Tablas de ingreso de la Casen
Tablas por tipo de ingreso, cubriendo del 2006 al 2017
Abstract
Se utilizan: yautcor, yautcor, yoprcor e ytrabajocor.
No se han excluído los outliers ni se han aplicado factores de expansión.
dataset_2006 <- readRDS(file = "casen_2006_c.rds")
dataset_2009 <- readRDS(file = "casen_2009_c.rds")
dataset_2011 <- readRDS(file = "casen_2011_c.rds")
dataset_2013 <- readRDS(file = "casen_2013_c.rds")
dataset_2015 <- readRDS(file = "casen_2015_c.rds")
dataset_2017 <- readRDS(file = "casen_2017_c.rds")
Se generaran 4 tablas, una por variable de ingreso(yautcor, yautcor, yoprcor e ytrabajocor), a los largo de las 6 Casen disponibles, por comuna.
Generaremos conjuntos de 4 tablas, una por cada variable de ingreso, una por cada año. Se construirán 24, que luego se unirán por variable de ingreso, todos los años.
mifuncion <- function(n){
ingreso <- switch(n,"ytotcor","yautcor","yoprcor","ytrabajocor")
bb <- dataset_2017[,c(ingreso)]
aa <<-assign( paste(ingreso, sep = ""), bb )
a <- dataset_2017$aa
b <- dataset_2017$comuna
promedios_2017 <-aggregate(aa, by=list(b), FUN = mean , na.rm = TRUE)
promedios_2017$Anio <- 2017
names(promedios_2017)[1] <- "Comunas"
names(promedios_2017)[2] <- "Promedios 2017"
promedios_2017 <<- promedios_2017
# head(promedios_2017,5)
# print(promedios_2017)
return(promedios_2017)
}
for (n in 1:4){
ingreso_17 <- mifuncion(n)
nom_ingreso <- switch(n,"ytotaj","yautaj","yopraj","ytrabaj")
nombre <- paste("Ingresos_2017_",nom_ingreso, sep = "")
ingreso_f <<-assign( paste("Ingresos_2017_",nom_ingreso, sep = ""), ingreso_17 )
saveRDS(ingreso_f,nombre)
head(ingreso_f,5)
}
mifuncion <- function(n){
ingreso <- switch(n,"ytotcor","yautcor","yoprCor","ytrabajoCor")
bb <- dataset_2015[,c(ingreso)]
aa <<-assign( paste(ingreso, sep = ""), bb )
a <- dataset_2015$aa
b <- dataset_2015$comuna
promedios_2015 <-aggregate(aa, by=list(b), FUN = mean , na.rm = TRUE)
promedios_2015$Anio <- 2015
names(promedios_2015)[1] <- "Comunas"
names(promedios_2015)[2] <- "Promedios 2015"
promedios_2015 <<- promedios_2015
# head(promedios_2015,5)
# print(promedios_2015)
return(promedios_2015)
}
for (n in 1:4){
ingreso_15 <- mifuncion(n)
nom_ingreso <- switch(n,"ytotaj","yautaj","yopraj","ytrabaj")
nombre <- paste("Ingresos_2015_",nom_ingreso, sep = "")
ingreso_f <<-assign( paste("Ingresos_2015_",nom_ingreso, sep = ""), ingreso_15 )
saveRDS(ingreso_f,nombre)
head(ingreso_f,5)
}
mifuncion <- function(n){
ingreso <- switch(n,"ytotcor","yautcor","yoprCor","ytrabajoCor")
bb <- dataset_2013[,c(ingreso)]
aa <<-assign( paste(ingreso, sep = ""), bb )
a <- dataset_2013$aa
b <- dataset_2013$comuna
promedios_2013 <-aggregate(aa, by=list(b), FUN = mean , na.rm = TRUE)
promedios_2013$Anio <- 2013
names(promedios_2013)[1] <- "Comunas"
names(promedios_2013)[2] <- "Promedios 2013"
promedios_2013 <<- promedios_2013
# head(promedios_2013,5)
# print(promedios_2013)
return(promedios_2013)
}
for (n in 1:4){
ingreso_13 <- mifuncion(n)
nom_ingreso <- switch(n,"ytotaj","yautaj","yopraj","ytrabaj")
