........................................................................................
## 1 Pair | Player Name |Total|Round|Round|Round|Round|Round|Round|Round|
## 2 Num | USCF ID / Rtg (Pre->Post) | Pts | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
## 3 -----------------------------------------------------------------------------------------
## 4 1 | GARY HUA |6.0 |W 39|W 21|W 18|W 14|W 7|D 12|D 4|
## 5 ON | 15445895 / R: 1794 ->1817 |N:2 |W |B |W |B |W |B |W |
## 6 -----------------------------------------------------------------------------------------
## 7 2 | DAKSHESH DARURI |6.0 |W 63|W 58|L 4|W 17|W 16|W 20|W 7|
We just want to get the player names, states, points, and ratings, and keep track of who they played. The rest of the printout above is just noise, for our purposes here. The two approaches that occur to me, to accomplish the task, are
Spend some time parsing the file into a sensible and clean data.frame, and then use frame operations to calculate the desired output, or
Keep the table exactly as read in by the read.csv defaults, and use regex and whatever regular structure the messy table provides us to pick out the details we need.
Since we’ve recently been focusing on regex, I’m going to go with the second option….
tourney <- read.csv("../Project1/tournamentinfo.txt", header = FALSE, skip = 2)
names <- tourney %>% filter(row_number() %% 3 == 0)
head(names, n=4)
## V1
## 1 1 | GARY HUA |6.0 |W 39|W 21|W 18|W 14|W 7|D 12|D 4|
## 2 2 | DAKSHESH DARURI |6.0 |W 63|W 58|L 4|W 17|W 16|W 20|W 7|
## 3 3 | ADITYA BAJAJ |6.0 |L 8|W 61|W 25|W 21|W 11|W 13|W 12|
## 4 4 | PATRICK H SCHILLING |5.5 |W 23|D 28|W 2|W 26|D 5|W 19|D 1|
glue("{dim(names)[1]} player names")
## 64 player names
extract_name <- function(string) {
step1 <- str_match(string, "\\|[a-zA-Z -]+\\|")
str_remove_all(step1, "\\|\\s*|\\s*\\|")
}
extract_name(names[4,])
## [1] "PATRICK H SCHILLING"
pull_points <- function(string) {
step1 <- str_match(string, "\\|[0-9\\.]+")
as.numeric(str_remove(step1, "\\|"))
}
pull_points(names[4,])
## [1] 5.5
get_opps <- function(string) {
step1 <- str_match_all(string, "\\b[WDL] *[0-9]+\\b")
f <- function(s){as.numeric(str_remove(s, "[WDL]\\s*"))}
sapply(step1, f)
}
as.vector(get_opps(names[4,]))
## [1] 23 28 2 26 5 19 1
ranks <- tourney %>% filter(row_number() %% 3 == 1)
head(ranks, n=5)
## V1
## 1 Num | USCF ID / Rtg (Pre->Post) | Pts | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
## 2 ON | 15445895 / R: 1794 ->1817 |N:2 |W |B |W |B |W |B |W |
## 3 MI | 14598900 / R: 1553 ->1663 |N:2 |B |W |B |W |B |W |B |
## 4 MI | 14959604 / R: 1384 ->1640 |N:2 |W |B |W |B |W |B |W |
## 5 MI | 12616049 / R: 1716 ->1744 |N:2 |W |B |W |B |W |B |B |
glue("{dim(ranks)[1]} player rankings")
## 65 player rankings
ranks <- ranks %>% filter(row_number() > 1)
