Binomial Distribution

percent(dbinom(2,10,.2))
[1] 30.20%

(0:10-2)^2%*%dbinom(0:10,10,.2)
     [,1]
[1,]  1.6
10*.2*.8
[1] 1.6

Exercice 7.84

On a \(n=10\) er \(p=0.3\).

  1. Calculer \(\Pr(X=3)\).
round(dbinom(3,10,0.3),4)
[1] 0.2668
  1. Calculer \(\Pr(X=5)\).
round(dbinom(5,10,0.3),4)
[1] 0.1029
  1. Calculer \(\Pr(X=8)\).
round(dbinom(8,10,0.3),4)

Obtenir les 3 résulats d’un coup.

round(dbinom(c(3,5,8),10,0.3),4)

Executer le Chunk en ligne de manière transparente

  1. Calculer \(\Pr(X=3)\). On trouve \(\Pr(X=3)=\) 0.2668.

Exercice 7.92

dbinom(1,4,1/4)
[1] 0.421875
dbinom(2,8,1/4)
[1] 0.3114624
dbinom(3,12,1/4)
[1] 0.2581036

Taper un code en ligne. Un exemple simple 346.

7.101 b.

\[E(X)=100\times \frac{244}{495}\]

On trouve 49. Il gagne environ en moyenne 49 parties pour 100 parties jouées.

Exercice 7.138

Soit \(X\) le nombre de faux-positifs pour 10 ans de mammographie. On a \(X\) suit une loi \(\mathcal{B}(10,p)\)\(p\) est inconnu. On sait que \(\Pr(X\geq 1)=0.6\). On doit trouver \(p\).

On a \[Pr(X \geq 1) = 1 - Pr(X=0)\] Soit :

\[ 1-(1-p)^{10}=0.60. \] Cela revient à résoudre l’équation suivante : \[ (1-p)^{10}=0.4, \] qui donne \[ 1-p = 0.4^{1/10} \]. Ainsi, \[p = 1 - 0.4^{1/10} \] Chaque année la probabilité qu’une femme qui passe une mamographie obtienne un faux positif s’élève à 8.8%.

