Y=c(45,47,50,42,43,44,49,37,51,52,57,49)
df=expand.grid(1:4,1:3)
df$Y=Y
df
## Var1 Var2 Y
## 1 1 1 45
## 2 2 1 47
## 3 3 1 50
## 4 4 1 42
## 5 1 2 43
## 6 2 2 44
## 7 3 2 49
## 8 4 2 37
## 9 1 3 51
## 10 2 3 52
## 11 3 3 57
## 12 4 3 49
names(df)=c("Detergente","Lavadora","Y")
df
## Detergente Lavadora Y
## 1 1 1 45
## 2 2 1 47
## 3 3 1 50
## 4 4 1 42
## 5 1 2 43
## 6 2 2 44
## 7 3 2 49
## 8 4 2 37
## 9 1 3 51
## 10 2 3 52
## 11 3 3 57
## 12 4 3 49
str(df)
## 'data.frame': 12 obs. of 3 variables:
## $ Detergente: int 1 2 3 4 1 2 3 4 1 2 ...
## $ Lavadora : int 1 1 1 1 2 2 2 2 3 3 ...
## $ Y : num 45 47 50 42 43 44 49 37 51 52 ...
## - attr(*, "out.attrs")=List of 2
## ..$ dim : int [1:2] 4 3
## ..$ dimnames:List of 2
## .. ..$ Var1: chr [1:4] "Var1=1" "Var1=2" "Var1=3" "Var1=4"
## .. ..$ Var2: chr [1:3] "Var2=1" "Var2=2" "Var2=3"
df$Lavadora=factor(df$Lavadora)
str(df)
## 'data.frame': 12 obs. of 3 variables:
## $ Detergente: int 1 2 3 4 1 2 3 4 1 2 ...
## $ Lavadora : Factor w/ 3 levels "1","2","3": 1 1 1 1 2 2 2 2 3 3 ...
## $ Y : num 45 47 50 42 43 44 49 37 51 52 ...
## - attr(*, "out.attrs")=List of 2
## ..$ dim : int [1:2] 4 3
## ..$ dimnames:List of 2
## .. ..$ Var1: chr [1:4] "Var1=1" "Var1=2" "Var1=3" "Var1=4"
## .. ..$ Var2: chr [1:3] "Var2=1" "Var2=2" "Var2=3"
modelo=aov(Y~Detergente+Lavadora,data=df)
summary(modelo)
## Df Sum Sq Mean Sq F value Pr(>F)
## Detergente 1 6.67 6.67 0.396 0.5469
## Lavadora 2 170.17 85.08 5.048 0.0382 *
## Residuals 8 134.83 16.85
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
boxplot(Y~Detergente,data=df)
boxplot(Y~Lavadora,data=df)
boxplot(Y~Detergente*Lavadora,data=df)
tk=TukeyHSD(modelo)
## Warning in replications(paste("~", xx), data = mf): non-factors ignored:
## Detergente
## Warning in TukeyHSD.aov(modelo): 'which' specified some non-factors which will
## be dropped
tk
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Y ~ Detergente + Lavadora, data = df)
##
## $Lavadora
## diff lwr upr p adj
## 2-1 -2.75 -11.0450005 5.545001 0.6277831
## 3-1 6.25 -2.0450005 14.545001 0.1401529
## 3-2 9.00 0.7049995 17.295001 0.0350352
qqnorm(modelo$residuals)
qqline(modelo$residuals)
Y=c(1.328,1.113,0.985,1.057,1.316,1.144,1.553,1.485,1.310,1.386,1.273,0.789,0.985,0.671,1.134,0.554,1.412,1.386,0.917,1.289,1.269,1.093,1.268,0.984,1.091,1.087,1.195,1.482,1.380,1.442,1.036,0.201,0.783,0.900,1.108,0.916,1.129,1.434,1.132,1.223,1.440,1.150,1.079,1.190,1.389,1.247,1.611,1.617,1.445,1.574,1.454,1.018,1.063,1.050,1.219,0.997,1.602,1.538,1.583,1.478)
df=expand.grid(1:10,1:2,1:3)
names(df)=c("Replica","Equipo","Operador")
df$Y=Y
df$Operador=factor(df$Operador)
df$Equipo=factor(df$Equipo)
df