nombre <- paste("Ingresos_2013_",nom_ingreso, sep = "")
ingreso_f <<-assign( paste("Ingresos_2013_",nom_ingreso, sep = ""), ingreso_13 )
saveRDS(ingreso_f,nombre)
head(ingreso_f,5)
}
mifuncion <- function(n){
ingreso <- switch(n,"ytotaj","yautaj","yopraj","ytrabaj")
bb <- dataset_2011[,c(ingreso)]
aa <<-assign( paste(ingreso, sep = ""), bb )
a <- dataset_2011$aa
b <- dataset_2011$comuna
promedios_2011 <-aggregate(aa, by=list(b), FUN = mean , na.rm = TRUE)
promedios_2011$Anio <- 2011
names(promedios_2011)[1] <- "Comunas"
names(promedios_2011)[2] <- "Promedios 2011"
promedios_2011 <<- promedios_2011
# head(promedios_2011,5)
# print(promedios_2011)
return(promedios_2011)
}
for (n in 1:4){
ingreso_11 <- mifuncion(n)
nom_ingreso <- switch(n,"ytotaj","yautaj","yopraj","ytrabaj")
nombre <- paste("Ingresos_2011_",nom_ingreso, sep = "")
ingreso_f <<-assign( paste("Ingresos_2011_",nom_ingreso, sep = ""), ingreso_11 )
saveRDS(ingreso_f,nombre)
head(ingreso_f,5)
}
mifuncion <- function(n){
ingreso <- switch(n,"YTOTAJ","YAUTAJ","YOPRAJ","YTRABAJ")
bb <- dataset_2009[,c(ingreso)]
aa <<-assign( paste(ingreso, sep = ""), bb )
a <- dataset_2009$aa
b <- dataset_2009$COMUNA
promedios_2009 <-aggregate(aa, by=list(b), FUN = mean , na.rm = TRUE)
promedios_2009$Anio <- 2009
names(promedios_2009)[1] <- "Comunas"
names(promedios_2009)[2] <- "Promedios 2009"
# promedios_2009<<-promedios_2009
# print(promedios_2009)
return(promedios_2009)
}
for (n in 1:4){
ingreso_09 <- mifuncion(n)
nom_ingreso <- switch(n,"ytotaj","yautaj","yopraj","ytrabaj")
nombre <- paste("Ingresos_2009_",nom_ingreso, sep = "")
ingreso_f <<-assign( paste("Ingresos_2009_",nom_ingreso, sep = ""), ingreso_09 )
saveRDS(ingreso_f,nombre)
head(ingreso_f,5)
}
mifuncion <- function(n){
ingreso <- switch(n,"YTOTAJ","YAUTAJ","YOPRAJ","YTRABAJ")
bb <- dataset_2006[,c(ingreso)]
aa <<-assign( paste(ingreso, sep = ""), bb )
a <- dataset_2006$aa
b <- dataset_2006$COMUNA
promedios_2006 <-aggregate(aa, by=list(b), FUN = mean , na.rm = TRUE)
promedios_2006$Anio <- 2006
names(promedios_2006)[1] <- "Comunas"
names(promedios_2006)[2] <- "Promedios 2006"
promedios_2006<<-promedios_2006
# head(promedios_2006,5)
# print(promedios_2006)
return(promedios_2006)
}
for (n in 1:4){
ingreso_06 <- mifuncion(n)
nom_ingreso <- switch(n,"ytotaj","yautaj","yopraj","ytrabaj")
nombre <- paste("Ingresos_2006_",nom_ingreso, sep = "")
ingreso_f <<-assign( paste("Ingresos_2006_",nom_ingreso, sep = ""), ingreso_06 )
saveRDS(ingreso_f,nombre)
head(ingreso_f,5)
}
df_yautaj <- data.frame()
for (n in 1:6) {
anios<-switch(n,"2006","2009","2011","2013","2015","2017")
nombres_sets <- paste("Ingresos_",anios,"_yautaj", sep = "")
sets <- readRDS(nombres_sets)
names(sets)[2]<-"Promedios"
df_yautaj <- rbind(df_yautaj,sets)
# print(df_yautaj)
}
# write_xlsx(df_yautaj,"Ingresos_yautaj.xlsx")
# saveRDS(df_yautaj,"Ingresos_yautaj.rds")
df_ytotaj <- data.frame()
for (n in 1:6) {
anios<-switch(n,"2006","2009","2011","2013","2015","2017")