LS0tCnRpdGxlOiAiQ2hhcHRlciAyOiBEaXNjcmV0ZSByYW5kb20gdmFyaWFibGVzIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgoKIyBCaW5vbWlhbCBEaXN0cmlidXRpb24gCgoqIEEgYmlub21pYWwgZXhwZXJpbWVudCBjb25zaXN0cyBvZiBhIGZpeGVkIG51bWJlciBvZiAkbiQgdHJpYWxzLiAKKiBFYWNoIHRyaWFsIGhhcyB0d28gcG9zc2libGUgb3V0Y29tZXM6IHN1Y2Nlc3MsIGZhaWx1cmUuIAoqIFRoZSBwcm9iYWJpbGl0eSBvZiBzdWNjZXNzIGlzIGRlbm90ZWQgYnkgJHAsXDowXGxlcSBwXGxlcSAxJC4KKiBUaGUgcHJvYmFiaWxpdHkgb2YgZmFpbHVyZSBpcyAkMS1wJC4gCiogVGhlIHRyaWFscyBhcmUgYXNzdW1lZCBpbmRlcGVuZGVudDoKKiB0aGUgb3V0Y29tZSBvZiBvbmUgdHJpYWwgZG9lcyBub3QgYWZmZWN0IHRoZSAgb3V0Y29tZSBwcm9iYWJpbGl0eSBvZiBhbnkgb3RoZXIgdHJpYWwuCgoKYGBge3J9Cm49MTAgICMgU2FtcGxlIHNpemUKcD0uNSAjIHByb2JhYmlsaXR5IG9mIHN1Y2Nlc3MgCng9MDpuICAjIFBvc3NpYmxlIHZhbHVlcwpyb3VuZChkYmlub20oeCxuLHApLDQpCgpjaG9vc2UoMTAsNikKCjIxMCooMC41KV40KigwLjUpXjYKCi44XjEwCmRiaW5vbSgwLDEwLDAuMikKCjQ1KiguMileMiooLjgpXjgKY2hvb3NlKDEwLDIpKiguMileMiooLjgpXjgKZGJpbm9tKDIsMTAsLjIpCnN1bShkYmlub20oMDo0LDEwLC4yKSkKcGJpbm9tKDQsMTAsLjIpCmxpYnJhcnkoZm9ybWF0dGFibGUpCmRiaW5vbSgyLDEwLC4yKQpwZXJjZW50KGRiaW5vbSgyLDEwLC4yKSkKCgoKCgoKYGBgCgoKYGBge3J9CkI8LWFzLnRhYmxlKGRiaW5vbSgwOjEwLDEwLC4yKSkKQgpuYW1lcyhCKTwtMDoxMApCCnBsb3QoQixjb2w9InJlZCIsbWFpbj0iQmFyIHBsb3QgZm9yIGJpbm9taWFsIFBERiIseGxhYj0iTnVtYmVyIG9mIGNvcnJlY3QgYW5zd2VycyIseWxhYj0iUHJvYmFiaWxpdHkiKQpgYGAKYGBge3J9CnNldC5zZWVkKDEyMykKcmVzPC1yYmlub20oMTAwMDAsMTAsLjIpCmhlYWQocmVzLDEwKQptZWFuKHJlcykKcm91bmQoZGJpbm9tKDA6MTAsMTAsLjIpLDQpCnRhYmxlKHJlcykKc3VtKCgwOjEwKSpkYmlub20oMDoxMCwxMCwuMikpCigwOjEwKSUqJWRiaW5vbSgwOjEwLDEwLC4yKQoKdmFyKHJlcykKCm1lYW4oKHJlcy1tZWFuKHJlcykpXjIpCigwOjEwLTIpXjIlKiVkYmlub20oMDoxMCwxMCwuMikKMTAqLjIqLjgKYGBgCgoKCgojIyBFeGVyY2ljZSA3Ljg0CiAKT24gYSAkbj0xMCQgZXIgJHA9MC4zJC4KCmEuIENhbGN1bGVyICRcUHIoWD0zKSQuCmBgYHtyfQpyb3VuZChkYmlub20oMywxMCwwLjMpLDQpCmBgYAoKYi4gQ2FsY3VsZXIgJFxQcihYPTUpJC4KCmBgYHtyfQpyb3VuZChkYmlub20oNSwxMCwwLjMpLDQpCmBgYAoKCmMuIENhbGN1bGVyICRcUHIoWD04KSQuCgpgYGB7cn0Kcm91bmQoZGJpbm9tKDgsMTAsMC4zKSw0KQpgYGAKCiMjIE9idGVuaXIgbGVzIDMgcsOpc3VsYXRzIGQndW4gY291cC4KCgpgYGB7cn0Kcm91bmQoZGJpbm9tKGMoMyw1LDgpLDEwLDAuMyksNCkKYGBgCgojIyBFeGVjdXRlciBsZSBDaHVuayBlbiBsaWduZSBkZSBtYW5pw6hyZSB0cmFuc3BhcmVudGUKCmEuIENhbGN1bGVyICRcUHIoWD0zKSQuIE9uIHRyb3V2ZSAkXFByKFg9Myk9JCBgciByb3VuZChkYmlub20oMywxMCwwLjMpLDQpYC4KCiMjIEV4ZXJjaWNlIDcuOTIKCgoKYGBge3J9CmRiaW5vbSgxLDQsMS80KQpkYmlub20oMiw4LDEvNCkKZGJpbm9tKDMsMTIsMS80KQoKYGBgCgoKVGFwZXIgdW4gY29kZSBlbiBsaWduZS4gVW4gZXhlbXBsZSBzaW1wbGUgYHIgMTEyKzIzNGAuCgoKCiMjIDcuMTAxIGIuCgokJEUoWCk9MTAwXHRpbWVzIFxmcmFjezI0NH17NDk1fSQkCgoKT24gdHJvdXZlIGByIHJvdW5kKDEwMCoyNDQvNDk1LDApYC4gSWwgZ2FnbmUgZW52aXJvbiBlbiBtb3llbm5lIGByIHJvdW5kKDEwMCoyNDQvNDk1LDApYCBwYXJ0aWVzIHBvdXIgMTAwIHBhcnRpZXMgam91w6llcy4KCgoKIyMgRXhlcmNpY2UgNy4xMzgKCgpTb2l0ICRYJCBsZSBub21icmUgZGUgZmF1eC1wb3NpdGlmcyBwb3VyIDEwIGFucyBkZSBtYW1tb2dyYXBoaWUuIE9uIGEgJFgkIHN1aXQgdW5lIGxvaSAkXG1hdGhjYWx7Qn0oMTAscCkkIG/DuSAkcCQgZXN0IGluY29ubnUuIE9uIHNhaXQgcXVlICRcUHIoWFxnZXEgMSk9MC42JC4gT24gZG9pdCB0cm91dmVyICRwJC4gCgoKCk9uIGEgJCRQcihYIFxnZXEgMSkgPSAxIC0gUHIoWD0wKSQkIFNvaXQgOgoKJCQKMS0oMS1wKV57MTB9PTAuNjAuCiQkCkNlbGEgcmV2aWVudCDDoCByw6lzb3VkcmUgbCfDqXF1YXRpb24gc3VpdmFudGUgOiAKJCQKKDEtcCleezEwfT0wLjQsCiQkCnF1aSBkb25uZSAKJCQKMS1wID0gMC40XnsxLzEwfQokJC4KQWluc2ksIAokJHAgPSAxIC0gMC40XnsxLzEwfQokJApDaGFxdWUgYW5uw6llIGxhIHByb2JhYmlsaXTDqSBxdSd1bmUgZmVtbWUgcXVpIHBhc3NlIHVuZSBtYW1vZ3JhcGhpZSBvYnRpZW5uZSB1biBmYXV4IHBvc2l0aWYgcyfDqWzDqHZlIMOgIGByIHBlcmNlbnQoMSAtIDAuNF4oMS8xMCksMSlgLgoKCgoKCgoKCgoKCgoKCgo=