Problema 3 del capĆ­tulo 2

setwd("C:/Users/mylen/OneDrive/Escritorio/PostInvestig/DExperimental")
df=read.csv("p23c2datos.csv",sep=";")
df
##    Mujer Hombre
## 1     75     74
## 2     77     72
## 3     78     77
## 4     79     76
## 5     77     76
## 6     73     73
## 7     78     75
## 8     79     73
## 9     78     74
## 10    80     75
t.test(df$Mujer,df$Hombre)
## 
##  Welch Two Sample t-test
## 
## data:  df$Mujer and df$Hombre
## t = 3.5254, df = 16.851, p-value = 0.002626
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  1.163304 4.636696
## sample estimates:
## mean of x mean of y 
##      77.4      74.5
df2=stack(df)
names(df2)=c("Y","Genero")
df2
##     Y Genero
## 1  75  Mujer
## 2  77  Mujer
## 3  78  Mujer
## 4  79  Mujer
## 5  77  Mujer
## 6  73  Mujer
## 7  78  Mujer
## 8  79  Mujer
## 9  78  Mujer
## 10 80  Mujer
## 11 74 Hombre
## 12 72 Hombre
## 13 77 Hombre
## 14 76 Hombre
## 15 76 Hombre
## 16 73 Hombre
## 17 75 Hombre
## 18 73 Hombre
## 19 74 Hombre
## 20 75 Hombre
boxplot(Y~Genero,data=df2,col=c("blue","yellow"))

Problema 23 del capĆ­tulo 2

setwd("C:/Users/mylen/OneDrive/Escritorio/PostInvestig/DExperimental")
df=read.csv("p23c2datos.csv",sep=";")
df
##    Mujer Hombre
## 1     75     74
## 2     77     72
## 3     78     77
## 4     79     76
## 5     77     76
## 6     73     73
## 7     78     75
## 8     79     73
## 9     78     74
## 10    80     75
t.test(df$Mujer,df$Hombre)
## 
##  Welch Two Sample t-test
## 
## data:  df$Mujer and df$Hombre
## t = 3.5254, df = 16.851, p-value = 0.002626
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  1.163304 4.636696
## sample estimates:
## mean of x mean of y 
##      77.4      74.5
df2=stack(df)
names(df2)=c("Y","Genero")
df2
##     Y Genero
## 1  75  Mujer
## 2  77  Mujer
## 3  78  Mujer
## 4  79  Mujer
## 5  77  Mujer
## 6  73  Mujer
## 7  78  Mujer
## 8  79  Mujer
## 9  78  Mujer
## 10 80  Mujer
## 11 74 Hombre
## 12 72 Hombre
## 13 77 Hombre
## 14 76 Hombre
## 15 76 Hombre
## 16 73 Hombre
## 17 75 Hombre
## 18 73 Hombre
## 19 74 Hombre
## 20 75 Hombre
boxplot(Y~Genero,data=df2,col=c("blue","yellow"))

setwd("C:/Users/mylen/OneDrive/Escritorio/PostInvestig/DExperimental")

Problema 12 del capĆ­tulo 2

x=c(28.3,26.8,26.6,26.5,28.1,24.8,27.4,26.2,29.4,28.6,24.9,25.2,30.4,27.7,27.0,26.1,28.1,26.9,28.0,27.6,25.6,29.5,27.6,27.3,26.2,27.7,27.2,25.9,26.5,28.3,26.5,29.1,23.7,29.7,26.8,29.5,28.4,26.3,28.1,28.7,27.0,25.5,26.9,27.2,27.6,25.5,28.3,27.4,28.8,25.0,25.3,27.7,25.2,28.6,27.9,28.7)
n=length(x)
media=mean(x)
std=sd(x)
media
## [1] 27.24643
std
## [1] 1.430444
hist(x,col="blue", breaks=15, freq=FALSE)
lines(density(x),col="orange",lwd=2)

tmin=qt(0.025,n-1)
tmax=qt(0.975,n-1)
tmin
## [1] -2.004045
tmax
## [1] 2.004045
media+tmin*std/sqrt(n)
## [1] 26.86335
media+tmax*std/sqrt(n)
## [1] 27.6295
(n-1)*var(x)/qchisq(0.025,n-1)
## [1] 3.091899
(n-1)*var(x)/qchisq(0.975,n-1)
## [1] 1.454363

