library(tidytuesdayR)
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.3.2     v purrr   0.3.4
## v tibble  3.0.4     v dplyr   1.0.2
## v tidyr   1.1.2     v stringr 1.4.0
## v readr   1.4.0     v forcats 0.5.0
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(viridisLite)
library(ggsci)


data <- tt_load("2020", week = 42)
## --- Compiling #TidyTuesday Information for 2020-10-13 ----
## --- There is 1 file available ---
## --- Starting Download ---
## 
##  Downloading file 1 of 1: `datasaurus.csv`
## --- Download complete ---
data <- data$datasaurus

mean <- data %>% 
  group_by(dataset) %>% 
  summarise(mean_x = mean(x),
            mean_y = mean(y))
## `summarise()` ungrouping output (override with `.groups` argument)
var <- data %>% 
  group_by(dataset) %>% 
  summarise(mean_x = sd(x),
            mean_y = sd(y))
## `summarise()` ungrouping output (override with `.groups` argument)
max <- data %>% 
  group_by(dataset) %>% 
  summarise(mean_x = max(x),
            mean_y = max(y))
## `summarise()` ungrouping output (override with `.groups` argument)
data %>% 
  ggplot(aes(x, y, col = dataset)) +
  geom_point(col = "black", size = 2.2) +
  geom_point(alpha = 1) +
  geom_line(alpha = 0.1) +
  theme_void() +
  facet_wrap(~dataset) +
  scale_color_igv() +
  theme(legend.position = "none",
        plot.title = element_text(size = 25)) +
  geom_label(aes(label = paste("mean = ",round(mean_x,1)),
                 x = 20, y = 100) , data = mean, size = 2, fontface = "bold") +
  geom_label(aes(label = paste("SD = ",round(mean_x,1)),
                 x = 20, y = 10) , data = var, size = 2, fontface = "bold") +
  ggtitle("Datasaurus Dozen")