Capítulo 5 problema19
Se corre un diseño factorial 3 × 2 con 10 réplicas para investigar el hinchamiento del catalizador después de la extrusión en la fabricación de botellas de polietileno de alta densidad. El catalizador se utiliza en la obtención de dicho polietileno. Los factores investigados son: molde (con dos niveles) y B: catalizador (con tres niveles).
Lectura de datos
df=read.csv("Problema19-Cap5.csv",sep=";")
df
## Molde Catalizador Y
## 1 -1 -1 93
## 2 -1 -1 92
## 3 -1 -1 90
## 4 -1 -1 91
## 5 -1 -1 92
## 6 -1 -1 91
## 7 -1 -1 90
## 8 -1 -1 91
## 9 -1 -1 93
## 10 -1 -1 90
## 11 1 -1 88
## 12 1 -1 88
## 13 1 -1 87
## 14 1 -1 87
## 15 1 -1 88
## 16 1 -1 87
## 17 1 -1 87
## 18 1 -1 87
## 19 1 -1 87
## 20 1 -1 88
## 21 -1 0 92
## 22 -1 0 94
## 23 -1 0 90
## 24 -1 0 91
## 25 -1 0 90
## 26 -1 0 91
## 27 -1 0 92
## 28 -1 0 92
## 29 -1 0 92
## 30 -1 0 91
## 31 1 0 90
## 32 1 0 88
## 33 1 0 88
## 34 1 0 88
## 35 1 0 89
## 36 1 0 90
## 37 1 0 89
## 38 1 0 88
## 39 1 0 88
## 40 1 0 89
## 41 -1 1 95
## 42 -1 1 94
## 43 -1 1 94
## 44 -1 1 94
## 45 -1 1 94
## 46 -1 1 97
## 47 -1 1 95
## 48 -1 1 96
## 49 -1 1 94
## 50 -1 1 96
## 51 1 1 91
## 52 1 1 90
## 53 1 1 92
## 54 1 1 90
## 55 1 1 97
## 56 1 1 89
## 57 1 1 90
## 58 1 1 91
## 59 1 1 91
## 60 1 1 91
Variables
H0= efecto de molde (A) es igual a cero
Ha= efecto del molde (A) es diferente a cero
H0= efecto del catalizador (B) igual a cero
Ha= efecto del catalizador (B) diferente a cero.
str(df)
## 'data.frame': 60 obs. of 3 variables:
## $ Molde : int -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
## $ Catalizador: int -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
## $ Y : int 93 92 90 91 92 91 90 91 93 90 ...
df$Molde=factor(df$Molde)
df$Catalizador=factor(df$Catalizador)
Modelo estadístico ANOVA
modelo=aov(Y~Molde+Catalizador,data=df)
summary(modelo)
## Df Sum Sq Mean Sq F value Pr(>F)
## Molde 1 180.27 180.27 110.89 6.79e-15 ***
## Catalizador 2 153.03 76.52 47.07 1.02e-12 ***
## Residuals 56 91.03 1.63
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Ambos efectos: el molde y el catalizador están activos.
Boxplot e interacciones: Visualización de datos
boxplot(Y~Molde,data=df)

boxplot(Y~Catalizador,data=df)

boxplot(Y~Molde*Catalizador,data=df)

interaction.plot(df$Molde,df$Catalizador,df$Y)

Prueba de comparaciones múltiples: TukeyHSD
tk=TukeyHSD(modelo)
tk
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Y ~ Molde + Catalizador, data = df)
##
## $Molde
## diff lwr upr p adj
## 1--1 -3.466667 -4.126135 -2.807199 0
##
## $Catalizador
## diff lwr upr p adj
## 0--1 0.75 -0.2206975 1.720698 0.1598613
## 1--1 3.70 2.7293025 4.670698 0.0000000
## 1-0 2.95 1.9793025 3.920698 0.0000000
plot(tk)


Prueba de normalidad de los residuales
qqnorm(modelo$residuals)
qqline(modelo$residuals)

shapiro.test(modelo$residuals)
##
## Shapiro-Wilk normality test
##
## data: modelo$residuals
## W = 0.87917, p-value = 2.485e-05
En la prueba Shapiro con un valor p=2.485e-05 (p<0.05), se rechaza la hipótesis nula, por lo que se concluye que los datos no se distribuyen de forma normal.
Prueba de igualdad de varianza: Homoscedasticidad
require(car)
## Loading required package: car
## Loading required package: carData
leveneTest(Y~Molde,data=df)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 0.1322 0.7175
## 58
leveneTest(Y~Catalizador,data=df)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 2.0397 0.1394
## 57
En el leveneTest para catalizadores y moldes, en ambos la p>0.05, nos indica que hay varianzas constantes.
Prueba gráfica de independencia de los residuales
plot(modelo$residuals)
abline(h=0)

Al observar la gráfica de residuos contra factores, se aprecia que la dispersión es menos en el molde B.