Regresiones de Poisson Univariadas

Aca están las modelos de WHODFMT considerandola como variable de conteo Son regresiones univariadas

load("~/Dropbox/odontologia/maestria_anunziatta/julio2013/datos_tana_25072013.RData")


library(survey)
## Attaching package: 'survey'
## The following object(s) are masked from 'package:graphics':
## 
## dotchart
# sabado 27 de julio 2013

# WHO DMFT

modelo6.poi <- svyglm(WHODMFT ~ Sexo.rec, diseniopost1, family = quasipoisson())

summary(modelo6.poi)
## 
## Call:
## svyglm(formula = WHODMFT ~ Sexo.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.4799     0.0869    5.52  2.6e-06 ***
## Sexo.rec2-F   0.0390     0.1202    0.32     0.75    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 2.247)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo6.poi)
##               2.5 % 97.5 %
## (Intercept)  0.3096 0.6502
## Sexo.rec2-F -0.1966 0.2745
modelo7.poi <- svyglm(WHODMFT ~ Nivel.Socieconomico.rec, diseniopost1, family = quasipoisson())



summary(modelo7.poi)
## 
## Call:
## svyglm(formula = WHODMFT ~ Nivel.Socieconomico.rec, diseniopost1, 
##     family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                     -0.0897     0.1100   -0.82     0.42    
## Nivel.Socieconomico.rec2-MEDIO   0.7642     0.1327    5.76  1.3e-06 ***
## Nivel.Socieconomico.rec3-BAJO    0.8183     0.1317    6.21  3.2e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 2.05)
## 
## Number of Fisher Scoring iterations: 5

confint(modelo7.poi)
##                                  2.5 % 97.5 %
## (Intercept)                    -0.3053 0.1258
## Nivel.Socieconomico.rec2-MEDIO  0.5041 1.0243
## Nivel.Socieconomico.rec3-BAJO   0.5602 1.0765

modelo8.poi <- svyglm(WHODMFT ~ Nivel.Educativo.de.la.Madre1.rec, diseniopost1, 
    family = quasipoisson())

summary(modelo8.poi)
## 
## Call:
## svyglm(formula = WHODMFT ~ Nivel.Educativo.de.la.Madre1.rec, 
##     diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                                     Estimate Std. Error
## (Intercept)                                           -0.231      0.128
## Nivel.Educativo.de.la.Madre1.rec2-High School          0.615      0.212
## Nivel.Educativo.de.la.Madre1.rec3-Elementary School    0.906      0.136
##                                                     t value Pr(>|t|)    
## (Intercept)                                           -1.80   0.0805 .  
## Nivel.Educativo.de.la.Madre1.rec2-High School          2.90   0.0063 ** 
## Nivel.Educativo.de.la.Madre1.rec3-Elementary School    6.67  7.7e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 2.066)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo8.poi)
##                                                       2.5 %  97.5 %
## (Intercept)                                         -0.4825 0.02091
## Nivel.Educativo.de.la.Madre1.rec2-High School        0.1986 1.03061
## Nivel.Educativo.de.la.Madre1.rec3-Elementary School  0.6402 1.17254

modelo.po9i <- svyglm(WHODMFT ~ Tipo.de.Escuela.rec, diseniopost1, family = quasipoisson())

summary(modelo9.poi)
## Error: objeto 'modelo9.poi' no encontrado
confint(modelo9.poi)
## Error: objeto 'modelo9.poi' no encontrado

modelo11.poi <- svyglm(WHODMFT ~ AtenOdonto2.rec, diseniopost1, family = quasipoisson())

summary(modelo11.poi)
## 
## Call:
## svyglm(formula = WHODMFT ~ AtenOdonto2.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                         Estimate Std. Error t value
## (Intercept)                               0.3012     0.0728    4.14
## AtenOdonto2.rec2-publica                  0.4719     0.0949    4.97
## AtenOdonto2.rec3-nunca fue al dentista    0.3596     0.1370    2.62
##                                         Pr(>|t|)    
## (Intercept)                              0.00019 ***
## AtenOdonto2.rec2-publica                 1.5e-05 ***
## AtenOdonto2.rec3-nunca fue al dentista   0.01255 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 2.23)
## 
## Number of Fisher Scoring iterations: 6
confint(modelo11.poi)
##                                           2.5 % 97.5 %
## (Intercept)                             0.15860 0.4438
## AtenOdonto2.rec2-publica                0.28591 0.6579
## AtenOdonto2.rec3-nunca fue al dentista  0.09101 0.6282



