Regresion Logisticas Univariadas

Aca estan las modelos de WHODFMT considerandola como variable binaria Son regresiones uivariadas

load("~/Dropbox/odontologia/maestria_anunziatta/julio2013/datos_tana_25072013.RData")


library(survey)
## Attaching package: 'survey'
## The following object(s) are masked from 'package:graphics':
## 
## dotchart
# sabado 27 de julio 2013

# WHO
modelo6.bin <- svyglm(WHO.modifiedcateg ~ Sexo.rec, diseniopost1, family = quasibinomial())
summary(modelo6.bin)
## 
## Call:
## svyglm(formula = WHO.modifiedcateg ~ Sexo.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.7679     0.1791    4.29  0.00012 ***
## Sexo.rec2-F  -0.0591     0.2073   -0.29  0.77707    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.001)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo6.bin)
##               2.5 % 97.5 %
## (Intercept)  0.4168 1.1189
## Sexo.rec2-F -0.4654 0.3472

modelo7.bin <- svyglm(WHO.modifiedcateg ~ Nivel.Socieconomico.rec, diseniopost1, 
    family = quasibinomial())



summary(modelo7.bin)
## 
## Call:
## svyglm(formula = WHO.modifiedcateg ~ Nivel.Socieconomico.rec, 
##     diseniopost1, family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                       0.144      0.219    0.66  0.51431    
## Nivel.Socieconomico.rec2-MEDIO    0.797      0.220    3.62  0.00088 ***
## Nivel.Socieconomico.rec3-BAJO     1.276      0.241    5.28  5.8e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9904)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo7.bin)
##                                  2.5 % 97.5 %
## (Intercept)                    -0.2851 0.5735
## Nivel.Socieconomico.rec2-MEDIO  0.3653 1.2286
## Nivel.Socieconomico.rec3-BAJO   0.8026 1.7489



modelo8.bin <- svyglm(WHO.modifiedcateg ~ Nivel.Educativo.de.la.Madre1.rec, 
    diseniopost1, family = quasibinomial())

summary(modelo8.bin)
## 
## Call:
## svyglm(formula = WHO.modifiedcateg ~ Nivel.Educativo.de.la.Madre1.rec, 
##     diseniopost1, family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                                     Estimate Std. Error
## (Intercept)                                           -0.120      0.200
## Nivel.Educativo.de.la.Madre1.rec2-High School          0.780      0.226
## Nivel.Educativo.de.la.Madre1.rec3-Elementary School    1.185      0.253
##                                                     t value Pr(>|t|)    
## (Intercept)                                           -0.60   0.5520    
## Nivel.Educativo.de.la.Madre1.rec2-High School          3.45   0.0014 ** 
## Nivel.Educativo.de.la.Madre1.rec3-Elementary School    4.68  3.8e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.975)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo8.bin)
##                                                       2.5 % 97.5 %
## (Intercept)                                         -0.5111 0.2714
## Nivel.Educativo.de.la.Madre1.rec2-High School        0.3368 1.2233
## Nivel.Educativo.de.la.Madre1.rec3-Elementary School  0.6888 1.6815

modelo9.bin <- svyglm(WHO.modifiedcateg ~ Tipo.de.Escuela.rec, diseniopost1, 
    family = quasibinomial())

summary(modelo9.bin)
## 
## Call:
## svyglm(formula = WHO.modifiedcateg ~ Tipo.de.Escuela.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                     0.283      0.188    1.50     0.14  
## Tipo.de.Escuela.rec2-Publica    0.640      0.236    2.71     0.01 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.001)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo9.bin)
##                                2.5 % 97.5 %
## (Intercept)                  -0.0865 0.6519
## Tipo.de.Escuela.rec2-Publica  0.1768 1.1028

modelo11.bin <- svyglm(WHO.modifiedcateg ~ AtenOdonto2.rec, diseniopost1, family = quasibinomial())

summary(modelo11.bin)
## 
## Call:
## svyglm(formula = WHO.modifiedcateg ~ AtenOdonto2.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                         Estimate Std. Error t value
## (Intercept)                                0.415      0.149    2.79
## AtenOdonto2.rec2-publica                   0.900      0.202    4.45
## AtenOdonto2.rec3-nunca fue al dentista     0.827      0.292    2.83
##                                         Pr(>|t|)    
## (Intercept)                               0.0083 ** 
## AtenOdonto2.rec2-publica                 7.7e-05 ***
## AtenOdonto2.rec3-nunca fue al dentista    0.0074 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9809)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo11.bin)
##                                          2.5 % 97.5 %
## (Intercept)                             0.1233 0.7075
## AtenOdonto2.rec2-publica                0.5031 1.2959
## AtenOdonto2.rec3-nunca fue al dentista  0.2550 1.3995




