Regresion Logisticas Univariadas

Aca estan las modelos de WHODFMT considerandola como variable binaria Son regresiones uivariadas

load("~/Dropbox/odontologia/maestria_anunziatta/julio2013/datos_tana_25072013.RData")


library(survey)
## Attaching package: 'survey'
## The following object(s) are masked from 'package:graphics':
## 
## dotchart
# sabado 27 de julio 2013

# WHO
modelo6.bin <- svyglm(WHODMFTcateg ~ Sexo.rec, diseniopost1, family = quasibinomial())

summary(modelo6.bin)
## 
## Call:
## svyglm(formula = WHODMFTcateg ~ Sexo.rec, diseniopost1, family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   0.4935     0.1422    3.47   0.0013 **
## Sexo.rec2-F  -0.0272     0.2043   -0.13   0.8949   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.001)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo6.bin)
##               2.5 % 97.5 %
## (Intercept)  0.2148 0.7723
## Sexo.rec2-F -0.4277 0.3733
modelo7.bin <- svyglm(WHODMFTcateg ~ Nivel.Socieconomico.rec, diseniopost1, 
    family = quasibinomial())



summary(modelo7.bin)
## 
## Call:
## svyglm(formula = WHODMFTcateg ~ Nivel.Socieconomico.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                      -0.198      0.160   -1.23   0.2254    
## Nivel.Socieconomico.rec2-MEDIO    0.902      0.218    4.14   0.0002 ***
## Nivel.Socieconomico.rec3-BAJO     1.406      0.212    6.64  8.5e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9904)
## 
## Number of Fisher Scoring iterations: 4

confint(modelo7.bin)
##                                  2.5 % 97.5 %
## (Intercept)                    -0.5123 0.1167
## Nivel.Socieconomico.rec2-MEDIO  0.4743 1.3288
## Nivel.Socieconomico.rec3-BAJO   0.9910 1.8202

modelo8.bin <- svyglm(WHODMFTcateg ~ Nivel.Educativo.de.la.Madre1.rec, diseniopost1, 
    family = quasibinomial())

summary(modelo8.bin)
## 
## Call:
## svyglm(formula = WHODMFTcateg ~ Nivel.Educativo.de.la.Madre1.rec, 
##     diseniopost1, family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                                     Estimate Std. Error
## (Intercept)                                           -0.422      0.160
## Nivel.Educativo.de.la.Madre1.rec2-High School          0.712      0.300
## Nivel.Educativo.de.la.Madre1.rec3-Elementary School    1.281      0.213
##                                                     t value Pr(>|t|)    
## (Intercept)                                           -2.63    0.012 *  
## Nivel.Educativo.de.la.Madre1.rec2-High School          2.37    0.023 *  
## Nivel.Educativo.de.la.Madre1.rec3-Elementary School    6.02    6e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.975)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo8.bin)
##                                                       2.5 %  97.5 %
## (Intercept)                                         -0.7357 -0.1074
## Nivel.Educativo.de.la.Madre1.rec2-High School        0.1233  1.2999
## Nivel.Educativo.de.la.Madre1.rec3-Elementary School  0.8633  1.6977


modelo9.bin <- svyglm(WHODMFTcateg ~ Tipo.de.Escuela.rec, diseniopost1, family = quasibinomial())

summary(modelo9.bin)
## 
## Call:
## svyglm(formula = WHODMFTcateg ~ Tipo.de.Escuela.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)   
## (Intercept)                    0.0562     0.1509    0.37   0.7113   
## Tipo.de.Escuela.rec2-Publica   0.5873     0.1828    3.21   0.0027 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.001)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo9.bin)
##                                2.5 % 97.5 %
## (Intercept)                  -0.2394 0.3519
## Tipo.de.Escuela.rec2-Publica  0.2292 0.9455
modelo11.bin <- svyglm(WHODMFTcateg ~ AtenOdonto2.rec, diseniopost1, family = quasibinomial())

summary(modelo11.bin)
## 
## Call:
## svyglm(formula = WHODMFTcateg ~ AtenOdonto2.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                         Estimate Std. Error t value
## (Intercept)                               0.1089     0.0986    1.10
## AtenOdonto2.rec2-publica                  1.0082     0.1662    6.07
## AtenOdonto2.rec3-nunca fue al dentista    0.9248     0.2462    3.76
##                                         Pr(>|t|)    
## (Intercept)                              0.27688    
## AtenOdonto2.rec2-publica                 5.1e-07 ***
## AtenOdonto2.rec3-nunca fue al dentista   0.00059 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9809)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo11.bin)
##                                            2.5 % 97.5 %
## (Intercept)                             -0.08448 0.3022
## AtenOdonto2.rec2-publica                 0.68241 1.3339
## AtenOdonto2.rec3-nunca fue al dentista   0.44225 1.4074