Problema 16 del capĆ­tulo 2

x=c(1.81,1.97,1.93,1.97,1.85,1.99,1.95,1.93,1.85,1.87,1.98,1.93,1.96,2.02,2.07,1.92,1.99,1.93)
n=length(x)
media=mean(x)
std=sd(x)
media
## [1] 1.94
std
## [1] 0.06462562
hist(x,col="blue", breaks=15, freq=FALSE)

lines(density(x),col="orange",lwd=2)

tmin=qt(0.005,n-1)
tmax=qt(0.995,n-1)
tmin
## [1] -2.898231
tmax
## [1] 2.898231
media+tmin*std/sqrt(n)
## [1] 1.895853
media+tmax*std/sqrt(n)
## [1] 1.984147
tmax*std/sqrt(n)
## [1] 0.04414702
tmin*std/sqrt(n)
## [1] -0.04414702
(n-1)*var(x)/qchisq(0.005,n-1)
## [1] 0.01246222
(n-1)*var(x)/qchisq(0.995,n-1)
## [1] 0.001987767
boxplot(x)

Problema 24 del capĆ­tulo 2

Tb=c(17.2,17.5,18.6,15.9,16.4,17.3,16.8,18.4,16.7,17.6)
Ta=c(21.4,20.9,19.8,20.4,20.6,21.0,20.8,19.9,21.1,20.3)

t.test(Tb,Ta,paired=F)
## 
##  Welch Two Sample t-test
## 
## data:  Tb and Ta
## t = -10.797, df = 14.995, p-value = 1.811e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -4.047267 -2.712733
## sample estimates:
## mean of x mean of y 
##     17.24     20.62
df=data.frame(Tb=Tb,Ta=Ta)
df
##      Tb   Ta
## 1  17.2 21.4
## 2  17.5 20.9
## 3  18.6 19.8
## 4  15.9 20.4
## 5  16.4 20.6
## 6  17.3 21.0
## 7  16.8 20.8
## 8  18.4 19.9
## 9  16.7 21.1
## 10 17.6 20.3
df=stack(df)
names(df)=c("Y","Temperatura")
df
##       Y Temperatura
## 1  17.2          Tb
## 2  17.5          Tb
## 3  18.6          Tb
## 4  15.9          Tb
## 5  16.4          Tb
## 6  17.3          Tb
## 7  16.8          Tb
## 8  18.4          Tb
## 9  16.7          Tb
## 10 17.6          Tb
## 11 21.4          Ta
## 12 20.9          Ta
## 13 19.8          Ta
## 14 20.4          Ta
## 15 20.6          Ta
## 16 21.0          Ta
## 17 20.8          Ta
## 18 19.9          Ta
## 19 21.1          Ta
## 20 20.3          Ta
boxplot(Y~Temperatura,data=df)

modelo=aov(Y~Temperatura,data=df)
summary(modelo)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Temperatura  1  57.12   57.12   116.6 2.71e-09 ***
## Residuals   18   8.82    0.49                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tk=TukeyHSD(modelo)
tk
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Y ~ Temperatura, data = df)
## 
## $Temperatura
##       diff      lwr      upr p adj
## Ta-Tb 3.38 2.722307 4.037693     0
plot(tk)

qqnorm(modelo$residuals)
qqline(modelo$residuals,col='orange')

shapiro.test(modelo$residuals)
## 
##  Shapiro-Wilk normality test
## 
## data:  modelo$residuals
## W = 0.98544, p-value = 0.9841

Problema 11 del capĆ­tulo 3

setwd("C:/Users/mylen/OneDrive/Escritorio/PostInvestig/DExperimental")
df=read.csv("11cap3.csv",sep=";")
df
##    Marca  Y
## 1      1 72
## 2      2 55
## 3      3 64
## 4      1 65
## 5      2 59
## 6      3 74
## 7      1 67
## 8      2 68
## 9      3 61
## 10     1 75
## 11     2 70
## 12     3 58
## 13     1 62
## 14     2 53
## 15     3 51
## 16     1 73
## 17     2 50
## 18     3 69
df$Marca=factor(df$Marca)
str(df)
## 'data.frame':    18 obs. of  2 variables:
##  $ Marca: Factor w/ 3 levels "1","2","3": 1 2 3 1 2 3 1 2 3 1 ...
##  $ Y    : int  72 55 64 65 59 74 67 68 61 75 ...
boxplot(Y~Marca,data=df)