modelo12.bin <- svyglm(WHO.modifiedcateg ~ FrCepDenti.4.rec, diseniopost1, family = quasibinomial())


summary(modelo12.bin)
## 
## Call:
## svyglm(formula = WHO.modifiedcateg ~ FrCepDenti.4.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                        Estimate Std. Error t value
## (Intercept)                               1.430      0.325    4.40
## FrCepDenti.4.rec2-1 vez al dias          -0.539      0.369   -1.46
## FrCepDenti.4.rec3-2 veces al dia         -0.692      0.346   -2.00
## FrCepDenti.4.rec4-3 veces al dia o mas   -0.822      0.299   -2.75
##                                        Pr(>|t|)    
## (Intercept)                             9.1e-05 ***
## FrCepDenti.4.rec2-1 vez al dias          0.1528    
## FrCepDenti.4.rec3-2 veces al dia         0.0530 .  
## FrCepDenti.4.rec4-3 veces al dia o mas   0.0094 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9731)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo12.bin)
##                                          2.5 %   97.5 %
## (Intercept)                             0.7936  2.06626
## FrCepDenti.4.rec2-1 vez al dias        -1.2624  0.18433
## FrCepDenti.4.rec3-2 veces al dia       -1.3690 -0.01425
## FrCepDenti.4.rec4-3 veces al dia o mas -1.4080 -0.23516



modelo13.bin <- svyglm(WHO.modifiedcateg ~ UsoDentifrico3.rec, diseniopost1, 
    family = quasibinomial())



summary(modelo13.bin)
## 
## Call:
## svyglm(formula = WHO.modifiedcateg ~ UsoDentifrico3.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               0.730      0.116    6.27  2.4e-07 ***
## UsoDentifrico3.rec2-No    0.366      0.624    0.59     0.56    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9971)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo13.bin)
##                          2.5 % 97.5 %
## (Intercept)             0.5023 0.9587
## UsoDentifrico3.rec2-No -0.8583 1.5895

modelo14.bin <- svyglm(WHO.modifiedcateg ~ FluorProf.rec, diseniopost1, family = quasibinomial())

summary(modelo14.bin)
## 
## Call:
## svyglm(formula = WHO.modifiedcateg ~ FluorProf.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)          0.722      0.170    4.26  0.00013 ***
## FluorProf.rec2-No   -0.014      0.202   -0.07  0.94512    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9298)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo14.bin)
##                     2.5 % 97.5 %
## (Intercept)        0.3895 1.0542
## FluorProf.rec2-No -0.4097 0.3817


modelo15.bin <- svyglm(WHO.modifiedcateg ~ RefrColaB.rec, diseniopost1, family = quasibinomial())

summary(modelo15.bin)
## 
## Call:
## svyglm(formula = WHO.modifiedcateg ~ RefrColaB.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                         0.860      0.228    3.78  0.00056 ***
## RefrColaB.rec2-A veces             -0.160      0.268   -0.60  0.55361    
## RefrColaB.rec3-Nunca o raramente   -0.141      0.343   -0.41  0.68335    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9886)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo15.bin)
##                                    2.5 % 97.5 %
## (Intercept)                       0.4134 1.3058
## RefrColaB.rec2-A veces           -0.6853 0.3649
## RefrColaB.rec3-Nunca o raramente -0.8127 0.5308


modelo16.bin <- svyglm(WHO.modifiedcateg ~ MateDulceB.rec, diseniopost1, family = quasibinomial())

summary(modelo16.bin)
## 
## Call:
## svyglm(formula = WHO.modifiedcateg ~ MateDulceB.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                          0.964      0.238    4.06  0.00025 ***
## MateDulceB.rec2-A veces              0.103      0.412    0.25  0.80506    
## MateDulceB.rec3-Nunca o raramente   -0.378      0.265   -1.43  0.16114    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9722)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo16.bin)
##                                     2.5 % 97.5 %
## (Intercept)                        0.4982 1.4296
## MateDulceB.rec2-A veces           -0.7058 0.9109
## MateDulceB.rec3-Nunca o raramente -0.8973 0.1403

modelo17.bin <- svyglm(WHO.modifiedcateg ~ GolosinasB.rec, diseniopost1, family = quasibinomial())