modelo12.bin <- svyglm(WHODMFTcateg ~ FrCepDenti.4.rec, diseniopost1, family = quasibinomial())


summary(modelo12.bin)
## 
## Call:
## svyglm(formula = WHODMFTcateg ~ FrCepDenti.4.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                        Estimate Std. Error t value
## (Intercept)                               1.286      0.285    4.52
## FrCepDenti.4.rec2-1 vez al dias          -0.665      0.346   -1.92
## FrCepDenti.4.rec3-2 veces al dia         -0.720      0.296   -2.43
## FrCepDenti.4.rec4-3 veces al dia o mas   -0.999      0.298   -3.35
##                                        Pr(>|t|)    
## (Intercept)                             6.5e-05 ***
## FrCepDenti.4.rec2-1 vez al dias          0.0624 .  
## FrCepDenti.4.rec3-2 veces al dia         0.0202 *  
## FrCepDenti.4.rec4-3 veces al dia o mas   0.0019 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9731)
## 
## Number of Fisher Scoring iterations: 4

confint(modelo12.bin)
##                                          2.5 %   97.5 %
## (Intercept)                             0.7284  1.84396
## FrCepDenti.4.rec2-1 vez al dias        -1.3419  0.01281
## FrCepDenti.4.rec3-2 veces al dia       -1.3007 -0.13929
## FrCepDenti.4.rec4-3 veces al dia o mas -1.5834 -0.41537

modelo13.bin <- svyglm(WHODMFTcateg ~ UsoDentifrico3.rec, diseniopost1, family = quasibinomial())



summary(modelo13.bin)
## 
## Call:
## svyglm(formula = WHODMFTcateg ~ UsoDentifrico3.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)               0.468      0.088    5.32  4.9e-06 ***
## UsoDentifrico3.rec2-No    0.567      0.597    0.95     0.35    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9971)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo13.bin)
##                          2.5 % 97.5 %
## (Intercept)             0.2953 0.6401
## UsoDentifrico3.rec2-No -0.6029 1.7377
modelo14.bin <- svyglm(WHODMFTcateg ~ FluorProf.rec, diseniopost1, family = quasibinomial())

summary(modelo14.bin)
## 
## Call:
## svyglm(formula = WHODMFTcateg ~ FluorProf.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)   
## (Intercept)         0.4331     0.1313    3.30   0.0021 **
## FluorProf.rec2-No   0.0426     0.1712    0.25   0.8048   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9298)
## 
## Number of Fisher Scoring iterations: 4

confint(modelo14.bin)
##                     2.5 % 97.5 %
## (Intercept)        0.1758 0.6903
## FluorProf.rec2-No -0.2930 0.3782
modelo15.bin <- svyglm(WHODMFTcateg ~ RefrColaB.rec, diseniopost1, family = quasibinomial())

summary(modelo15.bin)
## 
## Call:
## svyglm(formula = WHODMFTcateg ~ RefrColaB.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                  Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                         0.650      0.243    2.67    0.011 *
## RefrColaB.rec2-A veces             -0.232      0.294   -0.79    0.434  
## RefrColaB.rec3-Nunca o raramente   -0.171      0.380   -0.45    0.656  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9886)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo15.bin)
##                                    2.5 % 97.5 %
## (Intercept)                       0.1730 1.1272
## RefrColaB.rec2-A veces           -0.8080 0.3432
## RefrColaB.rec3-Nunca o raramente -0.9153 0.5743

modelo16.bin <- svyglm(WHODMFTcateg ~ MateDulceB.rec, diseniopost1, family = quasibinomial())

summary(modelo16.bin)
## 
## Call:
## svyglm(formula = WHODMFTcateg ~ MateDulceB.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                   Estimate Std. Error t value Pr(>|t|)  
## (Intercept)                          0.698      0.279    2.51    0.017 *
## MateDulceB.rec2-A veces              0.182      0.409    0.44    0.659  
## MateDulceB.rec3-Nunca o raramente   -0.409      0.294   -1.39    0.172  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9722)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo16.bin)
##                                     2.5 % 97.5 %
## (Intercept)                        0.1521 1.2449
## MateDulceB.rec2-A veces           -0.6199 0.9841
## MateDulceB.rec3-Nunca o raramente -0.9842 0.1668
modelo17.bin <- svyglm(WHODMFTcateg ~ GolosinasB.rec, diseniopost1, family = quasibinomial())

summary(modelo17.bin)
## 
## Call:
## svyglm(formula = WHODMFTcateg ~ GolosinasB.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                          0.828      0.209    3.96  0.00033 ***
## GolosinasB.rec2-A veces             -0.459      0.243   -1.89  0.06672 .  
## GolosinasB.rec3-Nunca o raramente   -0.410      0.239   -1.71  0.09526 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9766)
## 
## Number of Fisher Scoring iterations: 4