## Replica Equipo Operador Y
## 1 1 1 1 1.328
## 2 2 1 1 1.113
## 3 3 1 1 0.985
## 4 4 1 1 1.057
## 5 5 1 1 1.316
## 6 6 1 1 1.144
## 7 7 1 1 1.553
## 8 8 1 1 1.485
## 9 9 1 1 1.310
## 10 10 1 1 1.386
## 11 1 2 1 1.273
## 12 2 2 1 0.789
## 13 3 2 1 0.985
## 14 4 2 1 0.671
## 15 5 2 1 1.134
## 16 6 2 1 0.554
## 17 7 2 1 1.412
## 18 8 2 1 1.386
## 19 9 2 1 0.917
## 20 10 2 1 1.289
## 21 1 1 2 1.269
## 22 2 1 2 1.093
## 23 3 1 2 1.268
## 24 4 1 2 0.984
## 25 5 1 2 1.091
## 26 6 1 2 1.087
## 27 7 1 2 1.195
## 28 8 1 2 1.482
## 29 9 1 2 1.380
## 30 10 1 2 1.442
## 31 1 2 2 1.036
## 32 2 2 2 0.201
## 33 3 2 2 0.783
## 34 4 2 2 0.900
## 35 5 2 2 1.108
## 36 6 2 2 0.916
## 37 7 2 2 1.129
## 38 8 2 2 1.434
## 39 9 2 2 1.132
## 40 10 2 2 1.223
## 41 1 1 3 1.440
## 42 2 1 3 1.150
## 43 3 1 3 1.079
## 44 4 1 3 1.190
## 45 5 1 3 1.389
## 46 6 1 3 1.247
## 47 7 1 3 1.611
## 48 8 1 3 1.617
## 49 9 1 3 1.445
## 50 10 1 3 1.574
## 51 1 2 3 1.454
## 52 2 2 3 1.018
## 53 3 2 3 1.063
## 54 4 2 3 1.050
## 55 5 2 3 1.219
## 56 6 2 3 0.997
## 57 7 2 3 1.602
## 58 8 2 3 1.538
## 59 9 2 3 1.583
## 60 10 2 3 1.478
modelo=aov(Y~Equipo+Operador,data=df)
summary(modelo)
## Df Sum Sq Mean Sq F value Pr(>F)
## Equipo 1 0.493 0.4925 8.090 0.00621 **
## Operador 2 0.589 0.2944 4.835 0.01156 *
## Residuals 56 3.409 0.0609
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
boxplot(Y~Equipo,data=df)
boxplot(Y~Operador,data=df)
boxplot(Y~Equipo*Operador,data=df)
### Se observa diferencia significativa entre algunos de los equipos y operadores.
tk=TukeyHSD(modelo)
tk
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Y ~ Equipo + Operador, data = df)
##
## $Equipo
## diff lwr upr p adj
## 2-1 -0.1812 -0.3088231 -0.05357689 0.0062055
##
## $Operador
## diff lwr upr p adj
## 2-1 -0.04670 -0.234553611 0.1411536 0.8214765
## 3-1 0.18285 -0.005003611 0.3707036 0.0580021
## 3-2 0.22955 0.041696389 0.4174036 0.0129494
qqnorm(modelo$residuals)
qqline(modelo$residuals)
shapiro.test(modelo$residuals)
##
## Shapiro-Wilk normality test
##
## data: modelo$residuals
## W = 0.96139, p-value = 0.05502
require(car)
## Loading required package: car
## Loading required package: carData
leveneTest(Y~Equipo,data=df)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 4.1246 0.04686 *
## 58
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(Y~Operador,data=df)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 0.1849 0.8316
## 57
plot(modelo$residuals)
abline(h=0)
### Hay datos fuera del rango, por lo que se debería analizar si el error se obtuvo desde la recolección de la muestra.
##Lectura de los datos
df=expand.grid(1:3,1:3)
df$Trat=c("A","B","C","B","C","A","C","A","B")
df$Y=c(16,15,13,10,9,11,11,14,13)
df
## Var1 Var2 Trat Y
## 1 1 1 A 16
## 2 2 1 B 15
## 3 3 1 C 13
## 4 1 2 B 10
## 5 2 2 C 9
## 6 3 2 A 11
## 7 1 3 C 11
## 8 2 3 A 14
## 9 3 3 B 13
names(df)=c("Inspector","Escala","Trat","Y")
df
## Inspector Escala Trat Y
## 1 1 1 A 16
## 2 2 1 B 15
## 3 3 1 C 13
## 4 1 2 B 10
## 5 2 2 C 9
## 6 3 2 A 11
## 7 1 3 C 11
## 8 2 3 A 14
## 9 3 3 B 13
str(df)