# other subsetting is changing d.f to strings(??)
from <- function(string) {
str_match(string, "[A-Z]+")
}
get_ranks <- function(string) {
step1 <- str_match(string, " R:\\s*[0-9]+")
as.numeric(str_remove_all(step1, " R:\\s*"))
}
from(ranks[4,])
## [,1]
## [1,] "MI"
get_ranks(ranks[4,])
## [1] 1716
meanranks <- function(opplist, rankvec) {
# for each opponent list, map to avg ranking in list
opplist <- map(opplist, function(x){round(mean(rankvec[x], 0))})
unlist(opplist)
}
players <- extract_name(names$V1)
points <- pull_points(names$V1)
opponents <- get_opps(names$V1)
from <- from(ranks$V1)
rankings <- get_ranks(ranks$V1)
oppranks <- meanranks(opponents, rankings)
chess <- data.frame(player = players, home = from, points = points,
prerank = rankings, opp_ranks = oppranks)
chess
## player home points prerank opp_ranks
## 1 GARY HUA ON 6.0 1794 1605
## 2 DAKSHESH DARURI MI 6.0 1553 1469
## 3 ADITYA BAJAJ MI 6.0 1384 1564
## 4 PATRICK H SCHILLING MI 5.5 1716 1574
## 5 HANSHI ZUO MI 5.5 1655 1501
## 6 HANSEN SONG OH 5.0 1686 1519
## 7 GARY DEE SWATHELL MI 5.0 1649 1372
## 8 EZEKIEL HOUGHTON MI 5.0 1641 1468
## 9 STEFANO LEE ON 5.0 1411 1523
## 10 ANVIT RAO MI 5.0 1365 1554
## 11 CAMERON WILLIAM MC LEMAN MI 4.5 1712 1468
## 12 KENNETH J TACK MI 4.5 1663 1506
## 13 TORRANCE HENRY JR MI 4.5 1666 1498
## 14 BRADLEY SHAW MI 4.5 1610 1515
## 15 ZACHARY JAMES HOUGHTON MI 4.5 1220 1484
## 16 MIKE NIKITIN MI 4.0 1604 1386
## 17 RONALD GRZEGORCZYK MI 4.0 1629 1499
## 18 DAVID SUNDEEN MI 4.0 1600 1480
## 19 DIPANKAR ROY MI 4.0 1564 1426
## 20 JASON ZHENG MI 4.0 1595 1411
## 21 DINH DANG BUI ON 4.0 1563 1470
## 22 EUGENE L MCCLURE MI 4.0 1555 1300
## 23 ALAN BUI ON 4.0 1363 1214
## 24 MICHAEL R ALDRICH MI 4.0 1229 1357
## 25 LOREN SCHWIEBERT MI 3.5 1745 1363
## 26 MAX ZHU ON 3.5 1579 1507
## 27 GAURAV GIDWANI MI 3.5 1552 1222
## 28 SOFIA ADINA STANESCU-BELLU MI 3.5 1507 1522
## 29 CHIEDOZIE OKORIE MI 3.5 1602 1314
## 30 GEORGE AVERY JONES ON 3.5 1522 1144
## 31 RISHI SHETTY MI 3.5 1494 1260
## 32 JOSHUA PHILIP MATHEWS ON 3.5 1441 1379
## 33 JADE GE MI 3.5 1449 1277
## 34 MICHAEL JEFFERY THOMAS MI 3.5 1399 1375
## 35 JOSHUA DAVID LEE MI 3.5 1438 1150
## 36 SIDDHARTH JHA MI 3.5 1355 1388
## 37 AMIYATOSH PWNANANDAM MI 3.5 980 1385
## 38 BRIAN LIU MI 3.0 1423 1539
## 39 JOEL R HENDON MI 3.0 1436 1430
## 40 FOREST ZHANG MI 3.0 1348 1391
## 41 KYLE WILLIAM MURPHY MI 3.0 1403 1248
## 42 JARED GE MI 3.0 1332 1150
## 43 ROBERT GLEN VASEY MI 3.0 1283 1107
## 44 JUSTIN D SCHILLING MI 3.0 1199 1327
## 45 DEREK YAN MI 3.0 1242 1152
## 46 JACOB ALEXANDER LAVALLEY MI 3.0 377 1358
## 47 ERIC WRIGHT MI 2.5 1362 1392
## 48 DANIEL KHAIN MI 2.5 1382 1356
## 49 MICHAEL J MARTIN MI 2.5 1291 1286
## 50 SHIVAM JHA MI 2.5 1056 1296
## 51 TEJAS AYYAGARI MI 2.5 1011 1356
## 52 ETHAN GUO MI 2.5 935 1495
## 53 JOSE C YBARRA MI 2.0 1393 1345
## 54 LARRY