nombres_sets <- paste("Ingresos_",anios,"_ytotaj", sep = "")
sets <- readRDS(nombres_sets)
names(sets)[2]<-"Promedios"
df_ytotaj <- rbind(df_ytotaj,sets)
# print(df_ytotaj)
}
# write_xlsx(df_ytotaj,"Ingresos_ytotaj.xlsx")
# saveRDS(df_ytotaj,"Ingresos_ytotaj.rds")
df_yopraj <- data.frame()
for (n in 1:6) {
anios<-switch(n,"2006","2009","2011","2013","2015","2017")
nombres_sets <- paste("Ingresos_",anios,"_yopraj", sep = "")
sets <- readRDS(nombres_sets)
names(sets)[2]<-"Promedios"
df_yopraj <- rbind(df_yopraj,sets)
# print(df_yopraj)
}
# write_xlsx(df_yopraj,"Ingresos_2006_yopraj.xlsx")
# saveRDS(df_yopraj,"Ingresos_2006_yopraj.rds")
df_ytrabaj <- data.frame()
for (n in 1:6) {
anios<-switch(n,"2006","2009","2011","2013","2015","2017")
nombres_sets <- paste("Ingresos_",anios,"_ytrabaj", sep = "")
sets <- readRDS(nombres_sets)
names(sets)[2]<-"Promedios"
df_ytrabaj <- rbind(df_ytrabaj,sets)
# print(df_ytrabaj)
}
# write_xlsx(df_ytrabaj,"Ingresos_2006_ytrabaj.xlsx")
# saveRDS(df_ytrabaj,"Ingresos_2006_ytrabaj.rds")
ingreso <- readRDS("Ingresos_yautaj.rds")
ingreso <- as.data.frame(ingreso)
fig <- plot_ly(ingreso, x = ~ingreso$Anio, y = ~ingreso$Promedios, color= ~ingreso$Comunas, type = 'scatter', mode = 'bar')%>%
layout(title = "yautaj",
xaxis = list(title = "yautaj"), yaxis= list(title = "Ingreso"))
fig
## Warning: `arrange_()` is deprecated as of dplyr 0.7.0.
## Please use `arrange()` instead.
## See vignette('programming') for more help
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
## Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8
## Returning the palette you asked for with that many colors
ingreso <- readRDS("Ingresos_ytotaj.rds")
ingreso <- as.data.frame(ingreso)
fig <- plot_ly(ingreso, x = ~ingreso$Anio, y = ~ingreso$Promedios, color= ~ingreso$Comunas, type = 'scatter', mode = 'bar')%>%
layout(title = "ytotaj",
xaxis = list(title = "ytotaj"), yaxis= list(title = "Ingreso"))
fig
## Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8
## Returning the palette you asked for with that many colors
ingreso <- readRDS("Ingresos_yopraj.rds")
ingreso <- as.data.frame(ingreso)
fig <- plot_ly(ingreso, x = ~ingreso$Anio, y = ~ingreso$Promedios, color= ~ingreso$Comunas, type = 'scatter', mode = 'bar')%>%
layout(title = "yopraj",
xaxis = list(title = "yopraj"), yaxis= list(title = "Ingreso"))
fig
## Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8
## Returning the palette you asked for with that many colors
ingreso <- readRDS("Ingresos_ytrabaj.rds")
ingreso <- as.data.frame(ingreso)
fig <- plot_ly(ingreso, x = ~ingreso$Anio, y = ~ingreso$Promedios, color= ~ingreso$Comunas, type = 'scatter', mode = 'bar')%>%
layout(title = "ytrabaj",
xaxis = list(title = "ytrabaj"), yaxis= list(title = "Ingreso"))
fig
## Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8
## Returning the palette you asked for with that many colors
## Warning in RColorBrewer::brewer.pal(N, "Set2"): n too large, allowed maximum for palette Set2 is 8
## Returning the palette you asked for with that many colors