modelo=aov(Y~Marca,data=df)
summary(modelo)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## Marca        2  296.3  148.17   2.793 0.0931 .
## Residuals   15  795.7   53.04                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
qqnorm(modelo$residuals)
qqline(modelo$residuals)

shapiro.test(modelo$residuals)
## 
##  Shapiro-Wilk normality test
## 
## data:  modelo$residuals
## W = 0.96797, p-value = 0.7589
library("car")
## Loading required package: carData
leveneTest(Y~Marca,data=df)
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value Pr(>F)
## group  2  0.5288 0.5999
##       15
plot(modelo$residuals)
abline(h=0)

plot(modelo$fitted.values, modelo$residuals)
abline(h=0) 

plot(df$Marca,modelo$residuals)
abline(h=0)

Problema 12 del capĆ­tulo 3

setwd("C:/Users/mylen/OneDrive/Escritorio/PostInvestig/DExperimental")
df=read.csv("cap3p12.csv",sep=";")
df
##    Tratamiento tiempo
## 1      Control    213
## 2      Control    214
## 3      Control    204
## 4      Control    208
## 5      Control    212
## 6      Control    200
## 7      Control    207
## 8           T2     76
## 9           T2     85
## 10          T2     74
## 11          T2     78
## 12          T2     82
## 13          T2     75
## 14          T2     82
## 15          T3     57
## 16          T3     67
## 17          T3     55
## 18          T3     64
## 19          T3     61
## 20          T3     63
## 21          T3     63
## 22          T4     82
## 23          T4     85
## 24          T4     92
## 25          T4     87
## 26          T4     79
## 27          T4     90
df$Tratamiento=factor(df$Tratamiento)
boxplot(tiempo~Tratamiento,data=df)

modelo=aov(tiempo~Tratamiento,data=df)
summary(modelo)
##             Df Sum Sq Mean Sq F value Pr(>F)    
## Tratamiento  3  94420   31473    1493 <2e-16 ***
## Residuals   23    485      21                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tk=TukeyHSD(modelo)
tk
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = tiempo ~ Tratamiento, data = df)
## 
## $Tratamiento
##                  diff           lwr        upr     p adj
## T2-Control -129.42857 -136.21990802 -122.63723 0.0000000
## T3-Control -146.85714 -153.64847945 -140.06581 0.0000000
## T4-Control -122.45238 -129.52102819 -115.38373 0.0000000
## T3-T2       -17.42857  -24.21990802  -10.63723 0.0000018
## T4-T2         6.97619   -0.09245676   14.04484 0.0539588
## T4-T3        24.40476   17.33611467   31.47341 0.0000000
plot(tk)

qqnorm(modelo$residuals)
qqline(modelo$residuals)

shapiro.test(modelo$residuals)
## 
##  Shapiro-Wilk normality test
## 
## data:  modelo$residuals
## W = 0.95141, p-value = 0.232
library(car)
leveneTest(tiempo~Tratamiento,data=df)
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value Pr(>F)
## group  3  0.1943 0.8992
##       23
plot(modelo$residuals)
abline(h=0)

plot(df$Tratamiento,modelo$residuals)
abline(h=0)

plot(modelo$fitted.values, modelo$residuals)
abline(h=0)