modelo12.poi <- svyglm(WHODMFT ~ FrCepDenti.4.rec, diseniopost1, family = quasipoisson())


summary(modelo12.poi)
## 
## Call:
## svyglm(formula = WHODMFT ~ FrCepDenti.4.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                        Estimate Std. Error t value
## (Intercept)                               0.837      0.140    5.98
## FrCepDenti.4.rec2-1 vez al dias          -0.271      0.201   -1.35
## FrCepDenti.4.rec3-2 veces al dia         -0.288      0.193   -1.49
## FrCepDenti.4.rec4-3 veces al dia o mas   -0.466      0.130   -3.58
##                                        Pr(>|t|)    
## (Intercept)                             7.5e-07 ***
## FrCepDenti.4.rec2-1 vez al dias           0.186    
## FrCepDenti.4.rec3-2 veces al dia          0.144    
## FrCepDenti.4.rec4-3 veces al dia o mas    0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 2.12)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo12.poi)
##                                          2.5 %   97.5 %
## (Intercept)                             0.5628  1.11209
## FrCepDenti.4.rec2-1 vez al dias        -0.6654  0.12288
## FrCepDenti.4.rec3-2 veces al dia       -0.6658  0.08981
## FrCepDenti.4.rec4-3 veces al dia o mas -0.7214 -0.21120


modelo13.poi <- svyglm(WHODMFT ~ UsoDentifrico3.rec, diseniopost1, family = quasipoisson())



summary(modelo13.poi)
## 
## Call:
## svyglm(formula = WHODMFT ~ UsoDentifrico3.rec, diseniopost1, 
##     family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              0.4952     0.0498    9.94    4e-12 ***
## UsoDentifrico3.rec2-No   0.0620     0.2914    0.21     0.83    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 2.242)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo13.poi)
##                          2.5 % 97.5 %
## (Intercept)             0.3976 0.5927
## UsoDentifrico3.rec2-No -0.5092 0.6331
modelo14.poi <- svyglm(WHODMFT ~ FluorProf.rec, diseniopost1, family = quasipoisson())

summary(modelo14.poi)
## 
## Call:
## svyglm(formula = WHODMFT ~ FluorProf.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         0.5430     0.0716    7.58  4.1e-09 ***
## FluorProf.rec2-No  -0.1263     0.0883   -1.43     0.16    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 2.1)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo14.poi)
##                     2.5 % 97.5 %
## (Intercept)        0.4027 0.6834
## FluorProf.rec2-No -0.2994 0.0467

modelo15.poi <- svyglm(WHODMFT ~ RefrColaB.rec, diseniopost1, family = quasipoisson())

summary(modelo15.poi)
## 
## Call:
## svyglm(formula = WHODMFT ~ RefrColaB.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                        0.6952     0.0931    7.47  6.9e-09 ***
## RefrColaB.rec2-A veces            -0.2625     0.0936   -2.80    0.008 ** 
## RefrColaB.rec3-Nunca o raramente  -0.2904     0.1372   -2.12    0.041 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 2.188)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo15.poi)
##                                    2.5 %   97.5 %
## (Intercept)                       0.5127  0.87766
## RefrColaB.rec2-A veces           -0.4459 -0.07899
## RefrColaB.rec3-Nunca o raramente -0.5592 -0.02152

modelo16.poi <- svyglm(WHODMFT ~ MateDulceB.rec, diseniopost1, family = quasipoisson())

summary(modelo16.poi)
## 
## Call:
## svyglm(formula = WHODMFT ~ MateDulceB.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                   Estimate Std. Error t value Pr(>|t|)   
## (Intercept)                          0.573      0.169    3.39   0.0017 **
## MateDulceB.rec2-A veces              0.153      0.220    0.69   0.4930   
## MateDulceB.rec3-Nunca o raramente   -0.203      0.161   -1.26   0.2153   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 2.13)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo16.poi)
##                                     2.5 % 97.5 %
## (Intercept)                        0.2417 0.9039
## MateDulceB.rec2-A veces           -0.2794 0.5846
## MateDulceB.rec3-Nunca o raramente -0.5185 0.1126
modelo17.poi <- svyglm(WHODMFT ~ GolosinasB.rec, diseniopost1, family = quasipoisson())

summary(modelo17.poi)
## 
## Call:
## svyglm(formula = WHODMFT ~ GolosinasB.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                          0.689      0.101    6.85  4.6e-08 ***
## GolosinasB.rec2-A veces             -0.247      0.111   -2.23    0.032 *  
## GolosinasB.rec3-Nunca o raramente   -0.313      0.139   -2.26    0.030 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 2.179)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo17.poi)
##                                     2.5 %   97.5 %
## (Intercept)                        0.4921  0.88686
## GolosinasB.rec2-A veces           -0.4637 -0.03004
## GolosinasB.rec3-Nunca o raramente -0.5845 -0.04154