confint(modelo17.bin)
##                                     2.5 %  97.5 %
## (Intercept)                        0.4182 1.23867
## GolosinasB.rec2-A veces           -0.9345 0.01718
## GolosinasB.rec3-Nunca o raramente -0.8787 0.05932
modelo19.bin <- svyglm(WHODMFTcateg ~ Masas.DulcesB.rec, diseniopost1, family = quasibinomial())

summary(modelo19.bin)
## 
## Call:
## svyglm(formula = WHODMFTcateg ~ Masas.DulcesB.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)                             0.981      0.187    5.25  6.5e-06
## Masas.DulcesB.rec2-A veces             -0.559      0.193   -2.90   0.0063
## Masas.DulcesB.rec3-Nunca o raramente   -0.743      0.322   -2.31   0.0266
##                                         
## (Intercept)                          ***
## Masas.DulcesB.rec2-A veces           ** 
## Masas.DulcesB.rec3-Nunca o raramente *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9852)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo19.bin)
##                                        2.5 %  97.5 %
## (Intercept)                           0.6149  1.3470
## Masas.DulcesB.rec2-A veces           -0.9365 -0.1807
## Masas.DulcesB.rec3-Nunca o raramente -1.3741 -0.1125

modelo20.bin <- svyglm(WHODMFTcateg ~ UltmVisita1.rec, diseniopost1, family = quasibinomial())

summary(modelo20.bin)
## 
## Call:
## svyglm(formula = WHODMFTcateg ~ UltmVisita1.rec, diseniopost1, 
##     family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                        Estimate Std. Error t value
## (Intercept)                              0.3872     0.0844    4.59
## UltmVisita1.rec2- años atrás             0.0455     0.3167    0.14
## UltmVisita1.rec3-Nunca fue al dentista   0.6898     0.2455    2.81
##                                        Pr(>|t|)    
## (Intercept)                               5e-05 ***
## UltmVisita1.rec2- años atrás             0.8865    
## UltmVisita1.rec3-Nunca fue al dentista   0.0079 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.9785)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo20.bin)
##                                          2.5 % 97.5 %
## (Intercept)                             0.2218 0.5526
## UltmVisita1.rec2- años atrás           -0.5751 0.6661
## UltmVisita1.rec3-Nunca fue al dentista  0.2086 1.1710




modelo21.bin <- svyglm(WHODMFTcateg ~ IGS.rec1, diseniopost1, family = quasibinomial())

summary(modelo21.bin)
## 
## Call:
## svyglm(formula = WHODMFTcateg ~ IGS.rec1, diseniopost1, family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                      Estimate Std. Error t value Pr(>|t|)   
## (Intercept)             0.404      0.140    2.89   0.0064 **
## IGS.rec12-De 20 a 60    0.121      0.208    0.58   0.5627   
## IGS.rec13-Mas de 60     0.322      0.193    1.67   0.1042   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 1.001)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo21.bin)
##                         2.5 % 97.5 %
## (Intercept)           0.13024 0.6771
## IGS.rec12-De 20 a 60 -0.28563 0.5282
## IGS.rec13-Mas de 60  -0.05694 0.7015



modelo22.bin <- svyglm(WHODMFTcateg ~ Nive.Educativo.de.la.Madre2.rec, diseniopost1, 
    family = quasibinomial())

summary(modelo22.bin)
## 
## Call:
## svyglm(formula = WHODMFTcateg ~ Nive.Educativo.de.la.Madre2.rec, 
##     diseniopost1, family = quasibinomial())
## 
## Survey design:
## postStratify(disenio1, ~categor.rec + Sexo, tabla.pob)
## 
## Coefficients:
##                                                     Estimate Std. Error
## (Intercept)                                          -0.0728     0.1838
## Nive.Educativo.de.la.Madre2.rec2-HIGH SCHOOL          0.5609     0.2193
## Nive.Educativo.de.la.Madre2.rec3-ELEMENTARY SCHOOL    1.2731     0.2542
##                                                     t value Pr(>|t|)    
## (Intercept)                                           -0.40    0.694    
## Nive.Educativo.de.la.Madre2.rec2-HIGH SCHOOL           2.56    0.015 *  
## Nive.Educativo.de.la.Madre2.rec3-ELEMENTARY SCHOOL     5.01  1.4e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasibinomial family taken to be 0.975)
## 
## Number of Fisher Scoring iterations: 4
confint(modelo22.bin)
##                                                       2.5 % 97.5 %
## (Intercept)                                         -0.4331 0.2874
## Nive.Educativo.de.la.Madre2.rec2-HIGH SCHOOL         0.1311 0.9908
## Nive.Educativo.de.la.Madre2.rec3-ELEMENTARY SCHOOL   0.7748 1.7713