Problema 14 capĆ­tulo 3

df=read.csv("c3p14.csv",sep=";")
df
##    Tratamiento Ppdef
## 1      ConTrat   5.3
## 2      ConTrat   2.2
## 3      ConTrat   4.0
## 4      ConTrat   1.1
## 5      ConTrat   4.0
## 6      ConTrat   2.0
## 7      ConTrat   4.0
## 8      ConTrat   3.0
## 9      ConTrat   2.6
## 10     ConTrat   3.1
## 11     ConTrat   2.1
## 12     ConTrat   2.1
## 13     ConTrat   5.1
## 14     ConTrat   1.2
## 15     ConTrat   4.1
## 16     ConTrat   3.3
## 17     ConTrat   4.1
## 18     ConTrat   2.1
## 19     ConTrat   3.2
## 20     ConTrat   4.0
## 21     ConTrat   5.1
## 22     ConTrat   2.0
## 23     ConTrat   2.2
## 24     ConTrat   3.0
## 25     ConTrat   4.1
## 26     SinTrat   8.0
## 27     SinTrat   8.7
## 28     SinTrat  13.2
## 29     SinTrat  11.3
## 30     SinTrat   7.2
## 31     SinTrat   4.5
## 32     SinTrat   8.2
## 33     SinTrat   6.6
## 34     SinTrat   9.1
## 35     SinTrat   9.2
## 36     SinTrat   6.7
## 37     SinTrat  10.2
## 38     SinTrat  12.2
## 39     SinTrat  10.6
## 40     SinTrat  16.3
## 41     SinTrat  13.3
## 42     SinTrat   9.2
## 43     SinTrat   5.2
## 44     SinTrat   6.4
## 45     SinTrat   6.2
## 46     SinTrat   7.2
## 47     SinTrat   8.0
## 48     SinTrat  17.2
## 49     SinTrat   4.8
## 50     SinTrat  12.3
str(df)
## 'data.frame':    50 obs. of  2 variables:
##  $ Tratamiento: chr  "ConTrat" "ConTrat" "ConTrat" "ConTrat" ...
##  $ Ppdef      : num  5.3 2.2 4 1.1 4 2 4 3 2.6 3.1 ...
df$Tratamiento=factor(df$Tratamiento)
str(df)
## 'data.frame':    50 obs. of  2 variables:
##  $ Tratamiento: Factor w/ 2 levels "ConTrat","SinTrat": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Ppdef      : num  5.3 2.2 4 1.1 4 2 4 3 2.6 3.1 ...
df
##    Tratamiento Ppdef
## 1      ConTrat   5.3
## 2      ConTrat   2.2
## 3      ConTrat   4.0
## 4      ConTrat   1.1
## 5      ConTrat   4.0
## 6      ConTrat   2.0
## 7      ConTrat   4.0
## 8      ConTrat   3.0
## 9      ConTrat   2.6
## 10     ConTrat   3.1
## 11     ConTrat   2.1
## 12     ConTrat   2.1
## 13     ConTrat   5.1
## 14     ConTrat   1.2
## 15     ConTrat   4.1
## 16     ConTrat   3.3
## 17     ConTrat   4.1
## 18     ConTrat   2.1
## 19     ConTrat   3.2
## 20     ConTrat   4.0
## 21     ConTrat   5.1
## 22     ConTrat   2.0
## 23     ConTrat   2.2
## 24     ConTrat   3.0
## 25     ConTrat   4.1
## 26     SinTrat   8.0
## 27     SinTrat   8.7
## 28     SinTrat  13.2
## 29     SinTrat  11.3
## 30     SinTrat   7.2
## 31     SinTrat   4.5
## 32     SinTrat   8.2
## 33     SinTrat   6.6
## 34     SinTrat   9.1
## 35     SinTrat   9.2
## 36     SinTrat   6.7
## 37     SinTrat  10.2
## 38     SinTrat  12.2
## 39     SinTrat  10.6
## 40     SinTrat  16.3
## 41     SinTrat  13.3
## 42     SinTrat   9.2
## 43     SinTrat   5.2
## 44     SinTrat   6.4
## 45     SinTrat   6.2
## 46     SinTrat   7.2
## 47     SinTrat   8.0
## 48     SinTrat  17.2
## 49     SinTrat   4.8
## 50     SinTrat  12.3
boxplot(Ppdef~Tratamiento,data=df)

modelo=aov(Ppdef~Tratamiento,data=df)
summary(modelo)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Tratamiento  1  467.0   467.0   73.14 3.27e-11 ***
## Residuals   48  306.5     6.4                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tk=TukeyHSD(modelo)
tk
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Ppdef ~ Tratamiento, data = df)
## 
## $Tratamiento
##                  diff      lwr      upr p adj
## SinTrat-ConTrat 6.112 4.675016 7.548984     0
qqnorm(modelo$residuals)
qqline(modelo$residuals)

shapiro.test(modelo$residuals)
## 
##  Shapiro-Wilk normality test
## 
## data:  modelo$residuals
## W = 0.94382, p-value = 0.01913
library(car)
leveneTest(Ppdef~Tratamiento,data=df)
## Levene's Test for Homogeneity of Variance (center = median)
##       Df F value    Pr(>F)    
## group  1  12.969 0.0007491 ***
##       48                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(modelo$residuals)
abline(h=0)

plot(modelo$fitted.values, modelo$residuals)
abline(h=0)