summary(modelo17.bin)
## 
## Call:
## svyglm(formula = WHO.modifiedcateg ~ GolosinasB.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                          1.048      0.260    4.03  0.00027 ***
## GolosinasB.rec2-A veces             -0.401      0.250   -1.61  0.11641    
## GolosinasB.rec3-Nunca o raramente   -0.363      0.250   -1.45  0.15530    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9766)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo17.bin)
##                                     2.5 %  97.5 %
## (Intercept)                        0.5378 1.55790
## GolosinasB.rec2-A veces           -0.8909 0.08798
## GolosinasB.rec3-Nunca o raramente -0.8523 0.12727


modelo19.bin <- svyglm(WHO.modifiedcateg ~ Masas.DulcesB.rec, diseniopost1, 
    family = quasibinomial())

summary(modelo19.bin)
## 
## Call:
## svyglm(formula = WHO.modifiedcateg ~ Masas.DulcesB.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)                             1.219      0.226    5.38  4.3e-06
## Masas.DulcesB.rec2-A veces             -0.506      0.220   -2.30    0.027
## Masas.DulcesB.rec3-Nunca o raramente   -0.789      0.330   -2.39    0.022
##                                         
## (Intercept)                          ***
## Masas.DulcesB.rec2-A veces           *  
## Masas.DulcesB.rec3-Nunca o raramente *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9852)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo19.bin)
##                                        2.5 %   97.5 %
## (Intercept)                           0.7748  1.66223
## Masas.DulcesB.rec2-A veces           -0.9373 -0.07406
## Masas.DulcesB.rec3-Nunca o raramente -1.4362 -0.14179


modelo20.bin <- svyglm(WHO.modifiedcateg ~ UltmVisita1.rec, diseniopost1, family = quasibinomial())

summary(modelo20.bin)
## 
## Call:
## svyglm(formula = WHO.modifiedcateg ~ UltmVisita1.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                        Estimate Std. Error t value
## (Intercept)                               0.613      0.125    4.90
## UltmVisita1.rec2- años atrás              0.353      0.243    1.45
## UltmVisita1.rec3-Nunca fue al dentista    0.679      0.298    2.28
##                                        Pr(>|t|)    
## (Intercept)                             1.9e-05 ***
## UltmVisita1.rec2- años atrás              0.155    
## UltmVisita1.rec3-Nunca fue al dentista    0.029 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9785)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo20.bin)
##                                           2.5 % 97.5 %
## (Intercept)                             0.36764 0.8585
## UltmVisita1.rec2- años atrás           -0.12324 0.8301
## UltmVisita1.rec3-Nunca fue al dentista  0.09485 1.2624





modelo21.bin <- svyglm(WHO.modifiedcateg ~ IGS.rec1, diseniopost1, family = quasibinomial())


summary(modelo21.bin)
## 
## Call:
## svyglm(formula = WHO.modifiedcateg ~ IGS.rec1, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            0.6898     0.1828    3.77  0.00056 ***
## IGS.rec12-De 20 a 60   0.0504     0.2529    0.20  0.84301    
## IGS.rec13-Mas de 60    0.3930     0.2293    1.71  0.09487 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.001)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo21.bin)
##                         2.5 % 97.5 %
## (Intercept)           0.33154 1.0480
## IGS.rec12-De 20 a 60 -0.44528 0.5462
## IGS.rec13-Mas de 60  -0.05636 0.8424



modelo22.bin <- svyglm(WHO.modifiedcateg ~ Nive.Educativo.de.la.Madre2.rec, 
    diseniopost1, family = quasibinomial())

summary(modelo22.bin)
## 
## Call:
## svyglm(formula = WHO.modifiedcateg ~ Nive.Educativo.de.la.Madre2.rec, 
##     diseniopost1, family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                                     Estimate Std. Error
## (Intercept)                                            0.225      0.265
## Nive.Educativo.de.la.Madre2.rec2-HIGH SCHOOL           0.556      0.260
## Nive.Educativo.de.la.Madre2.rec3-ELEMENTARY SCHOOL     1.101      0.338
##                                                     t value Pr(>|t|)   
## (Intercept)                                            0.85   0.4022   
## Nive.Educativo.de.la.Madre2.rec2-HIGH SCHOOL           2.13   0.0395 * 
## Nive.Educativo.de.la.Madre2.rec3-ELEMENTARY SCHOOL     3.26   0.0024 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.975)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo22.bin)
##                                                        2.5 % 97.5 %
## (Intercept)                                         -0.29512 0.7448
## Nive.Educativo.de.la.Madre2.rec2-HIGH SCHOOL         0.04556 1.0665
## Nive.Educativo.de.la.Madre2.rec3-ELEMENTARY SCHOOL   0.43828 1.7646