HODGE MI 2.0 1270 1206
## 55 ALEX KONG MI 2.0 1186 1406
## 56 MARISA RICCI MI 2.0 1153 1414
## 57 MICHAEL LU MI 2.0 1092 1363
## 58 VIRAJ MOHILE MI 2.0 917 1391
## 59 SEAN M MC CORMICK MI 2.0 853 1319
## 60 JULIA SHEN MI 1.5 967 1330
## 61 JEZZEL FARKAS ON 1.5 955 1327
## 62 ASHWIN BALAJI MI 1.0 1530 1186
## 63 THOMAS JOSEPH HOSMER MI 1.0 1175 1350
## 64 BEN LI MI 1.0 1163 1263
.csv output, which can all be encapsulated as follows:text2csv <- function(tourneyFile, toFile) {
# read in the textfile, which of course has to be formatted exactly like ours:)
tourney <- read.csv(tourneyFile, header = FALSE, skip = 2)
# subset the names rows
names <- tourney %>% filter(row_number() %% 3 == 0)
#----helper functions for name rows-----
extract_name <- function(string) {
step1 <- str_match(string, "\\|[a-zA-Z -]+\\|")
str_remove_all(step1, "\\|\\s*|\\s*\\|")
}
pull_points <- function(string) {
step1 <- str_match(string, "\\|[0-9\\.]+")
as.numeric(str_remove(step1, "\\|"))
}
get_opps <- function(string) {
step1 <- str_match_all(string, "\\b[WDL] *[0-9]+\\b")
f <- function(s){as.numeric(str_remove(s, "[WDL]\\s*"))}
sapply(step1, f)
}
# subset ranking rows
ranks <- tourney %>% filter(row_number() %% 3 == 1)
# remove header
ranks <- ranks %>% filter(row_number() > 1)
#----helper funcs for ranking rows------
from <- function(string) {
str_match(string, "[A-Z]+")
}
get_ranks <- function(string) {
step1 <- str_match(string, " R:\\s*[0-9]+")
as.numeric(str_remove_all(step1, " R:\\s*"))
}
meanranks <- function(opplist, rankvec) {
# for each opponent list, map to avg ranking in list
opplist <- map(opplist, function(x){round(mean(rankvec[x], 0))})
unlist(opplist)
}
# build the frame
players <- extract_name(names$V1)
points <- pull_points(names$V1)
opponents <- get_opps(names$V1)
from <- from(ranks$V1)
rankings <- get_ranks(ranks$V1)
oppranks <- meanranks(opponents, rankings)
chess <- data.frame(player = players, home = from, points = points,
prerank = rankings, opp_ranks = oppranks)
# Output to csv
write_csv(chess, toFile)
}
infile = "../Project1/tournamentinfo.txt"
tempfile = "tmp.csv"
text2csv(infile, tempfile)
chess <- read_csv(tempfile)
##
## ── Column specification ────────────────────────────────────────────────────────
## cols(
## player = col_character(),
## home = col_character(),
## points = col_double(),
## prerank = col_double(),
## opp_ranks = col_double()
## )
chess
## # A tibble: 64 x 5
## player home points prerank opp_ranks
## <chr> <chr> <dbl> <dbl> <dbl>
## 1 GARY HUA ON 6 1794 1605
## 2 DAKSHESH DARURI MI 6 1553 1469
## 3 ADITYA BAJAJ MI 6 1384 1564
## 4 PATRICK H SCHILLING MI 5.5 1716 1574
## 5 HANSHI ZUO MI 5.5 1655 1501
## 6 HANSEN SONG OH 5 1686 1519
## 7 GARY DEE SWATHELL MI 5 1649 1372
## 8 EZEKIEL HOUGHTON MI 5 1641 1468
## 9 STEFANO LEE ON 5 1411 1523
## 10 ANVIT RAO MI 5 1365 1554
## # … with 54 more rows