##Lectura de los datos
df=expand.grid(1:3,1:3)
df$Trat=c("A","B","C","B","C","A","C","A","B")
df$Y=c(16,15,13,10,9,11,11,14,13)
df
## Var1 Var2 Trat Y
## 1 1 1 A 16
## 2 2 1 B 15
## 3 3 1 C 13
## 4 1 2 B 10
## 5 2 2 C 9
## 6 3 2 A 11
## 7 1 3 C 11
## 8 2 3 A 14
## 9 3 3 B 13
names(df)=c("Inspector","Escala","Trat","Y")
df
## Inspector Escala Trat Y
## 1 1 1 A 16
## 2 2 1 B 15
## 3 3 1 C 13
## 4 1 2 B 10
## 5 2 2 C 9
## 6 3 2 A 11
## 7 1 3 C 11
## 8 2 3 A 14
## 9 3 3 B 13
str(df)
## 'data.frame': 9 obs. of 4 variables:
## $ Inspector: int 1 2 3 1 2 3 1 2 3
## $ Escala : int 1 1 1 2 2 2 3 3 3
## $ Trat : chr "A" "B" "C" "B" ...
## $ Y : num 16 15 13 10 9 11 11 14 13
## - attr(*, "out.attrs")=List of 2
## ..$ dim : int [1:2] 3 3
## ..$ dimnames:List of 2
## .. ..$ Var1: chr [1:3] "Var1=1" "Var1=2" "Var1=3"
## .. ..$ Var2: chr [1:3] "Var2=1" "Var2=2" "Var2=3"
df$Inspector=factor(df$Inspector)
df$Escala=factor(df$Escala)
df$Trat=factor(df$Trat)
modelo=aov(Y~Inspector+Escala+Trat,data=df)
summary(modelo)
## Df Sum Sq Mean Sq F value Pr(>F)
## Inspector 2 0.22 0.111 1 0.50000
## Escala 2 32.89 16.444 148 0.00671 **
## Trat 2 10.89 5.444 49 0.02000 *
## Residuals 2 0.22 0.111
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
boxplot(Y~Escala,data=df)
boxplot(Y~Trat,data=df)
boxplot(Y~Inspector,data=df)
tk=TukeyHSD(modelo)
tk
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Y ~ Inspector + Escala + Trat, data = df)
##
## $Inspector
## diff lwr upr p adj
## 2-1 3.333333e-01 -1.269927 1.936593 0.548184
## 3-1 1.776357e-15 -1.603260 1.603260 1.000000
## 3-2 -3.333333e-01 -1.936593 1.269927 0.548184
##
## $Escala
## diff lwr upr p adj
## 2-1 -4.666667 -6.269927 -3.0634068 0.0061007
## 3-1 -2.000000 -3.603260 -0.3967402 0.0327189
## 3-2 2.666667 1.063407 4.2699265 0.0186734
##
## $Trat
## diff lwr upr p adj
## B-A -1.000000 -2.603260 0.60325985 0.1191149
## C-A -2.666667 -4.269927 -1.06340682 0.0186734
## C-B -1.666667 -3.269927 -0.06340682 0.0464424
plot(tk)
qqnorm(modelo$residuals)
qqline(modelo$residuals)
shapiro.test(modelo$residuals)
##
## Shapiro-Wilk normality test
##
## data: modelo$residuals
## W = 0.61728, p-value = 0.0001526
require(car)
## Loading required package: car
## Loading required package: carData
leveneTest(Y~Trat,data=df)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 0.0556 0.9464
## 6
leveneTest(Y~Escala,data=df)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 2 0.1429 0.8697
## 6
plot(modelo$residuals)
abline(h=0)
## Se concluye que hay un problema a la hora de la recoleccion de los datos, ya que en la prueba de independencia de los residuales los datos lo muestran.