library(tidytuesdayR)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.2 v purrr 0.3.4
## v tibble 3.0.4 v dplyr 1.0.2
## v tidyr 1.1.2 v stringr 1.4.0
## v readr 1.4.0 v forcats 0.5.0
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(viridisLite)
library(ggsci)
data <- tt_load("2020", week = 42)
## --- Compiling #TidyTuesday Information for 2020-10-13 ----
## --- There is 1 file available ---
## --- Starting Download ---
##
## Downloading file 1 of 1: `datasaurus.csv`
## --- Download complete ---
data <- data$datasaurus
mean <- data %>%
group_by(dataset) %>%
summarise(mean_x = mean(x),
mean_y = mean(y))
## `summarise()` ungrouping output (override with `.groups` argument)
var <- data %>%
group_by(dataset) %>%
summarise(mean_x = sd(x),
mean_y = sd(y))
## `summarise()` ungrouping output (override with `.groups` argument)
max <- data %>%
group_by(dataset) %>%
summarise(mean_x = max(x),
mean_y = max(y))
## `summarise()` ungrouping output (override with `.groups` argument)
data %>%
ggplot(aes(x, y, col = dataset)) +
geom_point(col = "black", size = 2.2) +
geom_point(alpha = 1) +
geom_line(alpha = 0.1) +
theme_void() +
facet_wrap(~dataset) +
scale_color_igv() +
theme(legend.position = "none",
plot.title = element_text(size = 25)) +
geom_label(aes(label = paste("mean = ",round(mean_x,1)),
x = 20, y = 100) , data = mean, size = 2, fontface = "bold") +
geom_label(aes(label = paste("SD = ",round(mean_x,1)),
x = 20, y = 10) , data = var, size = 2, fontface = "bold") +
ggtitle("Datasaurus Dozen")