## 'data.frame': 9 obs. of 4 variables:
## $ Inspector: int 1 2 3 1 2 3 1 2 3
## $ Escala : int 1 1 1 2 2 2 3 3 3
## $ Trat : chr "A" "B" "C" "B" ...
## $ Y : num 16 15 13 10 9 11 11 14 13
## - attr(*, "out.attrs")=List of 2
## ..$ dim : int [1:2] 3 3
## ..$ dimnames:List of 2
## .. ..$ Var1: chr [1:3] "Var1=1" "Var1=2" "Var1=3"
## .. ..$ Var2: chr [1:3] "Var2=1" "Var2=2" "Var2=3"
df$Inspector=factor(df$Inspector)
df$Escala=factor(df$Escala)
df$Trat=factor(df$Trat)
modelo=aov(Y~Inspector+Escala+Trat,data=df)
summary(modelo)
## Df Sum Sq Mean Sq F value Pr(>F)
## Inspector 2 0.22 0.111 1 0.50000
## Escala 2 32.89 16.444 148 0.00671 **
## Trat 2 10.89 5.444 49 0.02000 *
## Residuals 2 0.22 0.111
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
boxplot(Y~Escala,data=df)
boxplot(Y~Trat,data=df)
boxplot(Y~Inspector,data=df)
tk=TukeyHSD(modelo)
tk
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Y ~ Inspector + Escala + Trat, data = df)
##
## $Inspector
## diff lwr upr p adj
## 2-1 3.333333e-01 -1.269927 1.936593 0.548184
## 3-1 1.776357e-15 -1.603260 1.603260 1.000000
## 3-2 -3.333333e-01 -1.936593 1.269927 0.548184
##
## $Escala
## diff lwr upr p adj
## 2-1 -4.666667 -6.269927 -3.0634068 0.0061007
## 3-1 -2.000000 -3.603260 -0.3967402 0.0327189
## 3-2 2.666667 1.063407 4.2699265 0.0186734
##
## $Trat
## diff lwr upr p adj
## B-A -1.000000 -2.603260 0.60325985 0.1191149
## C-A -2.666667 -4.269927 -1.06340682 0.0186734
## C-B -1.666667 -3.269927 -0.06340682 0.0464424
plot(tk)
qqnorm(modelo$residuals)
qqline(modelo$residuals)
shapiro.test(modelo$residuals)
##
## Shapiro-Wilk normality test
##
## data: modelo$residuals
## W = 0.61728, p-value = 0.0001526
require(car)
leveneTest(Y~Trat,data=df)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 0.0556 0.9464
## 6
leveneTest(Y~Escala,data=df)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 0.1429 0.8697
## 6
plot(modelo$residuals)
abline(h=0)
## Se concluye que hay un problema a la hora de la recoleccion de los datos, ya que en la prueba de independencia de los residuales los datos lo muestran. ## Hay diferencia entre los pesos en las 3 escalas, no hay diferencia entre los materiales, ni entre los inspectores.
df=read.csv("Problema19-Cap5.csv",sep=";")
df
## Molde Catalizador Y
## 1 -1 -1 93
## 2 -1 -1 92
## 3 -1 -1 90
## 4 -1 -1 91
## 5 -1 -1 92
## 6 -1 -1 91
## 7 -1 -1 90
## 8 -1 -1 91
## 9 -1 -1 93
## 10 -1 -1 90
## 11 1 -1 88
## 12 1 -1 88
## 13 1 -1 87
## 14 1 -1 87
## 15 1 -1 88
## 16 1 -1 87
## 17 1 -1 87
## 18 1 -1 87
## 19 1 -1 87
## 20 1 -1 88
## 21 -1 0 92
## 22 -1 0 94
## 23 -1 0 90
## 24 -1 0 91
## 25 -1 0 90
## 26 -1 0 91
## 27 -1 0 92
## 28 -1 0 92
## 29 -1 0 92
## 30 -1 0 91
## 31 1 0 90
## 32 1 0 88
## 33 1 0 88
## 34 1 0 88
## 35 1 0 89
## 36 1 0 90
## 37 1 0 89
## 38 1 0 88
## 39 1 0 88
## 40 1 0 89
## 41 -1 1 95
## 42 -1 1 94
## 43 -1 1 94
## 44 -1 1 94
## 45 -1 1 94
## 46 -1 1 97
## 47 -1 1 95
## 48 -1 1 96
## 49 -1 1 94
## 50 -1 1 96
## 51 1 1 91
## 52 1 1 90
## 53 1 1 92
## 54 1 1 90
## 55 1 1 97
## 56 1 1 89
## 57 1 1 90
## 58 1 1 91
## 59 1 1 91
## 60 1 1 91
str(df)