modelo19.poi <- svyglm(WHODMFT ~ Masas.DulcesB.rec, diseniopost1, family = quasipoisson())

summary(modelo19.poi)
## 
## Call:
## svyglm(formula = WHODMFT ~ Masas.DulcesB.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)                            0.7464     0.0958    7.79  2.6e-09
## Masas.DulcesB.rec2-A veces            -0.2944     0.0957   -3.08   0.0039
## Masas.DulcesB.rec3-Nunca o raramente  -0.3590     0.1484   -2.42   0.0206
##                                         
## (Intercept)                          ***
## Masas.DulcesB.rec2-A veces           ** 
## Masas.DulcesB.rec3-Nunca o raramente *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 2.203)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo19.poi)
##                                        2.5 %  97.5 %
## (Intercept)                           0.5587  0.9341
## Masas.DulcesB.rec2-A veces           -0.4820 -0.1068
## Masas.DulcesB.rec3-Nunca o raramente -0.6498 -0.0682

modelo20.poi <- svyglm(WHODMFT ~ UltmVisita1.rec, diseniopost1, family = quasipoisson())

summary(modelo20.poi)
## 
## Call:
## svyglm(formula = WHODMFT ~ UltmVisita1.rec, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                        Estimate Std. Error t value
## (Intercept)                              0.4665     0.0610    7.65
## UltmVisita1.rec2- años atrás             0.0484     0.2605    0.19
## UltmVisita1.rec3-Nunca fue al dentista   0.2057     0.1332    1.54
##                                        Pr(>|t|)    
## (Intercept)                             3.9e-09 ***
## UltmVisita1.rec2- años atrás               0.85    
## UltmVisita1.rec3-Nunca fue al dentista     0.13    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 2.232)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo20.poi)
##                                           2.5 % 97.5 %
## (Intercept)                             0.34699 0.5861
## UltmVisita1.rec2- años atrás           -0.46213 0.5590
## UltmVisita1.rec3-Nunca fue al dentista -0.05545 0.4668




modelo21.poi <- svyglm(WHODMFT ~ IGS.rec1, diseniopost1, family = quasipoisson())


summary(modelo21.poi)
## 
## Call:
## svyglm(formula = WHODMFT ~ IGS.rec1, diseniopost1, family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            0.4418     0.0926    4.77  2.9e-05 ***
## IGS.rec12-De 20 a 60   0.0881     0.1162    0.76    0.453    
## IGS.rec13-Mas de 60    0.2161     0.0926    2.33    0.025 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 2.247)
## 
## Number of Fisher Scoring iterations: 5
confint(modelo21.poi)
##                         2.5 % 97.5 %
## (Intercept)           0.26019 0.6233
## IGS.rec12-De 20 a 60 -0.13957 0.3158
## IGS.rec13-Mas de 60   0.03469 0.3975


modelo22.poi <- svyglm(WHODMFT ~ Nive.Educativo.de.la.Madre2.rec, diseniopost1, 
    family = quasipoisson())

summary(modelo22.poi)
## 
## Call:
## svyglm(formula = WHODMFT ~ Nive.Educativo.de.la.Madre2.rec, diseniopost1, 
##     family = quasipoisson())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                                     Estimate Std. Error
## (Intercept)                                            0.139      0.159
## Nive.Educativo.de.la.Madre2.rec2-HIGH SCHOOL           0.361      0.167
## Nive.Educativo.de.la.Madre2.rec3-ELEMENTARY SCHOOL     0.646      0.192
##                                                     t value Pr(>|t|)   
## (Intercept)                                            0.87   0.3898   
## Nive.Educativo.de.la.Madre2.rec2-HIGH SCHOOL           2.17   0.0367 * 
## Nive.Educativo.de.la.Madre2.rec3-ELEMENTARY SCHOOL     3.36   0.0018 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 2.174)
## 
## Number of Fisher Scoring iterations: 6
confint(modelo22.poi)
##                                                        2.5 % 97.5 %
## (Intercept)                                         -0.17377 0.4513
## Nive.Educativo.de.la.Madre2.rec2-HIGH SCHOOL         0.03455 0.6875
## Nive.Educativo.de.la.Madre2.rec3-ELEMENTARY SCHOOL   0.26871 1.0229