## 'data.frame': 60 obs. of 3 variables:
## $ Molde : int -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
## $ Catalizador: int -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
## $ Y : int 93 92 90 91 92 91 90 91 93 90 ...
df$Molde=factor(df$Molde)
df$Catalizador=factor(df$Catalizador)
modelo=aov(Y~Molde+Catalizador,data=df)
summary(modelo)
## Df Sum Sq Mean Sq F value Pr(>F)
## Molde 1 180.27 180.27 110.89 6.79e-15 ***
## Catalizador 2 153.03 76.52 47.07 1.02e-12 ***
## Residuals 56 91.03 1.63
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
boxplot(Y~Molde,data=df)
boxplot(Y~Catalizador,data=df)
boxplot(Y~Molde*Catalizador,data=df)
interaction.plot(df$Molde,df$Catalizador,df$Y)
tk=TukeyHSD(modelo)
tk
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Y ~ Molde + Catalizador, data = df)
##
## $Molde
## diff lwr upr p adj
## 1--1 -3.466667 -4.126135 -2.807199 0
##
## $Catalizador
## diff lwr upr p adj
## 0--1 0.75 -0.2206975 1.720698 0.1598613
## 1--1 3.70 2.7293025 4.670698 0.0000000
## 1-0 2.95 1.9793025 3.920698 0.0000000
plot(tk)
qqnorm(modelo$residuals)
qqline(modelo$residuals)
shapiro.test(modelo$residuals)
##
## Shapiro-Wilk normality test
##
## data: modelo$residuals
## W = 0.87917, p-value = 2.485e-05
require(car)
leveneTest(Y~Molde,data=df)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.1322 0.7175
## 58
leveneTest(Y~Catalizador,data=df)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 2.0397 0.1394
## 57
plot(modelo$residuals)
abline(h=0)
df=read.csv("Problema20Cap5.csv",sep=";")
df
## Pegamento Temperatura Y
## 1 A1 60 2.50
## 2 A1 60 2.80
## 3 A1 80 3.80
## 4 A1 80 3.40
## 5 A1 100 4.00
## 6 A1 100 4.20
## 7 A2 60 1.60
## 8 A2 60 1.22
## 9 A2 80 3.20
## 10 A2 80 2.80
## 11 A2 100 4.30
## 12 A2 100 4.70
str(df)
## 'data.frame': 12 obs. of 3 variables:
## $ Pegamento : chr "A1" "A1" "A1" "A1" ...
## $ Temperatura: int 60 60 80 80 100 100 60 60 80 80 ...
## $ Y : num 2.5 2.8 3.8 3.4 4 4.2 1.6 1.22 3.2 2.8 ...
df$Pegamento=factor(df$Pegamento)
df$Temperatura=factor(df$Temperatura)
df$Y=as.double(df$Y)
modelo=aov(Y~Pegamento*Temperatura,data=df)
summary(modelo)
## Df Sum Sq Mean Sq F value Pr(>F)
## Pegamento 1 0.691 0.691 10.99 0.0161 *
## Temperatura 2 10.354 5.177 82.35 4.34e-05 ***
## Pegamento:Temperatura 2 1.366 0.683 10.87 0.0101 *
## Residuals 6 0.377 0.063
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
boxplot(Y~Pegamento,data=df,main="Graficos de los pegamentos")
boxplot(Y~Temperatura,data=df,main="Resistencia a la torsion de las adhesiones")
boxplot(Y~Pegamento*Temperatura,data=df,main="Graficos de las variables")
tk=TukeyHSD(modelo)
tk
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Y ~ Pegamento * Temperatura, data = df)
##
## $Pegamento
## diff lwr upr p adj
## A2-A1 -0.48 -0.8342158 -0.1257842 0.0160877
##
## $Temperatura
## diff lwr upr p adj
## 80-60 1.27 0.7260119 1.813988 0.0009122
## 100-60 2.27 1.7260119 2.813988 0.0000343
## 100-80 1.00 0.4560119 1.543988 0.0032134
##
## $`Pegamento:Temperatura`
## diff lwr upr p adj
## A2:60-A1:60 -1.24 -2.23787597 -0.242124 0.0188874
## A1:80-A1:60 0.95 -0.04787597 1.947876 0.0613074
## A2:80-A1:60 0.35 -0.64787597 1.347876 0.7301328
## A1:100-A1:60 1.45 0.45212403 2.447876 0.0088011
## A2:100-A1:60 1.85 0.85212403 2.847876 0.0024766
## A1:80-A2:60 2.19 1.19212403 3.187876 0.0009867
## A2:80-A2:60 1.59 0.59212403 2.587876 0.0055020
## A1:100-A2:60 2.69 1.69212403 3.687876 0.0003113
## A2:100-A2:60 3.09 2.09212403 4.087876 0.0001416
## A2:80-A1:80 -0.60 -1.59787597 0.397876 0.2878599
## A1:100-A1:80 0.50 -0.49787597 1.497876 0.4368423
## A2:100-A1:80 0.90 -0.09787597 1.897876 0.0761198
## A1:100-A2:80 1.10 0.10212403 2.097876 0.0327623
## A2:100-A2:80 1.50 0.50212403 2.497876 0.0074161
## A2:100-A1:100 0.40 -0.59787597 1.397876 0.6284243
qqnorm(modelo$residuals)
qqline(modelo$residuals)
shapiro.test(modelo$residuals)
##
## Shapiro-Wilk normality test
##
## data: modelo$residuals
## W = 0.77302, p-value = 0.004698
require(car)
leveneTest(Y~Temperatura,data=df)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 4.4568 0.04516 *
## 9
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
leveneTest(Y~Pegamento,data=df)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 2.7953 0.1255
## 10
plot(modelo$residuals)
abline(h=0)
interaction.plot(df$Pegamento,df$Temperatura,df$Y,main="Interaccion entre las variables")
df=read.csv("Problema21Cap5.csv",sep=";")
df
## tiempo acelerante Y
## 1 -1 -1 3900
## 2 -1 -1 3600
## 3 0 -1 4100
## 4 0 -1 3500
## 5 1 -1 4000
## 6 1 -1 3800
## 7 -1 0 4300
## 8 -1 0 3700
## 9 0 0 4200
## 10 0 0 3900
## 11 1 0 4300
## 12 1 0 3600
## 13 -1 1 3700
## 14 -1 1 4100
## 15 0 1 3900
## 16 0 1 4000
## 17 1 1 3600
## 18 1 1 3800
str(df)
## 'data.frame': 18 obs. of 3 variables:
## $ tiempo : int -1 -1 0 0 1 1 -1 -1 0 0 ...
## $ acelerante: int -1 -1 -1 -1 -1 -1 0 0 0 0 ...
## $ Y : int 3900 3600 4100 3500 4000 3800 4300 3700 4200 3900 ...
df$tiempo=factor(df$tiempo)
df$acelerante=factor(df$acelerante)
modelo=aov(Y~tiempo+acelerante,data=df)
summary(modelo)
## Df Sum Sq Mean Sq F value Pr(>F)
## tiempo 2 21111 10556 0.152 0.86
## acelerante 2 114444 57222 0.825 0.46
## Residuals 13 902222 69402
boxplot(Y~tiempo,data=df)
boxplot(Y~acelerante,data=df)
boxplot(Y~tiempo+acelerante,data=df)
interaction.plot(df$tiempo,df$acelerante,df$Y)
tk=TukeyHSD(modelo)
tk
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Y ~ tiempo + acelerante, data = df)
##
## $tiempo
## diff lwr upr p adj
## 0--1 50.00000 -351.6061 451.6061 0.9424302
## 1--1 -33.33333 -434.9394 368.2728 0.9739228
## 1-0 -83.33333 -484.9394 318.2728 0.8493245
##
## $acelerante
## diff lwr upr p adj
## 0--1 183.33333 -218.2728 584.9394 0.4708685
## 1--1 33.33333 -368.2728 434.9394 0.9739228
## 1-0 -150.00000 -551.6061 251.6061 0.5979909
qqnorm(modelo$residuals)
qqline(modelo$residuals)
shapiro.test(modelo$residuals)
##
## Shapiro-Wilk normality test
##
## data: modelo$residuals
## W = 0.94083, p-value = 0.2994
library("car")
leveneTest(Y~tiempo,data=df)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 0.1373 0.8728
## 15
leveneTest(Y~acelerante,data=df)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 1.789 0.201
## 15
plot(modelo$residuals)
abline(h=0)
plot(df$tiempo,modelo$residuals)
abline(h=0)